modernize LaTeX for formatting text in math mode
This commit is contained in:
@ -197,7 +197,7 @@ The LPS model has a force scalar state
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\underline{t} = \frac{3K\theta}{m}\underline{\omega}\,\underline{x} +
|
\underline{t} = \frac{3K\theta}{m}\underline{\omega}\,\underline{x} +
|
||||||
\alpha \underline{\omega}\,\underline{e}^{\rm d}, \qquad\qquad\textrm{(3)}
|
\alpha \underline{\omega}\,\underline{e}^\mathrm{d}, \qquad\qquad\textrm{(3)}
|
||||||
|
|
||||||
with :math:`K` the bulk modulus and :math:`\alpha` related to the shear
|
with :math:`K` the bulk modulus and :math:`\alpha` related to the shear
|
||||||
modulus :math:`G` as
|
modulus :math:`G` as
|
||||||
@ -242,14 +242,14 @@ scalar state are defined, respectively, as
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\underline{e}^{\rm i}=\frac{\theta \underline{x}}{3}, \qquad
|
\underline{e}^\mathrm{i}=\frac{\theta \underline{x}}{3}, \qquad
|
||||||
\underline{e}^{\rm d} = \underline{e}- \underline{e}^{\rm i},
|
\underline{e}^\mathrm{d} = \underline{e}- \underline{e}^\mathrm{i},
|
||||||
|
|
||||||
|
|
||||||
where the arguments of the state functions and the vectors on which they
|
where the arguments of the state functions and the vectors on which they
|
||||||
operate are omitted for simplicity. We note that the LPS model is linear
|
operate are omitted for simplicity. We note that the LPS model is linear
|
||||||
in the dilatation :math:`\theta`, and in the deviatoric part of the
|
in the dilatation :math:`\theta`, and in the deviatoric part of the
|
||||||
extension :math:`\underline{e}^{\rm d}`.
|
extension :math:`\underline{e}^\mathrm{d}`.
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
|
|
||||||
|
|||||||
@ -249,23 +249,23 @@ as follows:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
a = & {\rm lx} \\
|
a = & \mathrm{lx} \\
|
||||||
b^2 = & {\rm ly}^2 + {\rm xy}^2 \\
|
b^2 = & \mathrm{ly}^2 + \mathrm{xy}^2 \\
|
||||||
c^2 = & {\rm lz}^2 + {\rm xz}^2 + {\rm yz}^2 \\
|
c^2 = & \mathrm{lz}^2 + \mathrm{xz}^2 + \mathrm{yz}^2 \\
|
||||||
\cos{\alpha} = & \frac{{\rm xy}*{\rm xz} + {\rm ly}*{\rm yz}}{b*c} \\
|
\cos{\alpha} = & \frac{\mathrm{xy}*\mathrm{xz} + \mathrm{ly}*\mathrm{yz}}{b*c} \\
|
||||||
\cos{\beta} = & \frac{\rm xz}{c} \\
|
\cos{\beta} = & \frac{\mathrm{xz}}{c} \\
|
||||||
\cos{\gamma} = & \frac{\rm xy}{b} \\
|
\cos{\gamma} = & \frac{\mathrm{xy}}{b} \\
|
||||||
|
|
||||||
The inverse relationship can be written as follows:
|
The inverse relationship can be written as follows:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
{\rm lx} = & a \\
|
\mathrm{lx} = & a \\
|
||||||
{\rm xy} = & b \cos{\gamma} \\
|
\mathrm{xy} = & b \cos{\gamma} \\
|
||||||
{\rm xz} = & c \cos{\beta}\\
|
\mathrm{xz} = & c \cos{\beta}\\
|
||||||
{\rm ly}^2 = & b^2 - {\rm xy}^2 \\
|
\mathrm{ly}^2 = & b^2 - \mathrm{xy}^2 \\
|
||||||
{\rm yz} = & \frac{b*c \cos{\alpha} - {\rm xy}*{\rm xz}}{\rm ly} \\
|
\mathrm{yz} = & \frac{b*c \cos{\alpha} - \mathrm{xy}*\mathrm{xz}}{\mathrm{ly}} \\
|
||||||
{\rm lz}^2 = & c^2 - {\rm xz}^2 - {\rm yz}^2 \\
|
\mathrm{lz}^2 = & c^2 - \mathrm{xz}^2 - \mathrm{yz}^2 \\
|
||||||
|
|
||||||
The values of *a*, *b*, *c*, :math:`\alpha` , :math:`\beta`, and
|
The values of *a*, *b*, *c*, :math:`\alpha` , :math:`\beta`, and
|
||||||
:math:`\gamma` can be printed out or accessed by computes using the
