Remove option relaxbox from adaptglok: wrong behavior with non-P boundaries. Code cleanup.

This commit is contained in:
jguenole
2019-05-29 10:37:53 +02:00
parent 58d99f5e1f
commit c2e4009106
7 changed files with 13 additions and 237 deletions

View File

@ -26,8 +26,7 @@ keyword = {dmax} or {line} or {alpha_damp} or {discrete_factor}
these keywords apply only to the "min_style"_min_style.html {adaptglok} :ulb,l these keywords apply only to the "min_style"_min_style.html {adaptglok} :ulb,l
keyword = {integrator} or {tmax} or {tmin} or {delaystep} or {dtgrow} or {dtshrink} keyword = {integrator} or {tmax} or {tmin} or {delaystep} or {dtgrow} or {dtshrink}
or {alpha0} or {alphashrink} or {relaxbox} or {relaxbox_mod} or {relaxbox_rate} or {alpha0} or {alphashrink} or {halfstepback} or {initialdelay} or {vdfmax}
or {ptol} or {halfstepback} or {initialdelay} or {vdfmax}
{integrator} arg = {eulerimplicit} or {eulerexplicit} or {verlet} or {leapfrog} {integrator} arg = {eulerimplicit} or {eulerexplicit} or {verlet} or {leapfrog}
eulerimplicit,eulerexplicit,verlet,leapfrog = integration scheme eulerimplicit,eulerexplicit,verlet,leapfrog = integration scheme
{tmax} arg = coef {tmax} arg = coef
@ -44,15 +43,6 @@ keyword = {integrator} or {tmax} or {tmin} or {delaystep} or {dtgrow} or {dtshri
alpha = coefficient mixing velocities and forces alpha = coefficient mixing velocities and forces
{alphashrink} arg = shrink {alphashrink} arg = shrink
shrink = factor decreasing alpha shrink = factor decreasing alpha
{relaxbox} arg = {no} or {iso} or {aniso} or {x} or {y} or {z}
no = no changes in box dimension (default)
iso, aniso, x, y, z = type of box relaxation
{relaxbox_mod} arg = modulus
modulus = bulk modulus of the system, order of magnitude (pressure units)
{relaxbox_rate} arg = rate
rate = scaling factor to relax the box dimensions
{ptol} arg = pressure
pressure = threshold below which the box pressure is considered as null (pressure units)
{vdfmax} arg = max {vdfmax} arg = max
max = maximum number of consecutive iterations with P(t) < 0 before forced interruption max = maximum number of consecutive iterations with P(t) < 0 before forced interruption
{halfstepback} arg = {yes} or {no} {halfstepback} arg = {yes} or {no}
@ -62,7 +52,7 @@ keyword = {integrator} or {tmax} or {tmin} or {delaystep} or {dtgrow} or {dtshri
[Examples:] [Examples:]
min_modify dmax 0.2 min_modify dmax 0.2
min_modify integrator verlet tmax 0.4 relaxbox y relaxbox_mod 2e7 :pre min_modify integrator verlet tmax 0.4 :pre
[Description:] [Description:]
@ -127,25 +117,6 @@ happen when the system comes to be stuck in a local basin of the phase space.
For debugging purposes, it is possible to switch off the inertia correction For debugging purposes, it is possible to switch off the inertia correction
({halfstepback} = {no}) and the initial delay ({initialdelay} = {no}). ({halfstepback} = {no}) and the initial delay ({initialdelay} = {no}).
The style {adaptglok} performing a damped dynamics, it is not possible to use
"fix box/relax"_fix_box_relax.html to relax the simulation box.
Thus {adaptglok} implements a rudimentary box relaxation procedure that can be
controlled by the keywords {relaxbox}, {relaxbox_mod}, {relaxbox_rate}
and {ptol}.
The argument {relaxbox} control in which directions the pressure is relaxed.
Note that the corresponding directions have to be periodic.
Note also that {relaxbox_mod} doesn't requires the exact value for the bulk modulus,
but rather the order of magnitude (in pressure "units"_units.html).
Ultimately, {relaxbox_mod} and {relaxbox_rate}
control how fast the relaxation of the box is performed: lower values will slow
down the box relaxation but improve the stability of the procedure.
NOTE: the option {relaxbox} is currently experimental and often
requires to tune the communication cutoff for ghost atoms with the command
"comm_modify cutoff"_comm_modify.html. The value will depend on the expected
box variation and the number of cpu. A value from 2 to 3 times the current cutoff
(largest pair cutoff + neighbor skin) is often enough.
Keywords {alpha_damp} and {discrete_factor} only make sense when Keywords {alpha_damp} and {discrete_factor} only make sense when
a "min_spin"_min_spin.html command is declared. a "min_spin"_min_spin.html command is declared.
Keyword {alpha_damp} defines an analog of a magnetic Gilbert Keyword {alpha_damp} defines an analog of a magnetic Gilbert
@ -168,5 +139,4 @@ Default values are {alpha_damp} = 1.0 and {discrete_factor} = 10.0.
The option defaults are dmax = 0.1, line = quadratic, The option defaults are dmax = 0.1, line = quadratic,
integrator = eulerimplicit, tmax = 10.0, tmin = 0.02, integrator = eulerimplicit, tmax = 10.0, tmin = 0.02,
delaystep = 20, dtgrow = 1.1, dtshrink = 0.5, alpha0 = 0.25, alphashrink = 0.99, delaystep = 20, dtgrow = 1.1, dtshrink = 0.5, alpha0 = 0.25, alphashrink = 0.99,
relaxbox = no, relaxbox_mod = 1e6 and relaxbox_rate = 0.33, ptol = 0.1
vdfmax = 2000, halfstepback = yes and initialdelay = yes. vdfmax = 2000, halfstepback = yes and initialdelay = yes.

