convert linalg library from Fortran to C++
This commit is contained in:
379
lib/linalg/zheev.cpp
Normal file
379
lib/linalg/zheev.cpp
Normal file
@ -0,0 +1,379 @@
|
||||
/* fortran/zheev.f -- translated by f2c (version 20200916).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "lmp_f2c.h"
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static integer c__1 = 1;
|
||||
static integer c_n1 = -1;
|
||||
static integer c__0 = 0;
|
||||
static doublereal c_b18 = 1.;
|
||||
|
||||
/* > \brief <b> ZHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matr
|
||||
ices</b> */
|
||||
|
||||
/* =========== DOCUMENTATION =========== */
|
||||
|
||||
/* Online html documentation available at */
|
||||
/* http://www.netlib.org/lapack/explore-html/ */
|
||||
|
||||
/* > \htmlonly */
|
||||
/* > Download ZHEEV + dependencies */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheev.f
|
||||
"> */
|
||||
/* > [TGZ]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheev.f
|
||||
"> */
|
||||
/* > [ZIP]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheev.f
|
||||
"> */
|
||||
/* > [TXT]</a> */
|
||||
/* > \endhtmlonly */
|
||||
|
||||
/* Definition: */
|
||||
/* =========== */
|
||||
|
||||
/* SUBROUTINE ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, */
|
||||
/* INFO ) */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* CHARACTER JOBZ, UPLO */
|
||||
/* INTEGER INFO, LDA, LWORK, N */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* DOUBLE PRECISION RWORK( * ), W( * ) */
|
||||
/* COMPLEX*16 A( LDA, * ), WORK( * ) */
|
||||
/* .. */
|
||||
|
||||
|
||||
/* > \par Purpose: */
|
||||
/* ============= */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > ZHEEV computes all eigenvalues and, optionally, eigenvectors of a */
|
||||
/* > complex Hermitian matrix A. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Arguments: */
|
||||
/* ========== */
|
||||
|
||||
/* > \param[in] JOBZ */
|
||||
/* > \verbatim */
|
||||
/* > JOBZ is CHARACTER*1 */
|
||||
/* > = 'N': Compute eigenvalues only; */
|
||||
/* > = 'V': Compute eigenvalues and eigenvectors. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] UPLO */
|
||||
/* > \verbatim */
|
||||
/* > UPLO is CHARACTER*1 */
|
||||
/* > = 'U': Upper triangle of A is stored; */
|
||||
/* > = 'L': Lower triangle of A is stored. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] N */
|
||||
/* > \verbatim */
|
||||
/* > N is INTEGER */
|
||||
/* > The order of the matrix A. N >= 0. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in,out] A */
|
||||
/* > \verbatim */
|
||||
/* > A is COMPLEX*16 array, dimension (LDA, N) */
|
||||
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
|
||||
/* > leading N-by-N upper triangular part of A contains the */
|
||||
/* > upper triangular part of the matrix A. If UPLO = 'L', */
|
||||
/* > the leading N-by-N lower triangular part of A contains */
|
||||
/* > the lower triangular part of the matrix A. */
|
||||
/* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
|
||||
/* > orthonormal eigenvectors of the matrix A. */
|
||||
/* > If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
|
||||
/* > or the upper triangle (if UPLO='U') of A, including the */
|
||||
/* > diagonal, is destroyed. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDA */
|
||||
/* > \verbatim */
|
||||
/* > LDA is INTEGER */
|
||||
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] W */
|
||||
/* > \verbatim */
|
||||
/* > W is DOUBLE PRECISION array, dimension (N) */
|
||||
/* > If INFO = 0, the eigenvalues in ascending order. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] WORK */
