convert linalg library from Fortran to C++
This commit is contained in:
602
lib/linalg/dlals0.cpp
Normal file
602
lib/linalg/dlals0.cpp
Normal file
@ -0,0 +1,602 @@
|
||||
/* fortran/dlals0.f -- translated by f2c (version 20200916).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "lmp_f2c.h"
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static doublereal c_b5 = -1.;
|
||||
static integer c__1 = 1;
|
||||
static doublereal c_b11 = 1.;
|
||||
static doublereal c_b13 = 0.;
|
||||
static integer c__0 = 0;
|
||||
|
||||
/* > \brief \b DLALS0 applies back multiplying factors in solving the least squares problem using divide and c
|
||||
onquer SVD approach. Used by sgelsd. */
|
||||
|
||||
/* =========== DOCUMENTATION =========== */
|
||||
|
||||
/* Online html documentation available at */
|
||||
/* http://www.netlib.org/lapack/explore-html/ */
|
||||
|
||||
/* > \htmlonly */
|
||||
/* > Download DLALS0 + dependencies */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlals0.
|
||||
f"> */
|
||||
/* > [TGZ]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlals0.
|
||||
f"> */
|
||||
/* > [ZIP]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlals0.
|
||||
f"> */
|
||||
/* > [TXT]</a> */
|
||||
/* > \endhtmlonly */
|
||||
|
||||
/* Definition: */
|
||||
/* =========== */
|
||||
|
||||
/* SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, */
|
||||
/* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
|
||||
/* POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO ) */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, */
|
||||
/* $ LDGNUM, NL, NR, NRHS, SQRE */
|
||||
/* DOUBLE PRECISION C, S */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* INTEGER GIVCOL( LDGCOL, * ), PERM( * ) */
|
||||
/* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), DIFL( * ), */
|
||||
/* $ DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ), */
|
||||
/* $ POLES( LDGNUM, * ), WORK( * ), Z( * ) */
|
||||
/* .. */
|
||||
|
||||
|
||||
/* > \par Purpose: */
|
||||
/* ============= */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > DLALS0 applies back the multiplying factors of either the left or the */
|
||||
/* > right singular vector matrix of a diagonal matrix appended by a row */
|
||||
/* > to the right hand side matrix B in solving the least squares problem */
|
||||
/* > using the divide-and-conquer SVD approach. */
|
||||
/* > */
|
||||
/* > For the left singular vector matrix, three types of orthogonal */
|
||||
/* > matrices are involved: */
|
||||
/* > */
|
||||
/* > (1L) Givens rotations: the number of such rotations is GIVPTR; the */
|
||||
/* > pairs of columns/rows they were applied to are stored in GIVCOL; */
|
||||
/* > and the C- and S-values of these rotations are stored in GIVNUM. */
|
||||
/* > */
|
||||
/* > (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
|
||||
/* > row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
|
||||
/* > J-th row. */
|
||||
/* > */
|
||||
/* > (3L) The left singular vector matrix of the remaining matrix. */
|
||||
/* > */
|
||||
/* > For the right singular vector matrix, four types of orthogonal */
|
||||
/* > matrices are involved: */
|
||||
/* > */
|
||||
/* > (1R) The right singular vector matrix of the remaining matrix. */
|
||||
/* > */
|
||||
/* > (2R) If SQRE = 1, one extra Givens rotation to generate the right */
|
||||
/* > null space. */
|
||||
/* > */
|
||||
/* > (3R) The inverse transformation of (2L). */
|
||||
/* > */
|
||||
/* > (4R) The inverse transformation of (1L). */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Arguments: */
|
||||
/* ========== */
|
||||
|
||||
/* > \param[in] ICOMPQ */
|
||||
/* > \verbatim */
|
||||
/* > ICOMPQ is INTEGER */
|
||||
/* > Specifies whether singular vectors are to be computed in */
|
||||
/* > factored form: */
|
||||
/* > = 0: Left singular vector matrix. */