View File

@ -64,7 +64,7 @@ a minimization.
Style {adaptglok} is a re-implementation of the style {fire} with Style {adaptglok} is a re-implementation of the style {fire} with
additional optimizations of the method described additional optimizations of the method described
in "(Bitzek)"_#Bitzek. in "(Bitzek)"_#Bitzek, including different time integration schemes.
Style {spin} is a damped spin dynamics with an adaptive Style {spin} is a damped spin dynamics with an adaptive
timestep. timestep.
@ -81,8 +81,6 @@ would normally use for dynamics simulations.
NOTE: The {quickmin}, {fire}, {adaptglok}, and {hftn} styles do not yet support the NOTE: The {quickmin}, {fire}, {adaptglok}, and {hftn} styles do not yet support the
use of the "fix box/relax"_fix_box_relax.html command or minimizations use of the "fix box/relax"_fix_box_relax.html command or minimizations
involving the electron radius in "eFF"_pair_eff.html models. involving the electron radius in "eFF"_pair_eff.html models.
The {adaptglok} style actually support box relaxation by the implementation of
a basic relaxation scheme, see "min_modify"_min_modify.html.
[Restrictions:] none [Restrictions:] none

View File

@ -64,8 +64,7 @@ backtracking method is described in Nocedal and Wright's Numerical
Optimization (Procedure 3.1 on p 41). Optimization (Procedure 3.1 on p 41).
The "minimization styles"_min_style.html {quickmin}, {fire} and The "minimization styles"_min_style.html {quickmin}, {fire} and
{adaptglok} perform damped dynamics using an Euler integration step. The style {adaptglok} perform damped dynamics using an Euler integration step.
{adaptglok} can also use a leapfrog or velocity Verlet integration step.
Thus they require a "timestep"_timestep.html be defined. Thus they require a "timestep"_timestep.html be defined.
NOTE: The damped dynamic minimizers use whatever timestep you have NOTE: The damped dynamic minimizers use whatever timestep you have

