convert linalg library from Fortran to C++
This commit is contained in:
431
lib/linalg/fortran/dlaed0.f
Normal file
431
lib/linalg/fortran/dlaed0.f
Normal file
@ -0,0 +1,431 @@
|
||||
*> \brief \b DLAED0 used by DSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLAED0 + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed0.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed0.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed0.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
|
||||
* WORK, IWORK, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER IWORK( * )
|
||||
* DOUBLE PRECISION D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
|
||||
* $ WORK( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLAED0 computes all eigenvalues and corresponding eigenvectors of a
|
||||
*> symmetric tridiagonal matrix using the divide and conquer method.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] ICOMPQ
|
||||
*> \verbatim
|
||||
*> ICOMPQ is INTEGER
|
||||
*> = 0: Compute eigenvalues only.
|
||||
*> = 1: Compute eigenvectors of original dense symmetric matrix
|
||||
*> also. On entry, Q contains the orthogonal matrix used
|
||||
*> to reduce the original matrix to tridiagonal form.
|
||||
*> = 2: Compute eigenvalues and eigenvectors of tridiagonal
|
||||
*> matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] QSIZ
|
||||
*> \verbatim
|
||||
*> QSIZ is INTEGER
|
||||
*> The dimension of the orthogonal matrix used to reduce
|
||||
*> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] D
|
||||
*> \verbatim
|
||||
*> D is DOUBLE PRECISION array, dimension (N)
|
||||
*> On entry, the main diagonal of the tridiagonal matrix.
|
||||
*> On exit, its eigenvalues.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] E
|
||||
*> \verbatim
|
||||
*> E is DOUBLE PRECISION array, dimension (N-1)
|
||||
*> The off-diagonal elements of the tridiagonal matrix.
|
||||
*> On exit, E has been destroyed.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Q
|
||||
*> \verbatim
|
||||
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
|
||||
*> On entry, Q must contain an N-by-N orthogonal matrix.
|
||||
*> If ICOMPQ = 0 Q is not referenced.
|
||||
*> If ICOMPQ = 1 On entry, Q is a subset of the columns of the
|
||||
*> orthogonal matrix used to reduce the full
|
||||
*> matrix to tridiagonal form corresponding to
|
||||
*> the subset of the full matrix which is being
|
||||
*> decomposed at this time.
|
||||
*> If ICOMPQ = 2 On entry, Q will be the identity matrix.
|
||||
*> On exit, Q contains the eigenvectors of the
|
||||
*> tridiagonal matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDQ
|
||||
*> \verbatim
|
||||
*> LDQ is INTEGER
|
||||
*> The leading dimension of the array Q. If eigenvectors are
|
||||
*> desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] QSTORE
|
||||
*> \verbatim
|
||||
*> QSTORE is DOUBLE PRECISION array, dimension (LDQS, N)
|
||||
*> Referenced only when ICOMPQ = 1. Used to store parts of
|
||||
*> the eigenvector matrix when the updating matrix multiplies
|
||||
*> take place.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDQS
|
||||
*> \verbatim
|
||||
*> LDQS is INTEGER
|
||||
*> The leading dimension of the array QSTORE. If ICOMPQ = 1,
|
||||
*> then LDQS >= max(1,N). In any case, LDQS >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> WORK is DOUBLE PRECISION array,
|
||||
*> If ICOMPQ = 0 or 1, the dimension of WORK must be at least
|
||||
*> 1 + 3*N + 2*N*lg N + 3*N**2
|
||||
*> ( lg( N ) = smallest integer k
|
||||
*> such that 2^k >= N )
|
||||
*> If ICOMPQ = 2, the dimension of WORK must be at least
|
||||
*> 4*N + N**2.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] IWORK
|
||||
*> \verbatim
|
||||
*> IWORK is INTEGER array,
|
||||
*> If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
|
||||
*> 6 + 6*N + 5*N*lg N.
|
||||
*> ( lg( N ) = smallest integer k
|
||||
*> such that 2^k >= N )
|
||||
*> If ICOMPQ = 2, the dimension of IWORK must be at least
|
||||
*> 3 + 5*N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit.
