convert linalg library from Fortran to C++
This commit is contained in:
598
lib/linalg/dlalsa.cpp
Normal file
598
lib/linalg/dlalsa.cpp
Normal file
@ -0,0 +1,598 @@
|
||||
/* fortran/dlalsa.f -- translated by f2c (version 20200916).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "lmp_f2c.h"
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static doublereal c_b7 = 1.;
|
||||
static doublereal c_b8 = 0.;
|
||||
static integer c__2 = 2;
|
||||
|
||||
/* > \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
|
||||
|
||||
/* =========== DOCUMENTATION =========== */
|
||||
|
||||
/* Online html documentation available at */
|
||||
/* http://www.netlib.org/lapack/explore-html/ */
|
||||
|
||||
/* > \htmlonly */
|
||||
/* > Download DLALSA + dependencies */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.
|
||||
f"> */
|
||||
/* > [TGZ]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.
|
||||
f"> */
|
||||
/* > [ZIP]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.
|
||||
f"> */
|
||||
/* > [TXT]</a> */
|
||||
/* > \endhtmlonly */
|
||||
|
||||
/* Definition: */
|
||||
/* =========== */
|
||||
|
||||
/* SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
|
||||
/* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
|
||||
/* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, */
|
||||
/* IWORK, INFO ) */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
|
||||
/* $ SMLSIZ */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
|
||||
/* $ K( * ), PERM( LDGCOL, * ) */
|
||||
/* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), C( * ), */
|
||||
/* $ DIFL( LDU, * ), DIFR( LDU, * ), */
|
||||
/* $ GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), */
|
||||
/* $ U( LDU, * ), VT( LDU, * ), WORK( * ), */
|
||||
/* $ Z( LDU, * ) */
|
||||
/* .. */
|
||||
|
||||
|
||||
/* > \par Purpose: */
|
||||
/* ============= */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > DLALSA is an itermediate step in solving the least squares problem */
|
||||
/* > by computing the SVD of the coefficient matrix in compact form (The */
|
||||
/* > singular vectors are computed as products of simple orthorgonal */
|
||||
/* > matrices.). */
|
||||
/* > */
|
||||
/* > If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector */
|
||||
/* > matrix of an upper bidiagonal matrix to the right hand side; and if */
|
||||
/* > ICOMPQ = 1, DLALSA applies the right singular vector matrix to the */
|
||||
/* > right hand side. The singular vector matrices were generated in */
|
||||
/* > compact form by DLALSA. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Arguments: */
|
||||
/* ========== */
|
||||
|
||||
/* > \param[in] ICOMPQ */
|
||||
/* > \verbatim */
|
||||
/* > ICOMPQ is INTEGER */
|
||||
/* > Specifies whether the left or the right singular vector */
|
||||
/* > matrix is involved. */
|
||||
/* > = 0: Left singular vector matrix */
|
||||
/* > = 1: Right singular vector matrix */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] SMLSIZ */
|
||||
/* > \verbatim */
|
||||
/* > SMLSIZ is INTEGER */
|
||||
/* > The maximum size of the subproblems at the bottom of the */
|
||||
/* > computation tree. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] N */
|
||||
/* > \verbatim */
|
||||
/* > N is INTEGER */
|
||||
/* > The row and column dimensions of the upper bidiagonal matrix. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] NRHS */
|
||||
/* > \verbatim */
|
||||
/* > NRHS is INTEGER */
|
||||
/* > The number of columns of B and BX. NRHS must be at least 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in,out] B */
|
||||
/* > \verbatim */
|
||||
/* > B is DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
|
||||
/* > On input, B contains the right hand sides of the least */
|
||||
/* > squares problem in rows 1 through M. */