View File

@ -66,11 +66,6 @@ Min::Min(LAMMPS *lmp) : Pointers(lmp)
halfstepback_flag = 1; halfstepback_flag = 1;
delaystep_start_flag = 1; delaystep_start_flag = 1;
max_vdotf_negatif = 2000; max_vdotf_negatif = 2000;
relaxbox_mod = 1000000;
relaxbox_rate = 0.33;
relaxbox_flag = 0;
ptol = 0.1;
p_flag[0] = p_flag[1] = p_flag[2] = 0;
elist_global = elist_atom = NULL; elist_global = elist_atom = NULL;
vlist_global = vlist_atom = NULL; vlist_global = vlist_atom = NULL;
@ -724,43 +719,6 @@ void Min::modify_params(int narg, char **arg)
else if (strcmp(arg[iarg+1],"leapfrog") == 0) integrator = 2; else if (strcmp(arg[iarg+1],"leapfrog") == 0) integrator = 2;
else if (strcmp(arg[iarg+1],"eulerexplicit") == 0) integrator = 3; else if (strcmp(arg[iarg+1],"eulerexplicit") == 0) integrator = 3;
else error->all(FLERR,"Illegal min_modify command"); else error->all(FLERR,"Illegal min_modify command");
iarg += 2;
} else if (strcmp(arg[iarg],"relaxbox") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal min_modify command");
if (strcmp(arg[iarg+1],"no") == 0) {
relaxbox_flag = 0;
} else if (strcmp(arg[iarg+1],"iso") == 0) {
relaxbox_flag = 1;
p_flag[0] = p_flag[1] = p_flag[2] = 1;
if (dimension == 2) p_flag[2] = 0;
} else if (strcmp(arg[iarg+1],"aniso") == 0) {
relaxbox_flag = 2;
p_flag[0] = p_flag[1] = p_flag[2] = 1;
if (dimension == 2) p_flag[2] = 0;
} else if (strcmp(arg[iarg+1],"x") == 0) {
relaxbox_flag = 2;
p_flag[0] = 1;
} else if (strcmp(arg[iarg+1],"y") == 0) {
relaxbox_flag = 2;
p_flag[1] = 1;
} else if (strcmp(arg[iarg+1],"z") == 0) {
relaxbox_flag = 2;
p_flag[2] = 1;
if (dimension == 2)
error->all(FLERR,"Invalid min_modify command for a 2d simulation");
} else error->all(FLERR,"Illegal min_modify command");
iarg += 2;
} else if (strcmp(arg[iarg],"relaxbox_mod") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal min_modify command");
relaxbox_mod = force->numeric(FLERR,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"relaxbox_rate") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal min_modify command");
relaxbox_rate = force->numeric(FLERR,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"ptol") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal min_modify command");
ptol = force->numeric(FLERR,arg[iarg+1]);
iarg += 2; iarg += 2;
} else if (strcmp(arg[iarg],"line") == 0) { } else if (strcmp(arg[iarg],"line") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal min_modify command"); if (iarg+2 > narg) error->all(FLERR,"Illegal min_modify command");

View File

@ -69,12 +69,6 @@ class Min : protected Pointers {
int halfstepback_flag; // half step backward when v.f <= 0.0 int halfstepback_flag; // half step backward when v.f <= 0.0
int delaystep_start_flag; // delay the initial dt_shrink int delaystep_start_flag; // delay the initial dt_shrink
int max_vdotf_negatif; // maximum iteration with v.f > 0.0 int max_vdotf_negatif; // maximum iteration with v.f > 0.0
double relaxbox_mod; // Bulk modulus used for box relax
double relaxbox_rate; // for box relaxation to 0 pressure
int relaxbox_flag; // 1: box relaxation iso; 2: aniso
double ptol; // pressure threshold for boxrelax
int p_flag[3];
int dimension;
int nelist_global,nelist_atom; // # of PE,virial computes to check int nelist_global,nelist_atom; // # of PE,virial computes to check
int nvlist_global,nvlist_atom; int nvlist_global,nvlist_atom;