|
||||
/* > = 1: Right singular vector matrix. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] NL */
|
||||
/* > \verbatim */
|
||||
/* > NL is INTEGER */
|
||||
/* > The row dimension of the upper block. NL >= 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] NR */
|
||||
/* > \verbatim */
|
||||
/* > NR is INTEGER */
|
||||
/* > The row dimension of the lower block. NR >= 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] SQRE */
|
||||
/* > \verbatim */
|
||||
/* > SQRE is INTEGER */
|
||||
/* > = 0: the lower block is an NR-by-NR square matrix. */
|
||||
/* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
|
||||
/* > */
|
||||
/* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
|
||||
/* > and column dimension M = N + SQRE. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] NRHS */
|
||||
/* > \verbatim */
|
||||
/* > NRHS is INTEGER */
|
||||
/* > The number of columns of B and BX. NRHS must be at least 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in,out] B */
|
||||
/* > \verbatim */
|
||||
/* > B is DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
|
||||
/* > On input, B contains the right hand sides of the least */
|
||||
/* > squares problem in rows 1 through M. On output, B contains */
|
||||
/* > the solution X in rows 1 through N. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDB */
|
||||
/* > \verbatim */
|
||||
/* > LDB is INTEGER */
|
||||
/* > The leading dimension of B. LDB must be at least */
|
||||
/* > max(1,MAX( M, N ) ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] BX */
|
||||
/* > \verbatim */
|
||||
/* > BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDBX */
|
||||
/* > \verbatim */
|
||||
/* > LDBX is INTEGER */
|
||||
/* > The leading dimension of BX. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] PERM */
|
||||
/* > \verbatim */
|
||||
/* > PERM is INTEGER array, dimension ( N ) */
|
||||
/* > The permutations (from deflation and sorting) applied */
|
||||
/* > to the two blocks. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] GIVPTR */
|
||||
/* > \verbatim */
|
||||
/* > GIVPTR is INTEGER */
|
||||
/* > The number of Givens rotations which took place in this */
|
||||
/* > subproblem. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] GIVCOL */
|
||||
/* > \verbatim */
|
||||
/* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
|
||||
/* > Each pair of numbers indicates a pair of rows/columns */
|
||||
/* > involved in a Givens rotation. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDGCOL */
|
||||
/* > \verbatim */
|
||||
/* > LDGCOL is INTEGER */
|
||||
/* > The leading dimension of GIVCOL, must be at least N. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] GIVNUM */
|
||||
/* > \verbatim */
|
||||
/* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
|
||||
/* > Each number indicates the C or S value used in the */
|
||||
/* > corresponding Givens rotation. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDGNUM */
|
||||
/* > \verbatim */
|
||||
/* > LDGNUM is INTEGER */
|
||||
/* > The leading dimension of arrays DIFR, POLES and */
|
||||
/* > GIVNUM, must be at least K. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] POLES */
|
||||
/* > \verbatim */
|
||||
/* > POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
|
||||
/* > On entry, POLES(1:K, 1) contains the new singular */
|
||||
/* > values obtained from solving the secular equation, and */
|
||||
/* > POLES(1:K, 2) is an array containing the poles in the secular */
|
||||
/* > equation. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] DIFL */
|
||||
/* > \verbatim */
|
||||
/* > DIFL is DOUBLE PRECISION array, dimension ( K ). */
|
||||
/* > On entry, DIFL(I) is the distance between I-th updated */
|
||||
/* > (undeflated) singular value and the I-th (undeflated) old */