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||||
*> > 0: The algorithm failed to compute an eigenvalue while
|
||||
*> working on the submatrix lying in rows and columns
|
||||
*> INFO/(N+1) through mod(INFO,N+1).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \ingroup auxOTHERcomputational
|
||||
*
|
||||
*> \par Contributors:
|
||||
* ==================
|
||||
*>
|
||||
*> Jeff Rutter, Computer Science Division, University of California
|
||||
*> at Berkeley, USA
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
|
||||
$ WORK, IWORK, INFO )
|
||||
*
|
||||
* -- LAPACK computational routine --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
INTEGER IWORK( * )
|
||||
DOUBLE PRECISION D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
|
||||
$ WORK( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ZERO, ONE, TWO
|
||||
PARAMETER ( ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
|
||||
$ IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
|
||||
$ J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1,
|
||||
$ SPM2, SUBMAT, SUBPBS, TLVLS
|
||||
DOUBLE PRECISION TEMP
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DCOPY, DGEMM, DLACPY, DLAED1, DLAED7, DSTEQR,
|
||||
$ XERBLA
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
INTEGER ILAENV
|
||||
EXTERNAL ILAENV
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, DBLE, INT, LOG, MAX
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
*
|
||||
IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX( 0, N ) ) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( N.LT.0 ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -9
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DLAED0', -INFO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
SMLSIZ = ILAENV( 9, 'DLAED0', ' ', 0, 0, 0, 0 )
|
||||
*
|
||||
* Determine the size and placement of the submatrices, and save in
|
||||
* the leading elements of IWORK.
|
||||
*
|
||||
IWORK( 1 ) = N
|
||||
SUBPBS = 1
|
||||
TLVLS = 0
|
||||
10 CONTINUE
|
||||
IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
|
||||
DO 20 J = SUBPBS, 1, -1
|
||||
IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
|
||||
IWORK( 2*J-1 ) = IWORK( J ) / 2
|
||||
20 CONTINUE
|
||||
TLVLS = TLVLS + 1
|
||||
SUBPBS = 2*SUBPBS
|
||||
GO TO 10
|
||||
END IF
|
||||
DO 30 J = 2, SUBPBS
|
||||
IWORK( J ) = IWORK( J ) + IWORK( J-1 )
|
||||
30 CONTINUE
|
||||
*
|
||||
* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
|
||||
* using rank-1 modifications (cuts).
|
||||
*
|
||||
SPM1 = SUBPBS - 1
|
||||
DO 40 I = 1, SPM1
|
||||
SUBMAT = IWORK( I ) + 1
|
||||
SMM1 = SUBMAT - 1
|
||||
D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
|
||||
D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
|
||||
40 CONTINUE
|
||||
*
|
||||
INDXQ = 4*N + 3
|
||||
IF( ICOMPQ.NE.2 ) THEN
|
||||
*
|
||||
* Set up workspaces for eigenvalues only/accumulate new vectors
|
||||
* routine
|
||||
*
|
||||
TEMP = LOG( DBLE( N ) ) / LOG( TWO )
|
||||
LGN = INT( TEMP )
|
||||
IF( 2**LGN.LT.N )
|
||||
$ LGN = LGN + 1
|
||||
IF( 2**LGN.LT.N )
|
||||
$ LGN = LGN + 1
|
||||
IPRMPT = INDXQ + N + 1
|
||||
IPERM = IPRMPT + N*LGN
|
||||
IQPTR = IPERM + N*LGN
|
||||
IGIVPT = IQPTR + N + 2
|
||||
IGIVCL = IGIVPT + N*LGN
|
||||
*
|
||||
IGIVNM = 1
|
||||
IQ = IGIVNM + 2*N*LGN
|
||||
IWREM = IQ + N**2 + 1
|
||||
*
|
||||
* Initialize pointers
|
||||
*
|
||||
DO 50 I = 0, SUBPBS
|
||||
IWORK( IPRMPT+I ) = 1
|
||||
IWORK( IGIVPT+I ) = 1
|
||||
50 CONTINUE
|
||||
IWORK( IQPTR ) = 1
|
||||
END IF
|
||||
*
|
||||
* Solve each submatrix eigenproblem at the bottom of the divide and
|
||||
* conquer tree.
|
||||
*
|
||||
CURR = 0
|
||||
DO 70 I = 0, SPM1
|
||||
IF( I.EQ.0 ) THEN
|
||||
SUBMAT = 1
|
||||
MATSIZ = IWORK( 1 )
|
||||
ELSE
|
||||
SUBMAT = IWORK( I ) + 1
|
||||
MATSIZ = IWORK( I+1 ) - IWORK( I )
|
||||
END IF
|
||||
IF( ICOMPQ.EQ.2 ) THEN
|
||||
CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
|
||||
$ Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO )
|
||||
IF( INFO.NE.0 )
|
||||
$ GO TO 130
|
||||
ELSE
|
||||
CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
|
||||
$ WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK,
|
||||
$ INFO )
|
||||
IF( INFO.NE.0 )
|
||||
$ GO TO 130
|
||||
IF( ICOMPQ.EQ.1 ) THEN
|
||||
CALL DGEMM( 'N', 'N', QSIZ, MATSIZ, MATSIZ, ONE,
|
||||
$ Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+
|
||||
$ CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ),
|
||||
$ LDQS )
|
||||
END IF
|
||||
IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
|
||||
CURR = CURR + 1
|
||||
END IF
|
||||
K = 1
|
||||
DO 60 J = SUBMAT, IWORK( I+1 )
|
||||
IWORK( INDXQ+J ) = K
|
||||
K = K + 1
|
||||
60 CONTINUE
|
||||
70 CONTINUE
|
||||
*
|
||||
* Successively merge eigensystems of adjacent submatrices
|
||||
* into eigensystem for the corresponding larger matrix.