|
:math:`\gamma` can be printed out or accessed by computes using the
|
||||||
|
|||||||
@ -67,7 +67,7 @@ following relation should also be satisfied:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
r_c + r_s > 2*{\rm cutoff}
|
r_c + r_s > 2*\mathrm{cutoff}
|
||||||
|
|
||||||
where :math:`r_c` is the cutoff distance of the potential, :math:`r_s`
|
where :math:`r_c` is the cutoff distance of the potential, :math:`r_s`
|
||||||
is the skin
|
is the skin
|
||||||
|
|||||||
@ -74,7 +74,7 @@ following relation should also be satisfied:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
r_c + r_s > 2*{\rm cutoff}
|
r_c + r_s > 2*\mathrm{cutoff}
|
||||||
|
|
||||||
where :math:`r_c` is the cutoff distance of the potential, :math:`r_s` is
|
where :math:`r_c` is the cutoff distance of the potential, :math:`r_s` is
|
||||||
the skin
|
the skin
|
||||||
|
|||||||
@ -50,9 +50,9 @@ the potential energy using the Wolf summation method, described in
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
E_i = \frac{1}{2} \sum_{j \neq i}
|
E_i = \frac{1}{2} \sum_{j \neq i}
|
||||||
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} +
|
\frac{q_i q_j \mathrm{erfc}(\alpha r_{ij})}{r_{ij}} +
|
||||||
\frac{1}{2} \sum_{j \neq i}
|
\frac{1}{2} \sum_{j \neq i}
|
||||||
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
\frac{q_i q_j \mathrm{erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
||||||
|
|
||||||
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
|
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
|
||||||
are error-function and complementary error-function terms. This
|
are error-function and complementary error-function terms. This
|
||||||
|
|||||||
@ -40,7 +40,7 @@ is a complex number (stored as two real numbers) defined as follows:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
q_n = \frac{1}{nnn}\sum_{j = 1}^{nnn} e^{n i \theta({\bf r}_{ij})}
|
q_n = \frac{1}{nnn}\sum_{j = 1}^{nnn} e^{n i \theta({\textbf{r}}_{ij})}
|
||||||
|
|
||||||
where the sum is over the *nnn* nearest neighbors
|
where the sum is over the *nnn* nearest neighbors
|
||||||
of the central atom. The angle :math:`\theta`
|
of the central atom. The angle :math:`\theta`
|
||||||
|
|||||||
@ -65,7 +65,7 @@ In case of compute *stress/atom*, the virial contribution is:
|
|||||||
|
|
||||||
W_{ab} & = \frac{1}{2} \sum_{n = 1}^{N_p} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) + \frac{1}{2} \sum_{n = 1}^{N_b} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) \\
|
W_{ab} & = \frac{1}{2} \sum_{n = 1}^{N_p} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) + \frac{1}{2} \sum_{n = 1}^{N_b} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) \\
|
||||||
& + \frac{1}{3} \sum_{n = 1}^{N_a} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b}) + \frac{1}{4} \sum_{n = 1}^{N_d} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) \\
|
& + \frac{1}{3} \sum_{n = 1}^{N_a} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b}) + \frac{1}{4} \sum_{n = 1}^{N_d} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) \\
|
||||||
& + \frac{1}{4} \sum_{n = 1}^{N_i} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) + {\rm Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b}
|
& + \frac{1}{4} \sum_{n = 1}^{N_i} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) + \mathrm{Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b}
