convert linalg library from Fortran to C++
This commit is contained in:
201
lib/linalg/fortran/dorgl2.f
Normal file
201
lib/linalg/fortran/dorgl2.f
Normal file
@ -0,0 +1,201 @@
|
||||
*> \brief \b DORGL2
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DORGL2 + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgl2.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgl2.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgl2.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, K, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DORGL2 generates an m by n real matrix Q with orthonormal rows,
|
||||
*> which is defined as the first m rows of a product of k elementary
|
||||
*> reflectors of order n
|
||||
*>
|
||||
*> Q = H(k) . . . H(2) H(1)
|
||||
*>
|
||||
*> as returned by DGELQF.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix Q. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix Q. N >= M.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] K
|
||||
*> \verbatim
|
||||
*> K is INTEGER
|
||||
*> The number of elementary reflectors whose product defines the
|
||||
*> matrix Q. M >= K >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the i-th row must contain the vector which defines
|
||||
*> the elementary reflector H(i), for i = 1,2,...,k, as returned
|
||||
*> by DGELQF in the first k rows of its array argument A.
|
||||
*> On exit, the m-by-n matrix Q.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The first dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TAU
|
||||
*> \verbatim
|
||||
*> TAU is DOUBLE PRECISION array, dimension (K)
|
||||
*> TAU(i) must contain the scalar factor of the elementary
|
||||
*> reflector H(i), as returned by DGELQF.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> WORK is DOUBLE PRECISION array, dimension (M)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument has an illegal value
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \ingroup doubleOTHERcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
|
||||
*
|
||||
* -- LAPACK computational routine --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, K, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE, ZERO
|
||||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J, L
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLARF, DSCAL, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input arguments
|
||||
*
|
||||
INFO = 0
|
||||
IF( M.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( N.LT.M ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||||
INFO = -5
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DORGL2', -INFO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( M.LE.0 )
|
||||
$ RETURN
|
||||
*
|
||||
IF( K.LT.M ) THEN
|
||||
*
|
||||
* Initialise rows k+1:m to rows of the unit matrix
|
||||
*
|
||||
DO 20 J = 1, N
|
||||
DO 10 L = K + 1, M
|
||||
A( L, J ) = ZERO
|
||||
10 CONTINUE
|
||||
IF( J.GT.K .AND. J.LE.M )
|
||||
$ A( J, J ) = ONE
|
||||
20 CONTINUE
|
||||
END IF
|
||||
*
|
||||
DO 40 I = K, 1, -1
|
||||
*
|
||||
* Apply H(i) to A(i:m,i:n) from the right
|
||||
*
|
||||
IF( I.LT.N ) THEN
|
||||
IF( I.LT.M ) THEN
|
||||
A( I, I ) = ONE
|
||||
CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
|
||||
$ TAU( I ), A( I+1, I ), LDA, WORK )
|
||||
END IF
|
||||
CALL DSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
|
||||
END IF
|
||||
A( I, I ) = ONE - TAU( I )
|
||||
*
|
||||
* Set A(i,1:i-1) to zero
|
||||
*
|
||||
DO 30 L = 1, I - 1
|
||||
A( I, L ) = ZERO
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
* End of DORGL2
|
||||
*
|
||||
END
|
||||
Reference in New Issue
Block a user