View File

@ -11,7 +11,7 @@
See the README file in the top-level LAMMPS directory. See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */ ------------------------------------------------------------------------- */
#include <math.h> #include <cmath>
#include "min_adaptglok.h" #include "min_adaptglok.h"
#include "universe.h" #include "universe.h"
#include "atom.h" #include "atom.h"
@ -48,17 +48,6 @@ void MinAdaptGlok::init()
if (tmax < tmin) error->all(FLERR,"tmax has to be larger than tmin"); if (tmax < tmin) error->all(FLERR,"tmax has to be larger than tmin");
if (dtgrow < 1.0) error->all(FLERR,"dtgrow has to be larger than 1.0"); if (dtgrow < 1.0) error->all(FLERR,"dtgrow has to be larger than 1.0");
if (dtshrink > 1.0) error->all(FLERR,"dtshrink has to be smaller than 1.0"); if (dtshrink > 1.0) error->all(FLERR,"dtshrink has to be smaller than 1.0");
if (relaxbox_mod < 0.0) error->all(FLERR,"relaxbox_mod has to be positif");
if (relaxbox_rate < 0.0 || relaxbox_rate > 1.0) error->all(FLERR,"relaxbox_rate has to be positif, lower than 1.0");
// require periodicity in boxrelax dimensions
if (p_flag[0] && domain->xperiodic == 0)
error->all(FLERR,"Cannot use boxrelax on a non-periodic dimension");
if (p_flag[1] && domain->yperiodic == 0)
error->all(FLERR,"Cannot use boxrelax on a non-periodic dimension");
if (p_flag[2] && domain->zperiodic == 0)
error->all(FLERR,"Cannot use boxrelax on a non-periodic dimension");
dt = update->dt; dt = update->dt;
dtmax = tmax * dt; dtmax = tmax * dt;
@ -67,18 +56,6 @@ void MinAdaptGlok::init()
last_negative = ntimestep_start = update->ntimestep; last_negative = ntimestep_start = update->ntimestep;
vdotf_negatif = 0; vdotf_negatif = 0;
if (relaxbox_flag){
// require the box to be orthogonal
if (domain->triclinic)
error->all(FLERR,"Cannot use boxrelax with triclinic box");
int icompute = modify->find_compute("thermo_press");
pressure = modify->compute[icompute];
pflag = 1;
}
} }
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
@ -92,16 +69,14 @@ void MinAdaptGlok::setup_style()
const char *s1[] = {"eulerimplicit","verlet","leapfrog","eulerexplicit"}; const char *s1[] = {"eulerimplicit","verlet","leapfrog","eulerexplicit"};
const char *s2[] = {"no","yes"}; const char *s2[] = {"no","yes"};
const char *s3[] = {"no","iso","aniso"};
if (comm->me == 0 && logfile) { if (comm->me == 0 && logfile) {
fprintf(logfile," Parameters for adaptglok: \n" fprintf(logfile," Parameters for adaptglok: \n"
" dmax delaystep dtgrow dtshrink alpha0 alphashrink tmax tmin " " dmax delaystep dtgrow dtshrink alpha0 alphashrink tmax tmin "
" integrator halfstepback relaxbox relaxbox_mod relaxbox_rate ptol \n" " integrator halfstepback relaxbox relaxbox_mod relaxbox_rate ptol \n"
" %4g %9i %6g %8g %6g %11g %4g %4g %13s %12s %8s %12g %13g %4g \n", " %4g %9i %6g %8g %6g %11g %4g %4g %13s %12s \n",
dmax, delaystep, dtgrow, dtshrink, alpha0, alphashrink, tmax, tmin, dmax, delaystep, dtgrow, dtshrink, alpha0, alphashrink, tmax, tmin,
s1[integrator], s2[halfstepback_flag], s3[relaxbox_flag], relaxbox_mod, s1[integrator], s2[halfstepback_flag]);
relaxbox_rate, ptol);
} }
// initialize the velocities // initialize the velocities
@ -124,98 +99,6 @@ void MinAdaptGlok::reset_vectors()
if (nvec) fvec = atom->f[0]; if (nvec) fvec = atom->f[0];
} }
/* ----------------------------------------------------------------------
save current box state for converting atoms to lamda coords
------------------------------------------------------------------------- */
void MinAdaptGlok::save_box_state()
{
boxlo[0] = domain->boxlo[0];
boxlo[1] = domain->boxlo[1];
boxlo[2] = domain->boxlo[2];
for (int i = 0; i < 6; i++)
h_inv[i] = domain->h_inv[i];
}
/* ----------------------------------------------------------------------
deform the simulation box and remap the particles
------------------------------------------------------------------------- */
void MinAdaptGlok::relax_box()
{
// rescale simulation box and scale atom coords for all atoms
// inspired by change_box.cpp
int i,n;
double **x = atom->x;
double **v = atom->v;
double epsilon,disp;
int nlocal = atom->nlocal;
domain->pbc();
save_box_state();
neighbor->setup_bins();
comm->exchange();
comm->borders();
if (neighbor->decide()) neighbor->build(1);
// ensure the virial is tallied, update the flag
pressure->addstep(update->ntimestep);
update->vflag_global = update->ntimestep;
// Only when the presure is not yet free:
// - compute and apply box re-scaling
// - freez atoms
if (pflag != 1){
// compute pressure and change simulation box
pressure->compute_scalar();
pressure->compute_vector();
epsilon = pressure->scalar / relaxbox_mod;
for (int i = 0; i < 3; i++) {
if (relaxbox_flag == 2) epsilon = pressure->vector[i] / relaxbox_mod;
disp = domain->h[i] * epsilon * relaxbox_rate;