|
||||||
|
|
||||||
The first term is a pairwise energy contribution where :math:`n` loops
|
The first term is a pairwise energy contribution where :math:`n` loops
|
||||||
over the :math:`N_p` neighbors of atom :math:`I`, :math:`\mathbf{r}_1`
|
over the :math:`N_p` neighbors of atom :math:`I`, :math:`\mathbf{r}_1`
|
||||||
@ -97,7 +97,7 @@ In case of compute *centroid/stress/atom*, the virial contribution is:
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
W_{ab} & = \sum_{n = 1}^{N_p} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_b} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_a} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_d} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_i} r_{I0_a} F_{I_b} \\
|
W_{ab} & = \sum_{n = 1}^{N_p} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_b} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_a} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_d} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_i} r_{I0_a} F_{I_b} \\
|
||||||
& + {\rm Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b}
|
& + \mathrm{Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b}
|
||||||
|
|
||||||
As with compute *stress/atom*, the first, second, third, fourth and
|
As with compute *stress/atom*, the first, second, third, fourth and
|
||||||
fifth terms are pairwise, bond, angle, dihedral and improper
|
fifth terms are pairwise, bond, angle, dihedral and improper
|
||||||
|
|||||||
@ -263,10 +263,10 @@ then the globally defined weights from the ``fitting_weight_energy`` and
|
|||||||
POD Potential
|
POD Potential
|
||||||
"""""""""""""
|
"""""""""""""
|
||||||
|
|
||||||
We consider a multi-element system of *N* atoms with :math:`N_{\rm e}`
|
We consider a multi-element system of *N* atoms with :math:`N_\mathrm{e}`
|
||||||
unique elements. We denote by :math:`\boldsymbol r_n` and :math:`Z_n`
|
unique elements. We denote by :math:`\boldsymbol r_n` and :math:`Z_n`
|
||||||
position vector and type of an atom *n* in the system,
|
position vector and type of an atom *n* in the system,
|
||||||
respectively. Note that we have :math:`Z_n \in \{1, \ldots, N_{\rm e}
|
respectively. Note that we have :math:`Z_n \in \{1, \ldots, N_\mathrm{e}
|
||||||
\}`, :math:`\boldsymbol R = (\boldsymbol r_1, \boldsymbol r_2, \ldots,
|
\}`, :math:`\boldsymbol R = (\boldsymbol r_1, \boldsymbol r_2, \ldots,
|
||||||
\boldsymbol r_N) \in \mathbb{R}^{3N}`, and :math:`\boldsymbol Z = (Z_1,
|
\boldsymbol r_N) \in \mathbb{R}^{3N}`, and :math:`\boldsymbol Z = (Z_1,
|
||||||
Z_2, \ldots, Z_N) \in \mathbb{N}^{N}`. The total energy of the
|
Z_2, \ldots, Z_N) \in \mathbb{N}^{N}`. The total energy of the
|
||||||
|
|||||||
@ -208,19 +208,19 @@ The relaxation rate of the barostat is set by its inertia :math:`W`:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
W = (N + 1) k_B T_{\rm target} P_{\rm damp}^2
|
W = (N + 1) k_B T_\mathrm{target} P_\mathrm{damp}^2
|
||||||
|
|
||||||
where :math:`N` is the number of atoms, :math:`k_B` is the Boltzmann constant,
|
where :math:`N` is the number of atoms, :math:`k_B` is the Boltzmann constant,
|
||||||
and :math:`T_{\rm target}` is the target temperature of the barostat :ref:`(Martyna) <nh-Martyna>`.
|
and :math:`T_\mathrm{target}` is the target temperature of the barostat :ref:`(Martyna) <nh-Martyna>`.
