convert linalg library from Fortran to C++

This commit is contained in:
Axel Kohlmeyer
2022-12-28 13:18:38 -05:00
parent 7cceabe5bd
commit c5a87f75d6
410 changed files with 80736 additions and 30 deletions

252
lib/linalg/dorg2l.cpp Normal file
View File

@ -0,0 +1,252 @@
/* fortran/dorg2l.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
/* > \brief \b DORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by s
geqlf (unblocked algorithm). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DORG2L + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2l.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2l.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2l.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DORG2L( M, N, K, A, LDA, TAU, WORK, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, K, LDA, M, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DORG2L generates an m by n real matrix Q with orthonormal columns, */
/* > which is defined as the last n columns of a product of k elementary */
/* > reflectors of order m */
/* > */
/* > Q = H(k) . . . H(2) H(1) */
/* > */
/* > as returned by DGEQLF. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix Q. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix Q. M >= N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines the */
/* > matrix Q. N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the (n-k+i)-th column must contain the vector which */
/* > defines the elementary reflector H(i), for i = 1,2,...,k, as */
/* > returned by DGEQLF in the last k columns of its array */
/* > argument A. */
/* > On exit, the m by n matrix Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The first dimension of the array A. LDA >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (K) */
/* > TAU(i) must contain the scalar factor of the elementary */
/* > reflector H(i), as returned by DGEQLF. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument has an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */ int dorg2l_(integer *m, integer *n, integer *k, doublereal *
a, integer *lda, doublereal *tau, doublereal *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
integer i__, j, l, ii;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dlarf_(char *, integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
ftnlen), xerbla_(char *, integer *, ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0 || *n > *m) {
*info = -2;
} else if (*k < 0 || *k > *n) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DORG2L", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*n <= 0) {
return 0;
}
/* Initialise columns 1:n-k to columns of the unit matrix */
i__1 = *n - *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (l = 1; l <= i__2; ++l) {
a[l + j * a_dim1] = 0.;
/* L10: */
}
a[*m - *n + j + j * a_dim1] = 1.;
/* L20: */
}
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
ii = *n - *k + i__;
/* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left */
a[*m - *n + ii + ii * a_dim1] = 1.;
i__2 = *m - *n + ii;
i__3 = ii - 1;
dlarf_((char *)"Left", &i__2, &i__3, &a[ii * a_dim1 + 1], &c__1, &tau[i__], &
a[a_offset], lda, &work[1], (ftnlen)4);
i__2 = *m - *n + ii - 1;
d__1 = -tau[i__];
dscal_(&i__2, &d__1, &a[ii * a_dim1 + 1], &c__1);
a[*m - *n + ii + ii * a_dim1] = 1. - tau[i__];
/* Set A(m-k+i+1:m,n-k+i) to zero */
i__2 = *m;
for (l = *m - *n + ii + 1; l <= i__2; ++l) {
a[l + ii * a_dim1] = 0.;
/* L30: */
}
/* L40: */
}
return 0;
/* End of DORG2L */
} /* dorg2l_ */
#ifdef __cplusplus
}
#endif