|
||||
/* > On output, B contains the solution X in rows 1 through N. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDB */
|
||||
/* > \verbatim */
|
||||
/* > LDB is INTEGER */
|
||||
/* > The leading dimension of B in the calling subprogram. */
|
||||
/* > LDB must be at least max(1,MAX( M, N ) ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] BX */
|
||||
/* > \verbatim */
|
||||
/* > BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
|
||||
/* > On exit, the result of applying the left or right singular */
|
||||
/* > vector matrix to B. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDBX */
|
||||
/* > \verbatim */
|
||||
/* > LDBX is INTEGER */
|
||||
/* > The leading dimension of BX. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] U */
|
||||
/* > \verbatim */
|
||||
/* > U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */
|
||||
/* > On entry, U contains the left singular vector matrices of all */
|
||||
/* > subproblems at the bottom level. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDU */
|
||||
/* > \verbatim */
|
||||
/* > LDU is INTEGER, LDU = > N. */
|
||||
/* > The leading dimension of arrays U, VT, DIFL, DIFR, */
|
||||
/* > POLES, GIVNUM, and Z. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] VT */
|
||||
/* > \verbatim */
|
||||
/* > VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */
|
||||
/* > On entry, VT**T contains the right singular vector matrices of */
|
||||
/* > all subproblems at the bottom level. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] K */
|
||||
/* > \verbatim */
|
||||
/* > K is INTEGER array, dimension ( N ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] DIFL */
|
||||
/* > \verbatim */
|
||||
/* > DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
|
||||
/* > where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] DIFR */
|
||||
/* > \verbatim */
|
||||
/* > DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
|
||||
/* > On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
|
||||
/* > distances between singular values on the I-th level and */
|
||||
/* > singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
|
||||
/* > record the normalizing factors of the right singular vectors */
|
||||
/* > matrices of subproblems on I-th level. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] Z */
|
||||
/* > \verbatim */
|
||||
/* > Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
|
||||
/* > On entry, Z(1, I) contains the components of the deflation- */
|
||||
/* > adjusted updating row vector for subproblems on the I-th */
|
||||
/* > level. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] POLES */
|
||||
/* > \verbatim */
|
||||
/* > POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
|
||||
/* > On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
|
||||
/* > singular values involved in the secular equations on the I-th */
|
||||
/* > level. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] GIVPTR */
|
||||
/* > \verbatim */
|
||||
/* > GIVPTR is INTEGER array, dimension ( N ). */
|
||||
/* > On entry, GIVPTR( I ) records the number of Givens */
|
||||
/* > rotations performed on the I-th problem on the computation */
|
||||
/* > tree. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] GIVCOL */
|
||||
/* > \verbatim */
|
||||
/* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
|
||||
/* > On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
|
||||
/* > locations of Givens rotations performed on the I-th level on */
|
||||
/* > the computation tree. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDGCOL */
|
||||
/* > \verbatim */
|
||||
/* > LDGCOL is INTEGER, LDGCOL = > N. */
|
||||
/* > The leading dimension of arrays GIVCOL and PERM. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] PERM */