|
||||
/* > singular value. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] DIFR */
|
||||
/* > \verbatim */
|
||||
/* > DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */
|
||||
/* > On entry, DIFR(I, 1) contains the distances between I-th */
|
||||
/* > updated (undeflated) singular value and the I+1-th */
|
||||
/* > (undeflated) old singular value. And DIFR(I, 2) is the */
|
||||
/* > normalizing factor for the I-th right singular vector. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] Z */
|
||||
/* > \verbatim */
|
||||
/* > Z is DOUBLE PRECISION array, dimension ( K ) */
|
||||
/* > Contain the components of the deflation-adjusted updating row */
|
||||
/* > vector. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] K */
|
||||
/* > \verbatim */
|
||||
/* > K is INTEGER */
|
||||
/* > Contains the dimension of the non-deflated matrix, */
|
||||
/* > This is the order of the related secular equation. 1 <= K <=N. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] C */
|
||||
/* > \verbatim */
|
||||
/* > C is DOUBLE PRECISION */
|
||||
/* > C contains garbage if SQRE =0 and the C-value of a Givens */
|
||||
/* > rotation related to the right null space if SQRE = 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] S */
|
||||
/* > \verbatim */
|
||||
/* > S is DOUBLE PRECISION */
|
||||
/* > S contains garbage if SQRE =0 and the S-value of a Givens */
|
||||
/* > rotation related to the right null space if SQRE = 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] WORK */
|
||||
/* > \verbatim */
|
||||
/* > WORK is DOUBLE PRECISION array, dimension ( K ) */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] INFO */
|
||||
/* > \verbatim */
|
||||
/* > INFO is INTEGER */
|
||||
/* > = 0: successful exit. */
|
||||
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Authors: */
|
||||
/* ======== */
|
||||
|
||||
/* > \author Univ. of Tennessee */
|
||||
/* > \author Univ. of California Berkeley */
|
||||
/* > \author Univ. of Colorado Denver */
|
||||
/* > \author NAG Ltd. */
|
||||
|
||||
/* > \ingroup doubleOTHERcomputational */
|
||||
|
||||
/* > \par Contributors: */
|
||||
/* ================== */
|
||||
/* > */
|
||||
/* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
|
||||
/* > California at Berkeley, USA \n */
|
||||
/* > Osni Marques, LBNL/NERSC, USA \n */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* Subroutine */ int dlals0_(integer *icompq, integer *nl, integer *nr,
|
||||
integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal
|
||||
*bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol,
|
||||
integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *
|
||||
poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *
|
||||
k, doublereal *c__, doublereal *s, doublereal *work, integer *info)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset,
|
||||
difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1,
|
||||
poles_offset, i__1, i__2;
|
||||
doublereal d__1;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, m, n;
|
||||
doublereal dj;
|
||||
integer nlp1;
|
||||
doublereal temp;
|
||||
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
|
||||
doublereal *, integer *, doublereal *, doublereal *);
|
||||
extern doublereal dnrm2_(integer *, doublereal *, integer *);
|
||||
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
||||
integer *);
|
||||
doublereal diflj, difrj, dsigj;
|
||||
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
|
||||
doublereal *, doublereal *, integer *, doublereal *, integer *,
|
||||
doublereal *, doublereal *, integer *, ftnlen), dcopy_(integer *,
|
||||
doublereal *, integer *, doublereal *, integer *);
|
||||
extern doublereal dlamc3_(doublereal *, doublereal *);
|
||||
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
|
||||
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
