convert linalg library from Fortran to C++
This commit is contained in:
440
lib/linalg/dsymm.cpp
Normal file
440
lib/linalg/dsymm.cpp
Normal file
@ -0,0 +1,440 @@
|
||||
/* fortran/dsymm.f -- translated by f2c (version 20200916).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "lmp_f2c.h"
|
||||
|
||||
/* > \brief \b DSYMM */
|
||||
|
||||
/* =========== DOCUMENTATION =========== */
|
||||
|
||||
/* Online html documentation available at */
|
||||
/* http://www.netlib.org/lapack/explore-html/ */
|
||||
|
||||
/* Definition: */
|
||||
/* =========== */
|
||||
|
||||
/* SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* DOUBLE PRECISION ALPHA,BETA */
|
||||
/* INTEGER LDA,LDB,LDC,M,N */
|
||||
/* CHARACTER SIDE,UPLO */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) */
|
||||
/* .. */
|
||||
|
||||
|
||||
/* > \par Purpose: */
|
||||
/* ============= */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > DSYMM performs one of the matrix-matrix operations */
|
||||
/* > */
|
||||
/* > C := alpha*A*B + beta*C, */
|
||||
/* > */
|
||||
/* > or */
|
||||
/* > */
|
||||
/* > C := alpha*B*A + beta*C, */
|
||||
/* > */
|
||||
/* > where alpha and beta are scalars, A is a symmetric matrix and B and */
|
||||
/* > C are m by n matrices. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Arguments: */
|
||||
/* ========== */
|
||||
|
||||
/* > \param[in] SIDE */
|
||||
/* > \verbatim */
|
||||
/* > SIDE is CHARACTER*1 */
|
||||
/* > On entry, SIDE specifies whether the symmetric matrix A */
|
||||
/* > appears on the left or right in the operation as follows: */
|
||||
/* > */
|
||||
/* > SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */
|
||||
/* > */
|
||||
/* > SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] UPLO */
|
||||
/* > \verbatim */
|
||||
/* > UPLO is CHARACTER*1 */
|
||||
/* > On entry, UPLO specifies whether the upper or lower */
|
||||
/* > triangular part of the symmetric matrix A is to be */
|
||||
/* > referenced as follows: */
|
||||
/* > */
|
||||
/* > UPLO = 'U' or 'u' Only the upper triangular part of the */
|
||||
/* > symmetric matrix is to be referenced. */
|
||||
/* > */
|
||||
/* > UPLO = 'L' or 'l' Only the lower triangular part of the */
|
||||
/* > symmetric matrix is to be referenced. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] M */
|
||||
/* > \verbatim */
|
||||
/* > M is INTEGER */
|
||||
/* > On entry, M specifies the number of rows of the matrix C. */
|
||||
/* > M must be at least zero. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] N */
|
||||
/* > \verbatim */
|
||||
/* > N is INTEGER */
|
||||
/* > On entry, N specifies the number of columns of the matrix C. */
|
||||
/* > N must be at least zero. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] ALPHA */
|
||||
/* > \verbatim */
|
||||
/* > ALPHA is DOUBLE PRECISION. */
|
||||
/* > On entry, ALPHA specifies the scalar alpha. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] A */
|
||||
/* > \verbatim */
|
||||
/* > A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is */
|
||||
/* > m when SIDE = 'L' or 'l' and is n otherwise. */
|
||||
/* > Before entry with SIDE = 'L' or 'l', the m by m part of */
|
||||
/* > the array A must contain the symmetric matrix, such that */
|
||||
/* > when UPLO = 'U' or 'u', the leading m by m upper triangular */
|
||||
/* > part of the array A must contain the upper triangular part */
|
||||
/* > of the symmetric matrix and the strictly lower triangular */
|
||||
/* > part of A is not referenced, and when UPLO = 'L' or 'l', */
|
||||
/* > the leading m by m lower triangular part of the array A */
|
||||
/* > must contain the lower triangular part of the symmetric */
|
||||
/* > matrix and the strictly upper triangular part of A is not */
|
||||
/* > referenced. */
|
||||
/* > Before entry with SIDE = 'R' or 'r', the n by n part of */
|
||||
/* > the array A must contain the symmetric matrix, such that */
|
||||