|
||||
/* > \verbatim */
|
||||
/* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
|
||||
/* > On entry, PERM(*, I) records permutations done on the I-th */
|
||||
/* > level of the computation tree. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] GIVNUM */
|
||||
/* > \verbatim */
|
||||
/* > GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
|
||||
/* > On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
|
||||
/* > values of Givens rotations performed on the I-th level on the */
|
||||
/* > computation tree. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] C */
|
||||
/* > \verbatim */
|
||||
/* > C is DOUBLE PRECISION array, dimension ( N ). */
|
||||
/* > On entry, if the I-th subproblem is not square, */
|
||||
/* > C( I ) contains the C-value of a Givens rotation related to */
|
||||
/* > the right null space of the I-th subproblem. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] S */
|
||||
/* > \verbatim */
|
||||
/* > S is DOUBLE PRECISION array, dimension ( N ). */
|
||||
/* > On entry, if the I-th subproblem is not square, */
|
||||
/* > S( I ) contains the S-value of a Givens rotation related to */
|
||||
/* > the right null space of the I-th subproblem. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] WORK */
|
||||
/* > \verbatim */
|
||||
/* > WORK is DOUBLE PRECISION array, dimension (N) */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] IWORK */
|
||||
/* > \verbatim */
|
||||
/* > IWORK is INTEGER array, dimension (3*N) */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] INFO */
|
||||
/* > \verbatim */
|
||||
/* > INFO is INTEGER */
|
||||
/* > = 0: successful exit. */
|
||||
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Authors: */
|
||||
/* ======== */
|
||||
|
||||
/* > \author Univ. of Tennessee */
|
||||
/* > \author Univ. of California Berkeley */
|
||||
/* > \author Univ. of Colorado Denver */
|
||||
/* > \author NAG Ltd. */
|
||||
|
||||
/* > \ingroup doubleOTHERcomputational */
|
||||
|
||||
/* > \par Contributors: */
|
||||
/* ================== */
|
||||
/* > */
|
||||
/* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
|
||||
/* > California at Berkeley, USA \n */
|
||||
/* > Osni Marques, LBNL/NERSC, USA \n */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n,
|
||||
integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
|
||||
ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k,
|
||||
doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
|
||||
poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
|
||||
perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
|
||||
work, integer *iwork, integer *info)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
|
||||
b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
|
||||
difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
|
||||
u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
|
||||
i__2;
|
||||
|
||||
/* Builtin functions */
|
||||
integer pow_ii(integer *, integer *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1,
|
||||
nlp1, lvl2, nrp1, nlvl, sqre;
|
||||
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
|
||||
integer *, doublereal *, doublereal *, integer *, doublereal *,
|
||||
integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen);
|
||||
integer inode, ndiml, ndimr;
|
||||
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
|
||||
doublereal *, integer *), dlals0_(integer *, integer *, integer *,
|
||||
integer *, integer *, doublereal *, integer *, doublereal *,
|
||||
integer *, integer *, integer *, integer *, integer *, doublereal
|
||||
*, integer *, doublereal *, doublereal *, doublereal *,
|
||||
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
|
||||
integer *), dlasdt_(integer *, integer *, integer *, integer *,
|
||||