||||
integer *, integer *, ftnlen), dlacpy_(char *, integer *, integer
|
||||
*, doublereal *, integer *, doublereal *, integer *, ftnlen),
|
||||
xerbla_(char *, integer *, ftnlen);
|
||||
doublereal dsigjp;
|
||||
|
||||
|
||||
/* -- LAPACK computational routine -- */
|
||||
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
||||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
b_dim1 = *ldb;
|
||||
b_offset = 1 + b_dim1;
|
||||
b -= b_offset;
|
||||
bx_dim1 = *ldbx;
|
||||
bx_offset = 1 + bx_dim1;
|
||||
bx -= bx_offset;
|
||||
--perm;
|
||||
givcol_dim1 = *ldgcol;
|
||||
givcol_offset = 1 + givcol_dim1;
|
||||
givcol -= givcol_offset;
|
||||
difr_dim1 = *ldgnum;
|
||||
difr_offset = 1 + difr_dim1;
|
||||
difr -= difr_offset;
|
||||
poles_dim1 = *ldgnum;
|
||||
poles_offset = 1 + poles_dim1;
|
||||
poles -= poles_offset;
|
||||
givnum_dim1 = *ldgnum;
|
||||
givnum_offset = 1 + givnum_dim1;
|
||||
givnum -= givnum_offset;
|
||||
--difl;
|
||||
--z__;
|
||||
--work;
|
||||
|
||||
/* Function Body */
|
||||
*info = 0;
|
||||
n = *nl + *nr + 1;
|
||||
|
||||
if (*icompq < 0 || *icompq > 1) {
|
||||
*info = -1;
|
||||
} else if (*nl < 1) {
|
||||
*info = -2;
|
||||
} else if (*nr < 1) {
|
||||
*info = -3;
|
||||
} else if (*sqre < 0 || *sqre > 1) {
|
||||
*info = -4;
|
||||
} else if (*nrhs < 1) {
|
||||
*info = -5;
|
||||
} else if (*ldb < n) {
|
||||
*info = -7;
|
||||
} else if (*ldbx < n) {
|
||||
*info = -9;
|
||||
} else if (*givptr < 0) {
|
||||
*info = -11;
|
||||
} else if (*ldgcol < n) {
|
||||
*info = -13;
|
||||
} else if (*ldgnum < n) {
|
||||
*info = -15;
|
||||
} else if (*k < 1) {
|
||||
*info = -20;
|
||||
}
|
||||
if (*info != 0) {
|
||||
i__1 = -(*info);
|
||||
xerbla_((char *)"DLALS0", &i__1, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
m = n + *sqre;
|
||||
nlp1 = *nl + 1;
|
||||
|
||||
if (*icompq == 0) {
|
||||
|
||||
/* Apply back orthogonal transformations from the left. */
|
||||
|
||||
/* Step (1L): apply back the Givens rotations performed. */
|
||||
|
||||
i__1 = *givptr;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
|
||||
b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
|
||||
(givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
|
||||
/* L10: */
|
||||
}
|
||||
|
||||
/* Step (2L): permute rows of B. */
|
||||
|
||||
dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
|
||||
i__1 = n;
|
||||
for (i__ = 2; i__ <= i__1; ++i__) {
|
||||
dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
|
||||
ldbx);
|
||||
/* L20: */
|
||||
}
|
||||
|
||||
/* Step (3L): apply the inverse of the left singular vector */
|
||||
/* matrix to BX. */
|
||||
|
||||
if (*k == 1) {
|
||||
dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
|
||||
if (z__[1] < 0.) {
|
||||
dscal_(nrhs, &c_b5, &b[b_offset], ldb);
|
||||
}
|
||||
} else {
|
||||
i__1 = *k;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
diflj = difl[j];
|
||||
dj = poles[j + poles_dim1];
|
||||
dsigj = -poles[j + (poles_dim1 << 1)];
|
||||
if (j < *k) {
|
||||
difrj = -difr[j + difr_dim1];
|
||||
dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
|
||||
}
|
||||
if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {
|
||||
work[j] = 0.;
|
||||
} else {
|
||||
work[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj /
|
||||
(poles[j + (poles_dim1 << 1)] + dj);
|
||||
}
|
||||
i__2 = j - 1;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
|
||||
0.) {
|
||||
work[i__] = 0.;
|
||||
} else {
|
||||
work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
|
||||
/ (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
|
||||
dsigj) - diflj) / (poles[i__ + (poles_dim1 <<
|
||||
1)] + dj);
|
||||
}
|
||||
/* L30: */
|
||||
}
|
||||
i__2 = *k;
|
||||
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
||||
if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