|
||||
*
|
||||
* while ( SUBPBS > 1 )
|
||||
*
|
||||
CURLVL = 1
|
||||
80 CONTINUE
|
||||
IF( SUBPBS.GT.1 ) THEN
|
||||
SPM2 = SUBPBS - 2
|
||||
DO 90 I = 0, SPM2, 2
|
||||
IF( I.EQ.0 ) THEN
|
||||
SUBMAT = 1
|
||||
MATSIZ = IWORK( 2 )
|
||||
MSD2 = IWORK( 1 )
|
||||
CURPRB = 0
|
||||
ELSE
|
||||
SUBMAT = IWORK( I ) + 1
|
||||
MATSIZ = IWORK( I+2 ) - IWORK( I )
|
||||
MSD2 = MATSIZ / 2
|
||||
CURPRB = CURPRB + 1
|
||||
END IF
|
||||
*
|
||||
* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
|
||||
* into an eigensystem of size MATSIZ.
|
||||
* DLAED1 is used only for the full eigensystem of a tridiagonal
|
||||
* matrix.
|
||||
* DLAED7 handles the cases in which eigenvalues only or eigenvalues
|
||||
* and eigenvectors of a full symmetric matrix (which was reduced to
|
||||
* tridiagonal form) are desired.
|
||||
*
|
||||
IF( ICOMPQ.EQ.2 ) THEN
|
||||
CALL DLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ),
|
||||
$ LDQ, IWORK( INDXQ+SUBMAT ),
|
||||
$ E( SUBMAT+MSD2-1 ), MSD2, WORK,
|
||||
$ IWORK( SUBPBS+1 ), INFO )
|
||||
ELSE
|
||||
CALL DLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB,
|
||||
$ D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
|
||||
$ IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ),
|
||||
$ MSD2, WORK( IQ ), IWORK( IQPTR ),
|
||||
$ IWORK( IPRMPT ), IWORK( IPERM ),
|
||||
$ IWORK( IGIVPT ), IWORK( IGIVCL ),
|
||||
$ WORK( IGIVNM ), WORK( IWREM ),
|
||||
$ IWORK( SUBPBS+1 ), INFO )
|
||||
END IF
|
||||
IF( INFO.NE.0 )
|
||||
$ GO TO 130
|
||||
IWORK( I / 2+1 ) = IWORK( I+2 )
|
||||
90 CONTINUE
|
||||
SUBPBS = SUBPBS / 2
|
||||
CURLVL = CURLVL + 1
|
||||
GO TO 80
|
||||
END IF
|
||||
*
|
||||
* end while
|
||||
*
|
||||
* Re-merge the eigenvalues/vectors which were deflated at the final
|
||||
* merge step.
|
||||
*
|
||||
IF( ICOMPQ.EQ.1 ) THEN
|
||||
DO 100 I = 1, N
|
||||
J = IWORK( INDXQ+I )
|
||||
WORK( I ) = D( J )
|
||||
CALL DCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
|
||||
100 CONTINUE
|
||||
CALL DCOPY( N, WORK, 1, D, 1 )
|
||||
ELSE IF( ICOMPQ.EQ.2 ) THEN
|
||||
DO 110 I = 1, N
|
||||
J = IWORK( INDXQ+I )
|
||||
WORK( I ) = D( J )
|
||||
CALL DCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 )
|
||||
110 CONTINUE
|
||||
CALL DCOPY( N, WORK, 1, D, 1 )
|
||||
CALL DLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ )
|
||||
ELSE
|
||||
DO 120 I = 1, N
|
||||
J = IWORK( INDXQ+I )
|
||||
WORK( I ) = D( J )
|
||||
120 CONTINUE
|
||||
CALL DCOPY( N, WORK, 1, D, 1 )
|
||||
END IF
|
||||
GO TO 140
|
||||
*
|
||||
130 CONTINUE
|
||||
INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
|
||||
*
|
||||
140 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
* End of DLAED0
|
||||
*
|
||||
END
|
||||
Reference in New Issue
Block a user