integer *, integer *, integer *), xerbla_(char *, integer *,
|
||||
ftnlen);
|
||||
|
||||
|
||||
/* -- LAPACK computational routine -- */
|
||||
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
||||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
b_dim1 = *ldb;
|
||||
b_offset = 1 + b_dim1;
|
||||
b -= b_offset;
|
||||
bx_dim1 = *ldbx;
|
||||
bx_offset = 1 + bx_dim1;
|
||||
bx -= bx_offset;
|
||||
givnum_dim1 = *ldu;
|
||||
givnum_offset = 1 + givnum_dim1;
|
||||
givnum -= givnum_offset;
|
||||
poles_dim1 = *ldu;
|
||||
poles_offset = 1 + poles_dim1;
|
||||
poles -= poles_offset;
|
||||
z_dim1 = *ldu;
|
||||
z_offset = 1 + z_dim1;
|
||||
z__ -= z_offset;
|
||||
difr_dim1 = *ldu;
|
||||
difr_offset = 1 + difr_dim1;
|
||||
difr -= difr_offset;
|
||||
difl_dim1 = *ldu;
|
||||
difl_offset = 1 + difl_dim1;
|
||||
difl -= difl_offset;
|
||||
vt_dim1 = *ldu;
|
||||
vt_offset = 1 + vt_dim1;
|
||||
vt -= vt_offset;
|
||||
u_dim1 = *ldu;
|
||||
u_offset = 1 + u_dim1;
|
||||
u -= u_offset;
|
||||
--k;
|
||||
--givptr;
|
||||
perm_dim1 = *ldgcol;
|
||||
perm_offset = 1 + perm_dim1;
|
||||
perm -= perm_offset;
|
||||
givcol_dim1 = *ldgcol;
|
||||
givcol_offset = 1 + givcol_dim1;
|
||||
givcol -= givcol_offset;
|
||||
--c__;
|
||||
--s;
|
||||
--work;
|
||||
--iwork;
|
||||
|
||||
/* Function Body */
|
||||
*info = 0;
|
||||
|
||||
if (*icompq < 0 || *icompq > 1) {
|
||||
*info = -1;
|
||||
} else if (*smlsiz < 3) {
|
||||
*info = -2;
|
||||
} else if (*n < *smlsiz) {
|
||||
*info = -3;
|
||||
} else if (*nrhs < 1) {
|
||||
*info = -4;
|
||||
} else if (*ldb < *n) {
|
||||
*info = -6;
|
||||
} else if (*ldbx < *n) {
|
||||
*info = -8;
|
||||
} else if (*ldu < *n) {
|
||||
*info = -10;
|
||||
} else if (*ldgcol < *n) {
|
||||
*info = -19;
|
||||
}
|
||||
if (*info != 0) {
|
||||
i__1 = -(*info);
|
||||
xerbla_((char *)"DLALSA", &i__1, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Book-keeping and setting up the computation tree. */
|
||||
|
||||
inode = 1;
|
||||
ndiml = inode + *n;
|
||||
ndimr = ndiml + *n;
|
||||
|
||||
dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
|
||||
smlsiz);
|
||||
|
||||
/* The following code applies back the left singular vector factors. */
|
||||
/* For applying back the right singular vector factors, go to 50. */
|
||||
|
||||
if (*icompq == 1) {
|
||||
goto L50;
|
||||
}
|
||||
|
||||
/* The nodes on the bottom level of the tree were solved */
|
||||
/* by DLASDQ. The corresponding left and right singular vector */
|
||||
/* matrices are in explicit form. First apply back the left */
|
||||
/* singular vector matrices. */
|
||||
|
||||
ndb1 = (nd + 1) / 2;
|
||||
i__1 = nd;
|
||||
for (i__ = ndb1; i__ <= i__1; ++i__) {
|
||||
|
||||
/* IC : center row of each node */
|
||||
/* NL : number of rows of left subproblem */
|
||||
/* NR : number of rows of right subproblem */
|
||||
/* NLF: starting row of the left subproblem */
|
||||
/* NRF: starting row of the right subproblem */
|
||||
|
||||
i1 = i__ - 1;
|
||||
ic = iwork[inode + i1];
|
||||
nl = iwork[ndiml + i1];
|
||||
nr = iwork[ndimr + i1];
|
||||
nlf = ic - nl;
|
||||
nrf = ic + 1;
|
||||
dgemm_((char *)"T", (char *)"N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf
|
||||
+ b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx, (ftnlen)1, (
|
||||
ftnlen)1);
|
||||
dgemm_((char *)"T", (char *)"N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf
|
||||
+ b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx, (ftnlen)1, (
|
||||
ftnlen)1);
|
||||
/* L10: */
|
||||
}
|
||||
|
||||
/* Next copy the rows of B that correspond to unchanged rows */
|
||||
/* in the bidiagonal matrix to BX. */
|
||||
|
||||
i__1 = nd;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
ic = iwork[inode + i__ - 1];
|
||||
dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