|
||||
0.) {
|
||||
work[i__] = 0.;
|
||||
} else {
|
||||
work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
|
||||
/ (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
|
||||
dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
|
||||
1)] + dj);
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
work[1] = -1.;
|
||||
temp = dnrm2_(k, &work[1], &c__1);
|
||||
dgemv_((char *)"T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], &
|
||||
c__1, &c_b13, &b[j + b_dim1], ldb, (ftnlen)1);
|
||||
dlascl_((char *)"G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b[j +
|
||||
b_dim1], ldb, info, (ftnlen)1);
|
||||
/* L50: */
|
||||
}
|
||||
}
|
||||
|
||||
/* Move the deflated rows of BX to B also. */
|
||||
|
||||
if (*k < max(m,n)) {
|
||||
i__1 = n - *k;
|
||||
dlacpy_((char *)"A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
|
||||
+ b_dim1], ldb, (ftnlen)1);
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Apply back the right orthogonal transformations. */
|
||||
|
||||
/* Step (1R): apply back the new right singular vector matrix */
|
||||
/* to B. */
|
||||
|
||||
if (*k == 1) {
|
||||
dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
|
||||
} else {
|
||||
i__1 = *k;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
dsigj = poles[j + (poles_dim1 << 1)];
|
||||
if (z__[j] == 0.) {
|
||||
work[j] = 0.;
|
||||
} else {
|
||||
work[j] = -z__[j] / difl[j] / (dsigj + poles[j +
|
||||
poles_dim1]) / difr[j + (difr_dim1 << 1)];
|
||||
}
|
||||
i__2 = j - 1;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
if (z__[j] == 0.) {
|
||||
work[i__] = 0.;
|
||||
} else {
|
||||
d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
|
||||
work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
|
||||
i__ + difr_dim1]) / (dsigj + poles[i__ +
|
||||
poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
|
||||
}
|
||||
/* L60: */
|
||||
}
|
||||
i__2 = *k;
|
||||
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
||||
if (z__[j] == 0.) {
|
||||
work[i__] = 0.;
|
||||
} else {
|
||||
d__1 = -poles[i__ + (poles_dim1 << 1)];
|
||||
work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
|
||||
i__]) / (dsigj + poles[i__ + poles_dim1]) /
|
||||
difr[i__ + (difr_dim1 << 1)];
|
||||
}
|
||||
/* L70: */
|
||||
}
|
||||
dgemv_((char *)"T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], &
|
||||
c__1, &c_b13, &bx[j + bx_dim1], ldbx, (ftnlen)1);
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
|
||||
/* Step (2R): if SQRE = 1, apply back the rotation that is */
|
||||
/* related to the right null space of the subproblem. */
|
||||
|
||||
if (*sqre == 1) {
|
||||
dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
|
||||
drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
|
||||
s);
|
||||
}
|
||||
if (*k < max(m,n)) {
|
||||
i__1 = n - *k;
|
||||
dlacpy_((char *)"A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
|
||||
bx_dim1], ldbx, (ftnlen)1);
|
||||
}
|
||||
|
||||
/* Step (3R): permute rows of B. */
|
||||
|
||||
dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
|
||||
if (*sqre == 1) {
|
||||
dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
|
||||
}
|
||||
i__1 = n;
|
||||
for (i__ = 2; i__ <= i__1; ++i__) {
|
||||
dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
|
||||
ldb);
|
||||
/* L90: */
|
||||
}
|
||||
|
||||
/* Step (4R): apply back the Givens rotations performed. */
|
||||
|
||||
for (i__ = *givptr; i__ >= 1; --i__) {
|
||||
d__1 = -givnum[i__ + givnum_dim1];
|
||||
drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
|
||||
b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
|
||||
(givnum_dim1 << 1)], &d__1);
|
||||
/* L100: */
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DLALS0 */
|
||||
|
||||
} /* dlals0_ */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user