|
||||||
If a thermostat is defined, :math:`T_{\rm target}` is the target temperature
|
If a thermostat is defined, :math:`T_\mathrm{target}` is the target temperature
|
||||||
of the thermostat. If a thermostat is not defined, :math:`T_{\rm target}`
|
of the thermostat. If a thermostat is not defined, :math:`T_\mathrm{target}`
|
||||||
is set to the current temperature of the system when the barostat is initialized.
|
is set to the current temperature of the system when the barostat is initialized.
|
||||||
If this temperature is too low the simulation will quit with an error.
|
If this temperature is too low the simulation will quit with an error.
|
||||||
Note: in previous versions of LAMMPS, :math:`T_{\rm target}` would default to
|
Note: in previous versions of LAMMPS, :math:`T_\mathrm{target}` would default to
|
||||||
a value of 1.0 for *lj* units and 300.0 otherwise if the system had a temperature
|
a value of 1.0 for *lj* units and 300.0 otherwise if the system had a temperature
|
||||||
of exactly zero.
|
of exactly zero.
|
||||||
|
|
||||||
If a thermostat is not specified by this fix, :math:`T_{\rm target}` can be
|
If a thermostat is not specified by this fix, :math:`T_\mathrm{target}` can be
|
||||||
manually specified using the *Ptemp* parameter. This may be useful if the
|
manually specified using the *Ptemp* parameter. This may be useful if the
|
||||||
barostat is initialized when the current temperature does not reflect the
|
barostat is initialized when the current temperature does not reflect the
|
||||||
steady state temperature of the system. This keyword may also be useful in
|
steady state temperature of the system. This keyword may also be useful in
|
||||||
@ -512,8 +512,8 @@ according to the following factorization of the Liouville propagator
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\exp \left(\mathrm{i} L \Delta t \right) = & \hat{E}
|
\exp \left(\mathrm{i} L \Delta t \right) = & \hat{E}
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
|
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
|
||||||
&\times \left[
|
&\times \left[
|
||||||
@ -526,8 +526,8 @@ according to the following factorization of the Liouville propagator
|
|||||||
&\times
|
&\times
|
||||||
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right) \\
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right) \\
|
||||||
&+ \mathcal{O} \left(\Delta t^3 \right)
|
&+ \mathcal{O} \left(\Delta t^3 \right)
|
||||||
|
|
||||||
This factorization differs somewhat from that of Tuckerman et al, in
|
This factorization differs somewhat from that of Tuckerman et al, in
|
||||||
|
|||||||
@ -426,8 +426,8 @@ according to the following factorization of the Liouville propagator
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\exp \left(\mathrm{i} L \Delta t \right) = & \hat{E}
|
\exp \left(\mathrm{i} L \Delta t \right) = & \hat{E}
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
|
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
|
||||||
&\times \left[
|
&\times \left[
|
||||||
@ -440,8 +440,8 @@ according to the following factorization of the Liouville propagator
|
|||||||
&\times
|
&\times
|
||||||
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right)
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
|
||||||
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right) \\
|
\exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right) \\
|
||||||
&+ \mathcal{O} \left(\Delta t^3 \right)
|
&+ \mathcal{O} \left(\Delta t^3 \right)
