Added Vashishta potential

git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14117 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
athomps
2015-10-15 17:39:43 +00:00
parent edf114fd25
commit c7170a4296
19 changed files with 1564 additions and 0 deletions

View File

@ -0,0 +1,38 @@
# DATE: 2015-10-14 CONTRIBUTOR: Aidan Thompson, athomps@sandia.gov CITATION: Branicio, Rino, Gan and Tsuzuki, J. Phys Condensed Matter 21 (2009) 095002
#
# Vashishta potential file for InP, Branicio, Rino, Gan and Tsuzuki,
# J. Phys Condensed Matter 21 (2009) 095002
#
# These entries are in LAMMPS "metal" units:
# H = eV*Angstroms^eta; Zi, Zj = |e| (e = electronic charge);
# lambda1, lambda4, rc, r0, gamma = Angstroms;
# D = eV*Angstroms^4; W = eV*Angstroms^6; B = eV;
# other quantities are unitless
# element1 element2 element3
# H eta Zi Zj lambda1 D lambda4
# W rc B gamma r0 C cos(theta)
In In In 273.584 7 -1.21 -1.21 4.5 0.0 2.75
0.0 6.0 0.0 0.0 0.0 0.0 0.0
P P P 1813.06 7 1.21 1.21 4.5 52.7067 2.75
0.0 6.0 0.0 0.0 0.0 0.0 -0.333333333333
In P P 4847.09 9 1.21 -1.21 4.5 26.3533 2.75
270.105 6.0 4.34967 1.0 3.55 7.0 -0.333333333333
P In In 4847.09 9 1.21 -1.21 4.5 26.3533 2.75
270.105 6.0 4.34967 1.0 3.55 7.0 -0.333333333333
In In P 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
In P In 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
P In P 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
P P In 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

View File

@ -0,0 +1,41 @@
# DATE: 2015-10-14 CONTRIBUTOR: Aidan Thompson, athomps@sandia.gov CITATION: P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjo, Phys. Rev. B 41, 12197 (1990).
#
# Vashishta potential file for SiO2, P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjo,
# Phys. Rev. B 41, 12197 (1990).
#
# These parameters, some inferred indirectly, give a good
# match to the energy-volume curve for alpha-quartz in Fig. 2 of the paper.
#
# These entries are in LAMMPS "metal" units:
# H = eV*Angstroms^eta; Zi, Zj = |e| (e = electronic charge);
# lambda1, lambda4, rc, r0, gamma = Angstroms;
# D = eV*Angstroms^4; W = eV*Angstroms^6; B = eV;
# other quantities are unitless
#
# element1 element2 element3
# H eta Zi Zj lambda1 D lambda4
# W rc B gamma r0 C cos(theta)
Si Si Si 0.82023 11 1.6 1.6 999 0.0 4.43
0.0 10.0 0.0 0.0 0.0 0.0 0.0
O O O 743.848 7 -0.8 -0.8 999 22.1179 4.43
0.0 10.0 0.0 0.0 0.0 0.0 0.0
O Si Si 163.859 9 -0.8 1.6 999 44.2357 4.43
0.0 10.0 20.146 1.0 2.60 0.0 -0.77714596
Si O O 163.859 9 1.6 -0.8 999 44.2357 4.43
0.0 10.0 5.0365 1.0 2.60 0.0 -0.333333333333
Si O Si 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
Si Si O 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
O Si O 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
O O Si 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

View File

@ -0,0 +1,26 @@
# SiO2 alpha quartz
9 atoms
2 atom types
0 4.913400 xlo xhi
0 4.255129 ylo yhi
0 5.405200 zlo zhi
-2.456700 0.0 0.0 xy xz yz
Masses
1 28.0855
2 15.9994
Atoms
1 1 2.308807 0.000000 3.603467
2 1 -1.154403 1.999485 1.801733
3 1 -1.154403 -1.999485 0.000000
4 2 1.375998 1.140800 4.245244
5 2 -1.675961 0.621249 7.848711
6 2 0.299963 -1.762049 6.046977
7 2 0.299963 1.762049 -4.245244
8 2 -1.675961 -0.621249 -0.64177
9 2 1.375998 -1.140800 -2.443511

View File

@ -0,0 +1,75 @@
# calculate the energy volume curve for InP zincblende
# define volume range and filename
variable ndelta equal 100
variable volatom_min equal 20.0
variable volatom_max equal 29.0
variable evsvolfile string evsvol.dat
# set up cell
units metal
boundary p p p
# setup loop variables for box volume
variable amin equal ${volatom_min}^(1/3)*2
variable delta equal (${volatom_max}-${volatom_min})/${ndelta}
variable scale equal (${delta}/v_volatom+1)^(1/3)
# set up 8 atom InP zincblende unit cell
lattice diamond ${amin}
region box prism &
0 1 &
0 1 &
0 1 &
0 0 0
create_box 2 box
create_atoms 1 box &
basis 5 2 &
basis 6 2 &
basis 7 2 &
basis 8 2
mass 1 114.76
mass 2 30.98
# choose potential
pair_style vashishta
pair_coeff * * InP.vashishta In P
# setup neighbor style
neighbor 1.0 nsq
neigh_modify once no every 1 delay 0 check yes
# setup output
thermo_style custom step temp pe press vol
thermo_modify norm no
variable volatom equal vol/atoms
variable eatom equal pe/atoms
print "# Volume [A^3/atom] Energy [eV/atom]" file ${evsvolfile}
# loop over range of volumes
label loop
variable i loop ${ndelta}
change_box all x scale ${scale} y scale ${scale} z scale ${scale} remap
# calculate energy
# no energy minimization needed for zincblende
run 0
print "${volatom} ${eatom}" append ${evsvolfile}
next i
jump SELF loop

View File

@ -0,0 +1,28 @@
# test Vashishta potential for quartz
units metal
boundary p p p
atom_style atomic
read_data data.quartz
replicate 4 4 4
velocity all create 2000.0 277387 mom yes
displace_atoms all move 0.05 0.9 0.4 units box
pair_style vashishta
pair_coeff * * SiO.1990.vashishta Si O
neighbor 0.3 bin
neigh_modify delay 10
fix 1 all nve
thermo 10
timestep 0.001
#dump 1 all cfg 10 *.cfg mass type xs ys zs vx vy vz fx fy fz
#dump_modify 1 element Si O
run 100