if (fabs(disp) > dmax) disp > 0.0 ? disp = dmax : disp = -1 * dmax;
domain->boxlo[i] -= p_flag[i] * disp * 0.5;
domain->boxhi[i] += p_flag[i] * disp * 0.5;
}
// reset global and local box to new size/shape
domain->set_initial_box();
domain->set_global_box();
domain->set_local_box();
// convert atoms to lamda coords, using last box state
// convert atoms back to box coords, using current box state
// save current box state
for (i = 0; i < nlocal; i++)
domain->x2lamda(x[i],x[i],boxlo,h_inv);
for (i = 0; i < nlocal; i++)
domain->lamda2x(x[i],x[i]);
save_box_state();
// move atoms back inside simulation box and to new processors
// use remap() instead of pbc()
// in case box moved a long distance relative to atoms
imageint *image = atom->image;
for (i = 0; i < nlocal; i++) domain->remap(x[i],image[i]);
domain->reset_box();
// freez atoms velocities when the box is rescaled
// prevent atoms getting unintended extra velocity
for (int i = 0; i < nlocal; i++)
v[i][0] = v[i][1] = v[i][2] = 0.0;
}
}
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
int MinAdaptGlok::iterate(int maxiter) int MinAdaptGlok::iterate(int maxiter)
@ -269,10 +152,6 @@ int MinAdaptGlok::iterate(int maxiter)
ntimestep = ++update->ntimestep; ntimestep = ++update->ntimestep;
niter++; niter++;
// Relax the simulation box
if (relaxbox_flag) relax_box();
// pointers // pointers
int nlocal = atom->nlocal; int nlocal = atom->nlocal;
@ -367,10 +246,9 @@ int MinAdaptGlok::iterate(int maxiter)
} }
// stopping criterion while stuck in a local bassin of the PES // stopping criterion while stuck in a local bassin of the PES
// only checked when the box dimesions are not modified bu relax_box()
vdotf_negatif++; vdotf_negatif++;
if (pflag == 1 && max_vdotf_negatif > 0 && vdotf_negatif > max_vdotf_negatif) if (max_vdotf_negatif > 0 && vdotf_negatif > max_vdotf_negatif)
return MAXVDOTF; return MAXVDOTF;
// inertia correction // inertia correction
@ -555,21 +433,6 @@ int MinAdaptGlok::iterate(int maxiter)
} }
// Pressure relaxation criterion
// set pflag = 0 if relaxbox is activated and pressure > ptol
// pflag = 0 will hinder the energy or force criterion
pflag = 1;
if (relaxbox_flag == 1){
pressure->compute_scalar();
if (fabs(pressure->scalar) > ptol) pflag = 0;
}else if (relaxbox_flag == 2){
pressure->compute_vector();
for (int i = 0; i < 3; i++)
if (fabs(pressure->vector[i]) * p_flag[i] > ptol) pflag = 0;
}
// energy tolerance criterion // energy tolerance criterion
// only check after delaystep elapsed since velocties reset to 0 // only check after delaystep elapsed since velocties reset to 0
// sync across replicas if running multi-replica minimization // sync across replicas if running multi-replica minimization
@ -578,13 +441,11 @@ int MinAdaptGlok::iterate(int maxiter)
if (update->etol > 0.0 && ntimestep-last_negative > delaystep) { if (update->etol > 0.0 && ntimestep-last_negative > delaystep) {
if (update->multireplica == 0) { if (update->multireplica == 0) {
if (fabs(ecurrent-eprevious) < if (fabs(ecurrent-eprevious) <
update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY) update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
&& pflag)
return ETOL; return ETOL;
} else { } else {
if (fabs(ecurrent-eprevious) < if (fabs(ecurrent-eprevious) <
update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY) update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
&& pflag)
flag = 0; flag = 0;
else flag = 1; else flag = 1;
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld); MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld);
@ -600,10 +461,10 @@ int MinAdaptGlok::iterate(int maxiter)
if (update->ftol > 0.0) { if (update->ftol > 0.0) {
fdotf = fnorm_sqr(); fdotf = fnorm_sqr();
if (update->multireplica == 0) { if (update->multireplica == 0) {
if (fdotf < update->ftol*update->ftol && pflag) if (fdotf < update->ftol*update->ftol)
return FTOL; return FTOL;
} else { } else {
if (fdotf < update->ftol*update->ftol && pflag) flag = 0; if (fdotf < update->ftol*update->ftol) flag = 0;
else flag = 1; else flag = 1;
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld); MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld);
if (flagall == 0) if (flagall == 0)

View File

@ -31,18 +31,14 @@ class MinAdaptGlok : public Min {
void init(); void init();
void setup_style(); void setup_style();
void reset_vectors(); void reset_vectors();
void save_box_state();
void relax_box();
void relax_box1();
int iterate(int); int iterate(int);
private: private:
double dt,dtmax,dtmin; double dt,dtmax,dtmin;
double alpha; double alpha;
bigint last_negative,ntimestep_start; bigint last_negative,ntimestep_start;
int pflag,vdotf_negatif; int vdotf_negatif;
class Compute *temperature,*pressure; class Compute *temperature,*pressure;
double boxlo[3],h_inv[6];
}; };
} }