|
||||||
|
|
||||||
This factorization differs somewhat from that of Tuckerman et al, in
|
This factorization differs somewhat from that of Tuckerman et al, in
|
||||||
|
|||||||
@ -62,19 +62,19 @@ The potential energy added to atom I is given by these formulas
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\xi_{i} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j} - \mathbf{r}_{j}^{\rm I} \right| \qquad\qquad\left(1\right) \\
|
\xi_{i} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j} - \mathbf{r}_{j}^\mathrm{I} \right| \qquad\qquad\left(1\right) \\
|
||||||
\\
|
\\
|
||||||
\xi_{\rm IJ} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j}^{\rm J} - \mathbf{r}_{j}^{\rm I} \right| \qquad\qquad\left(2\right)\\
|
\xi_\mathrm{IJ} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j}^\mathrm{J} - \mathbf{r}_{j}^\mathrm{I} \right| \qquad\qquad\left(2\right)\\
|
||||||
\\
|
\\
|
||||||
\xi_{\rm low} = & {\rm cutlo} \, \xi_{\rm IJ} \qquad\qquad\qquad\left(3\right)\\
|
\xi_\mathrm{low} = & \mathrm{cutlo} \, \xi_\mathrm{IJ} \qquad\qquad\qquad\left(3\right)\\
|
||||||
\xi_{\rm high} = & {\rm cuthi} \, \xi_{\rm IJ} \qquad\qquad\qquad\left(4\right) \\
|
\xi_\mathrm{high} = & \mathrm{cuthi} \, \xi_\mathrm{IJ} \qquad\qquad\qquad\left(4\right) \\
|
||||||
\\
|
\\
|
||||||
\omega_{i} = & \frac{\pi}{2} \frac{\xi_{i} - \xi_{\rm low}}{\xi_{\rm high} - \xi_{\rm low}} \qquad\qquad\left(5\right)\\
|
\omega_{i} = & \frac{\pi}{2} \frac{\xi_{i} - \xi_\mathrm{low}}{\xi_\mathrm{high} - \xi_\mathrm{low}} \qquad\qquad\left(5\right)\\
|
||||||
\\
|
\\
|
||||||
u_{i} = & 0 \quad\quad\qquad\qquad\qquad \textrm{ for } \qquad \xi_{i} < \xi_{\rm low}\\
|
u_{i} = & 0 \quad\quad\qquad\qquad\qquad \textrm{ for } \qquad \xi_{i} < \xi_\mathrm{low}\\
|
||||||
= & {\rm dE}\,\frac{1 - \cos(2 \omega_{i})}{2}
|
= & \mathrm{dE}\,\frac{1 - \cos(2 \omega_{i})}{2}
|
||||||
\qquad \mathrm{ for }\qquad \xi_{\rm low} < \xi_{i} < \xi_{\rm high} \quad \left(6\right) \\
|
\qquad \mathrm{for }\qquad \xi_\mathrm{low} < \xi_{i} < \xi_\mathrm{high} \quad \left(6\right) \\
|
||||||
= & {\rm dE} \quad\qquad\qquad\qquad\textrm{ for } \qquad \xi_{\rm high} < \xi_{i}
|
= & \mathrm{dE} \quad\qquad\qquad\qquad\textrm{ for } \qquad \xi_\mathrm{high} < \xi_{i}
|
||||||
|
|
||||||
which are fully explained in :ref:`(Janssens) <Janssens>`. For fcc crystals
|
which are fully explained in :ref:`(Janssens) <Janssens>`. For fcc crystals
|
||||||
this order parameter Xi for atom I in equation (1) is a sum over the
|
this order parameter Xi for atom I in equation (1) is a sum over the
|
||||||
|
|||||||
@ -98,14 +98,14 @@ all atoms
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
|| \vec{F} ||_{max} = {\rm max}\left(||\vec{F}_1||, \cdots, ||\vec{F}_N||\right)
|
|| \vec{F} ||_{max} = \mathrm{max}\left(||\vec{F}_1||, \cdots, ||\vec{F}_N||\right)
|
||||||
|
|
||||||
The *inf* norm takes the maximum component across the forces of
|
The *inf* norm takes the maximum component across the forces of
|
||||||
all atoms in the system:
|
all atoms in the system:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
|| \vec{F} ||_{inf} = {\rm max}\left(|F_1^1|, |F_1^2|, |F_1^3| \cdots, |F_N^1|, |F_N^2|, |F_N^3|\right)
|
|| \vec{F} ||_{inf} = \mathrm{max}\left(|F_1^1|, |F_1^2|, |F_1^3| \cdots, |F_N^1|, |F_N^2|, |F_N^3|\right)
|
||||||
|
|
||||||
For the min styles *spin*, *spin/cg* and *spin/lbfgs*, the force
|
For the min styles *spin*, *spin/cg* and *spin/lbfgs*, the force
|
||||||
norm is replaced by the spin-torque norm.