|
||||
/* > \verbatim */
|
||||
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
|
||||
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LWORK */
|
||||
/* > \verbatim */
|
||||
/* > LWORK is INTEGER */
|
||||
/* > The length of the array WORK. LWORK >= max(1,2*N-1). */
|
||||
/* > For optimal efficiency, LWORK >= (NB+1)*N, */
|
||||
/* > where NB is the blocksize for ZHETRD returned by ILAENV. */
|
||||
/* > */
|
||||
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
||||
/* > only calculates the optimal size of the WORK array, returns */
|
||||
/* > this value as the first entry of the WORK array, and no error */
|
||||
/* > message related to LWORK is issued by XERBLA. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] RWORK */
|
||||
/* > \verbatim */
|
||||
/* > RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2)) */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] INFO */
|
||||
/* > \verbatim */
|
||||
/* > INFO is INTEGER */
|
||||
/* > = 0: successful exit */
|
||||
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
||||
/* > > 0: if INFO = i, the algorithm failed to converge; i */
|
||||
/* > off-diagonal elements of an intermediate tridiagonal */
|
||||
/* > form did not converge to zero. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Authors: */
|
||||
/* ======== */
|
||||
|
||||
/* > \author Univ. of Tennessee */
|
||||
/* > \author Univ. of California Berkeley */
|
||||
/* > \author Univ. of Colorado Denver */
|
||||
/* > \author NAG Ltd. */
|
||||
|
||||
/* > \ingroup complex16HEeigen */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* Subroutine */ int zheev_(char *jobz, char *uplo, integer *n, doublecomplex
|
||||
*a, integer *lda, doublereal *w, doublecomplex *work, integer *lwork,
|
||||
doublereal *rwork, integer *info, ftnlen jobz_len, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2;
|
||||
doublereal d__1;
|
||||
|
||||
/* Builtin functions */
|
||||
double sqrt(doublereal);
|
||||
|
||||
/* Local variables */
|
||||
integer nb;
|
||||
doublereal eps;
|
||||
integer inde;
|
||||
doublereal anrm;
|
||||
integer imax;
|
||||
doublereal rmin, rmax;
|
||||
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
||||
integer *);
|
||||
doublereal sigma;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer iinfo;
|
||||
logical lower, wantz;
|
||||
extern doublereal dlamch_(char *, ftnlen);
|
||||
integer iscale;
|
||||
doublereal safmin;
|
||||
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
||||
integer *, integer *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
doublereal bignum;
|
||||
extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *,
|
||||
integer *, doublereal *, ftnlen, ftnlen);
|
||||
integer indtau;
|
||||
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
|
||||
integer *), zlascl_(char *, integer *, integer *, doublereal *,
|
||||
doublereal *, integer *, integer *, doublecomplex *, integer *,
|
||||
integer *, ftnlen);
|
||||
integer indwrk;
|
||||
extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *,
|
||||
integer *, doublereal *, doublereal *, doublecomplex *,
|
||||
doublecomplex *, integer *, integer *, ftnlen);
|
||||
integer llwork;
|
||||
doublereal smlnum;
|
||||
integer lwkopt;
|
||||
logical lquery;
|
||||
extern /* Subroutine */ int zsteqr_(char *, integer *, doublereal *,
|
||||
doublereal *, doublecomplex *, integer *, doublereal *, integer *,
|
||||
ftnlen), zungtr_(char *, integer *, doublecomplex *, integer *,
|
||||
doublecomplex *, doublecomplex *, integer *, integer *, ftnlen);
|
||||
|
||||
|
||||
/* -- LAPACK driver routine -- */
|
||||