|
||||
/* L20: */
|
||||
}
|
||||
|
||||
/* Finally go through the left singular vector matrices of all */
|
||||
/* the other subproblems bottom-up on the tree. */
|
||||
|
||||
j = pow_ii(&c__2, &nlvl);
|
||||
sqre = 0;
|
||||
|
||||
for (lvl = nlvl; lvl >= 1; --lvl) {
|
||||
lvl2 = (lvl << 1) - 1;
|
||||
|
||||
/* find the first node LF and last node LL on */
|
||||
/* the current level LVL */
|
||||
|
||||
if (lvl == 1) {
|
||||
lf = 1;
|
||||
ll = 1;
|
||||
} else {
|
||||
i__1 = lvl - 1;
|
||||
lf = pow_ii(&c__2, &i__1);
|
||||
ll = (lf << 1) - 1;
|
||||
}
|
||||
i__1 = ll;
|
||||
for (i__ = lf; i__ <= i__1; ++i__) {
|
||||
im1 = i__ - 1;
|
||||
ic = iwork[inode + im1];
|
||||
nl = iwork[ndiml + im1];
|
||||
nr = iwork[ndimr + im1];
|
||||
nlf = ic - nl;
|
||||
nrf = ic + 1;
|
||||
--j;
|
||||
dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
|
||||
b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
|
||||
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
|
||||
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
|
||||
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
|
||||
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
|
||||
j], &s[j], &work[1], info);
|
||||
/* L30: */
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
goto L90;
|
||||
|
||||
/* ICOMPQ = 1: applying back the right singular vector factors. */
|
||||
|
||||
L50:
|
||||
|
||||
/* First now go through the right singular vector matrices of all */
|
||||
/* the tree nodes top-down. */
|
||||
|
||||
j = 0;
|
||||
i__1 = nlvl;
|
||||
for (lvl = 1; lvl <= i__1; ++lvl) {
|
||||
lvl2 = (lvl << 1) - 1;
|
||||
|
||||
/* Find the first node LF and last node LL on */
|
||||
/* the current level LVL. */
|
||||
|
||||
if (lvl == 1) {
|
||||
lf = 1;
|
||||
ll = 1;
|
||||
} else {
|
||||
i__2 = lvl - 1;
|
||||
lf = pow_ii(&c__2, &i__2);
|
||||
ll = (lf << 1) - 1;
|
||||
}
|
||||
i__2 = lf;
|
||||
for (i__ = ll; i__ >= i__2; --i__) {
|
||||
im1 = i__ - 1;
|
||||
ic = iwork[inode + im1];
|
||||
nl = iwork[ndiml + im1];
|
||||
nr = iwork[ndimr + im1];
|
||||
nlf = ic - nl;
|
||||
nrf = ic + 1;
|
||||
if (i__ == ll) {
|
||||
sqre = 0;
|
||||
} else {
|
||||
sqre = 1;
|
||||
}
|
||||
++j;
|
||||
dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
|
||||
nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
|
||||
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
|
||||
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
|
||||
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
|
||||
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
|
||||
j], &s[j], &work[1], info);
|
||||
/* L60: */
|
||||
}
|
||||
/* L70: */
|
||||
}
|
||||
|
||||
/* The nodes on the bottom level of the tree were solved */
|
||||
/* by DLASDQ. The corresponding right singular vector */
|
||||
/* matrices are in explicit form. Apply them back. */
|
||||
|
||||
ndb1 = (nd + 1) / 2;
|
||||
i__1 = nd;
|
||||
for (i__ = ndb1; i__ <= i__1; ++i__) {
|
||||
i1 = i__ - 1;
|
||||
ic = iwork[inode + i1];
|
||||
nl = iwork[ndiml + i1];
|
||||
nr = iwork[ndimr + i1];
|
||||
nlp1 = nl + 1;
|
||||
if (i__ == nd) {
|
||||
nrp1 = nr;
|
||||
} else {
|
||||
nrp1 = nr + 1;
|
||||
}
|
||||
nlf = ic - nl;
|
||||
nrf = ic + 1;
|
||||
dgemm_((char *)"T", (char *)"N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
|
||||
b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx, (
|
||||
ftnlen)1, (ftnlen)1);
|
||||
dgemm_((char *)"T", (char *)"N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
|
||||
b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx, (
|
||||
ftnlen)1, (ftnlen)1);
|
||||
/* L80: */
|
||||
}
|
||||
|
||||
L90:
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DLALSA */
|
||||
|
||||
} /* dlalsa_ */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user