|
norm is replaced by the spin-torque norm.
|
||||||
|
|||||||
@ -50,9 +50,9 @@ system:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
{\Delta t}_{\rm max} = \frac{2\pi}{\kappa \left|\vec{\omega}_{\rm max} \right|}
|
{\Delta t}_\mathrm{max} = \frac{2\pi}{\kappa \left|\vec{\omega}_\mathrm{max} \right|}
|
||||||
|
|
||||||
with :math:`\left|\vec{\omega}_{\rm max}\right|` the norm of the largest precession
|
with :math:`\left|\vec{\omega}_\mathrm{max}\right|` the norm of the largest precession
|
||||||
frequency in the system (across all processes, and across all replicas if a
|
frequency in the system (across all processes, and across all replicas if a
|
||||||
spin/neb calculation is performed).
|
spin/neb calculation is performed).
|
||||||
|
|
||||||
|
|||||||
@ -148,7 +148,7 @@ spin i, :math:`\omega_i^{\nu}` is a rotation angle defined as:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\omega_i^{\nu} = (\nu - 1) \Delta \omega_i {\rm ~~and~~} \Delta \omega_i = \frac{\omega_i}{Q-1}
|
\omega_i^{\nu} = (\nu - 1) \Delta \omega_i \mathrm{~~and~~} \Delta \omega_i = \frac{\omega_i}{Q-1}
|
||||||
|
|
||||||
with :math:`\nu` the image number, Q the total number of images, and
|
with :math:`\nu` the image number, Q the total number of images, and
|
||||||
:math:`\omega_i` the total rotation between the initial and final spins.
|
:math:`\omega_i` the total rotation between the initial and final spins.
|
||||||
|
|||||||
@ -53,14 +53,14 @@ materials as described in :ref:`(Feng1) <Feng1>` and :ref:`(Feng2) <Feng2>`.
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||||
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
||||||
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
||||||
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
||||||
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
||||||
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
||||||
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
||||||
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
||||||
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
\mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
||||||
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
||||||
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
||||||
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
||||||
|
|||||||
@ -241,9 +241,9 @@ summation method, described in :ref:`Wolf <Wolf1>`, given by:
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E_i = \frac{1}{2} \sum_{j \neq i}
|
E_i = \frac{1}{2} \sum_{j \neq i}
|
||||||
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} +
|
\frac{q_i q_j \mathrm{erfc}(\alpha r_{ij})}{r_{ij}} +
|
||||||
\frac{1}{2} \sum_{j \neq i}
|
\frac{1}{2} \sum_{j \neq i}
|
||||||
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
\frac{q_i q_j \mathrm{erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
||||||
|
|
||||||
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
|
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
|
||||||
are error-function and complementary error-function terms. This
|
are error-function and complementary error-function terms. This
|
||||||
|
|||||||
@ -40,8 +40,8 @@ the pair style :doc:`ilp/graphene/hbn <pair_ilp_graphene_hbn>`
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||||
V_{ij} = & {\rm Tap}(r_{ij})\frac{\kappa q_i q_j}{\sqrt[3]{r_{ij}^3+(1/\lambda_{ij})^3}}\\