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
||||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--w;
|
||||
--work;
|
||||
--rwork;
|
||||
|
||||
/* Function Body */
|
||||
wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1);
|
||||
lower = lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1);
|
||||
lquery = *lwork == -1;
|
||||
|
||||
*info = 0;
|
||||
if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) {
|
||||
*info = -1;
|
||||
} else if (! (lower || lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1))) {
|
||||
*info = -2;
|
||||
} else if (*n < 0) {
|
||||
*info = -3;
|
||||
} else if (*lda < max(1,*n)) {
|
||||
*info = -5;
|
||||
}
|
||||
|
||||
if (*info == 0) {
|
||||
nb = ilaenv_(&c__1, (char *)"ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
|
||||
(ftnlen)1);
|
||||
/* Computing MAX */
|
||||
i__1 = 1, i__2 = (nb + 1) * *n;
|
||||
lwkopt = max(i__1,i__2);
|
||||
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
|
||||
|
||||
/* Computing MAX */
|
||||
i__1 = 1, i__2 = (*n << 1) - 1;
|
||||
if (*lwork < max(i__1,i__2) && ! lquery) {
|
||||
*info = -8;
|
||||
}
|
||||
}
|
||||
|
||||
if (*info != 0) {
|
||||
i__1 = -(*info);
|
||||
xerbla_((char *)"ZHEEV ", &i__1, (ftnlen)6);
|
||||
return 0;
|
||||
} else if (lquery) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (*n == 1) {
|
||||
i__1 = a_dim1 + 1;
|
||||
w[1] = a[i__1].r;
|
||||
work[1].r = 1., work[1].i = 0.;
|
||||
if (wantz) {
|
||||
i__1 = a_dim1 + 1;
|
||||
a[i__1].r = 1., a[i__1].i = 0.;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Get machine constants. */
|
||||
|
||||
safmin = dlamch_((char *)"Safe minimum", (ftnlen)12);
|
||||
eps = dlamch_((char *)"Precision", (ftnlen)9);
|
||||
smlnum = safmin / eps;
|
||||
bignum = 1. / smlnum;
|
||||
rmin = sqrt(smlnum);
|
||||
rmax = sqrt(bignum);
|
||||
|
||||
/* Scale matrix to allowable range, if necessary. */
|
||||
|
||||
anrm = zlanhe_((char *)"M", uplo, n, &a[a_offset], lda, &rwork[1], (ftnlen)1, (
|
||||
ftnlen)1);
|
||||
iscale = 0;
|
||||
if (anrm > 0. && anrm < rmin) {
|
||||
iscale = 1;
|
||||
sigma = rmin / anrm;
|
||||
} else if (anrm > rmax) {
|
||||
iscale = 1;
|
||||
sigma = rmax / anrm;
|
||||
}
|
||||
if (iscale == 1) {
|
||||
zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda,
|
||||
info, (ftnlen)1);
|
||||
}
|
||||
|
||||
/* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
|
||||
|
||||
inde = 1;
|
||||
indtau = 1;
|
||||
indwrk = indtau + *n;
|
||||
llwork = *lwork - indwrk + 1;
|
||||
zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
|
||||
work[indwrk], &llwork, &iinfo, (ftnlen)1);
|
||||
|
||||
/* For eigenvalues only, call DSTERF. For eigenvectors, first call */
|
||||
/* ZUNGTR to generate the unitary matrix, then call ZSTEQR. */
|
||||
|
||||
if (! wantz) {
|
||||
dsterf_(n, &w[1], &rwork[inde], info);
|
||||
} else {
|
||||
zungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
|
||||
llwork, &iinfo, (ftnlen)1);
|
||||
indwrk = inde + *n;
|
||||
zsteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[
|
||||
indwrk], info, (ftnlen)1);
|
||||
}
|
||||
|
||||
/* If matrix was scaled, then rescale eigenvalues appropriately. */
|
||||
|
||||
if (iscale == 1) {
|
||||
if (*info == 0) {
|
||||
imax = *n;
|
||||
} else {
|
||||
imax = *info - 1;
|
||||
}
|
||||
d__1 = 1. / sigma;
|
||||
dscal_(&imax, &d__1, &w[1], &c__1);
|
||||
}
|
||||
|
||||
/* Set WORK(1) to optimal complex workspace size. */
|
||||
|
||||
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZHEEV */
|
||||
|
||||
} /* zheev_ */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user