/* > when UPLO = 'U' or 'u', the leading n by n upper triangular */
|
||||
/* > part of the array A must contain the upper triangular part */
|
||||
/* > of the symmetric matrix and the strictly lower triangular */
|
||||
/* > part of A is not referenced, and when UPLO = 'L' or 'l', */
|
||||
/* > the leading n by n lower triangular part of the array A */
|
||||
/* > must contain the lower triangular part of the symmetric */
|
||||
/* > matrix and the strictly upper triangular part of A is not */
|
||||
/* > referenced. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDA */
|
||||
/* > \verbatim */
|
||||
/* > LDA is INTEGER */
|
||||
/* > On entry, LDA specifies the first dimension of A as declared */
|
||||
/* > in the calling (sub) program. When SIDE = 'L' or 'l' then */
|
||||
/* > LDA must be at least max( 1, m ), otherwise LDA must be at */
|
||||
/* > least max( 1, n ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] B */
|
||||
/* > \verbatim */
|
||||
/* > B is DOUBLE PRECISION array, dimension ( LDB, N ) */
|
||||
/* > Before entry, the leading m by n part of the array B must */
|
||||
/* > contain the matrix B. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDB */
|
||||
/* > \verbatim */
|
||||
/* > LDB is INTEGER */
|
||||
/* > On entry, LDB specifies the first dimension of B as declared */
|
||||
/* > in the calling (sub) program. LDB must be at least */
|
||||
/* > max( 1, m ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] BETA */
|
||||
/* > \verbatim */
|
||||
/* > BETA is DOUBLE PRECISION. */
|
||||
/* > On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* > supplied as zero then C need not be set on input. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in,out] C */
|
||||
/* > \verbatim */
|
||||
/* > C is DOUBLE PRECISION array, dimension ( LDC, N ) */
|
||||
/* > Before entry, the leading m by n part of the array C must */
|
||||
/* > contain the matrix C, except when beta is zero, in which */
|
||||
/* > case C need not be set on entry. */
|
||||
/* > On exit, the array C is overwritten by the m by n updated */
|
||||
/* > matrix. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDC */
|
||||
/* > \verbatim */
|
||||
/* > LDC is INTEGER */
|
||||
/* > On entry, LDC specifies the first dimension of C as declared */
|
||||
/* > in the calling (sub) program. LDC must be at least */
|
||||
/* > max( 1, m ). */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Authors: */
|
||||
/* ======== */
|
||||
|
||||
/* > \author Univ. of Tennessee */
|
||||
/* > \author Univ. of California Berkeley */
|
||||
/* > \author Univ. of Colorado Denver */
|
||||
/* > \author NAG Ltd. */
|
||||
|
||||
/* > \ingroup double_blas_level3 */
|
||||
|
||||
/* > \par Further Details: */
|
||||
/* ===================== */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > Level 3 Blas routine. */
|
||||
/* > */
|
||||
/* > -- Written on 8-February-1989. */
|
||||
/* > Jack Dongarra, Argonne National Laboratory. */
|
||||
/* > Iain Duff, AERE Harwell. */
|
||||
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
|
||||
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* ===================================================================== */
|
||||
/* Subroutine */ int dsymm_(char *side, char *uplo, integer *m, integer *n,
|
||||
doublereal *alpha, doublereal *a, integer *lda, doublereal *b,
|
||||
integer *ldb, doublereal *beta, doublereal *c__, integer *ldc, ftnlen
|
||||
side_len, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
|
||||
i__3;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, k, info;
|
||||
doublereal temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer nrowa;
|
||||
logical upper;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
|
||||
/* -- Reference BLAS level3 routine -- */
|
||||
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
||||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
|
||||
/* Set NROWA as the number of rows of A. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
b_dim1 = *ldb;
|
||||
b_offset = 1 + b_dim1;
|
||||
b -= b_offset;
|
||||
c_dim1 = *ldc;
|
||||
c_offset = 1 + c_dim1;
|
||||
c__ -= c_offset;
|
||||
|
||||
/* Function Body */
|
||||
if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
||||
nrowa = *m;
|
||||
} else {
|
||||
nrowa = *n;
|
||||
}
|
||||
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
info = 0;
|
||||
if (! lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1) && ! lsame_(side, (char *)"R", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (*m < 0) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
} else if (*lda < max(1,nrowa)) {
|
||||
info = 7;
|
||||
} else if (*ldb < max(1,*m)) {
|
||||
info = 9;
|
||||
} else if (*ldc < max(1,*m)) {
|
||||
info = 12;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_((char *)"DSYMM ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* And when alpha.eq.zero. */
|
||||
|
||||
if (*alpha == 0.) {
|
||||
if (*beta == 0.) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
c__[i__ + j * c_dim1] = 0.;
|
||||
/* L10: */
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
||||
/* L30: */
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Start the operations. */
|
||||
|
||||
if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form C := alpha*A*B + beta*C. */
|
||||
|
||||
if (upper) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
temp1 = *alpha * b[i__ + j * b_dim1];
|
||||
temp2 = 0.;
|
||||
i__3 = i__ - 1;
|
||||
for (k = 1; k <= i__3; ++k) {
|
||||
c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];
|
||||
temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];
|
||||
/* L50: */
|
||||
}
|
||||
if (*beta == 0.) {
|
||||
c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1]
|
||||
+ *alpha * temp2;
|
||||
} else {
|
||||
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
|
||||
+ temp1 * a[i__ + i__ * a_dim1] + *alpha *
|
||||
temp2;
|
||||
}
|
||||
/* L60: */
|
||||
}
|
||||
/* L70: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
for (i__ = *m; i__ >= 1; --i__) {
|
||||
temp1 = *alpha * b[i__ + j * b_dim1];
|
||||
temp2 = 0.;
|
||||
i__2 = *m;
|
||||
for (k = i__ + 1; k <= i__2; ++k) {
|
||||
c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];
|
||||
temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];
|
||||
/* L80: */
|
||||
}
|
||||
if (*beta == 0.) {
|
||||
c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1]
|
||||
+ *alpha * temp2;
|
||||
} else {
|
||||
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
|
||||
+ temp1 * a[i__ + i__ * a_dim1] + *alpha *
|
||||
temp2;
|
||||
}
|
||||
/* L90: */
|
||||
}
|
||||
/* L100: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form C := alpha*B*A + beta*C. */
|
||||
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * a[j + j * a_dim1];
|
||||
if (*beta == 0.) {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1];
|
||||
/* L110: */
|
||||
}
|
||||
} else {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] +
|
||||
temp1 * b[i__ + j * b_dim1];
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
i__2 = j - 1;
|
||||
for (k = 1; k <= i__2; ++k) {
|
||||
if (upper) {
|
||||
temp1 = *alpha * a[k + j * a_dim1];
|
||||
} else {
|
||||
temp1 = *alpha * a[j + k * a_dim1];
|
||||
}
|
||||
i__3 = *m;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];
|
||||
/* L130: */
|
||||
}
|
||||
/* L140: */
|
||||
}
|
||||
i__2 = *n;
|
||||
for (k = j + 1; k <= i__2; ++k) {
|
||||
if (upper) {
|
||||
temp1 = *alpha * a[j + k * a_dim1];
|
||||
} else {
|
||||
temp1 = *alpha * a[k + j * a_dim1];
|
||||
}
|
||||
i__3 = *m;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];
|
||||
/* L150: */
|
||||
}
|
||||
/* L160: */
|
||||
}
|
||||
/* L170: */
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DSYMM */
|
||||
|
||||
} /* dsymm_ */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user