|
V_{ij} = & \mathrm{Tap}(r_{ij})\frac{\kappa q_i q_j}{\sqrt[3]{r_{ij}^3+(1/\lambda_{ij})^3}}\\
|
||||||
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
\mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
||||||
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
||||||
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
||||||
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
||||||
|
|||||||
@ -62,8 +62,8 @@ a sum of 3 terms
|
|||||||
|
|
||||||
\mathbf{f} = & f^C + f^D + f^R \qquad \qquad r < r_c \\
|
\mathbf{f} = & f^C + f^D + f^R \qquad \qquad r < r_c \\
|
||||||
f^C = & A_{ij} w(r) \hat{\mathbf{r}}_{ij} \\
|
f^C = & A_{ij} w(r) \hat{\mathbf{r}}_{ij} \\
|
||||||
f^D = & - \gamma_{\parallel} w_{\parallel}^2(r) (\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij}) \hat{\mathbf{r}}_{ij} - \gamma_{\perp} w_{\perp}^2 (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^{\rm T} ) \mathbf{v}_{ij} \\
|
f^D = & - \gamma_{\parallel} w_{\parallel}^2(r) (\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij}) \hat{\mathbf{r}}_{ij} - \gamma_{\perp} w_{\perp}^2 (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^\mathrm{T} ) \mathbf{v}_{ij} \\
|
||||||
f^R = & \sigma_{\parallel} w_{\parallel}(r) \frac{\alpha}{\sqrt{\Delta t}} \hat{\mathbf{r}}_{ij} + \sigma_{\perp} w_{\perp} (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^{\rm T} ) \frac{\mathbf{\xi}_{ij}}{\sqrt{\Delta t}}\\
|
f^R = & \sigma_{\parallel} w_{\parallel}(r) \frac{\alpha}{\sqrt{\Delta t}} \hat{\mathbf{r}}_{ij} + \sigma_{\perp} w_{\perp} (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^\mathrm{T} ) \frac{\mathbf{\xi}_{ij}}{\sqrt{\Delta t}}\\
|
||||||
w(r) = & 1 - r/r_c \\
|
w(r) = & 1 - r/r_c \\
|
||||||
|
|
||||||
where :math:`\mathbf{f}^C` is a conservative force, :math:`\mathbf{f}^D`
|
where :math:`\mathbf{f}^C` is a conservative force, :math:`\mathbf{f}^D`
|
||||||
|
|||||||
@ -68,21 +68,21 @@ force field, given by:
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E = & \left[LJ(r) | Morse(r) \right] \qquad \qquad \qquad r < r_{\rm in} \\
|
E = & \left[LJ(r) | Morse(r) \right] \qquad \qquad \qquad r < r_\mathrm{in} \\
|
||||||
= & S(r) * \left[LJ(r) | Morse(r) \right] \qquad \qquad r_{\rm in} < r < r_{\rm out} \\
|
= & S(r) * \left[LJ(r) | Morse(r) \right] \qquad \qquad r_\mathrm{in} < r < r_\mathrm{out} \\
|
||||||
= & 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad r > r_{\rm out} \\
|
= & 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad r > r_\mathrm{out} \\
|
||||||
LJ(r) = & AR^{-12}-BR^{-10}cos^n\theta=
|
LJ(r) = & AR^{-12}-BR^{-10}cos^n\theta=
|
||||||
\epsilon\left\lbrace 5\left[ \frac{\sigma}{r}\right]^{12}-
|
\epsilon\left\lbrace 5\left[ \frac{\sigma}{r}\right]^{12}-
|
||||||
6\left[ \frac{\sigma}{r}\right]^{10} \right\rbrace cos^n\theta\\
|
6\left[ \frac{\sigma}{r}\right]^{10} \right\rbrace cos^n\theta\\
|
||||||
Morse(r) = & D_0\left\lbrace \chi^2 - 2\chi\right\rbrace cos^n\theta=
|
Morse(r) = & D_0\left\lbrace \chi^2 - 2\chi\right\rbrace cos^n\theta=
|
||||||
D_{0}\left\lbrace e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)}
|
D_{0}\left\lbrace e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)}
|
||||||
\right\rbrace cos^n\theta \\
|
\right\rbrace cos^n\theta \\
|
||||||
S(r) = & \frac{ \left[r_{\rm out}^2 - r^2\right]^2
|
S(r) = & \frac{ \left[r_\mathrm{out}^2 - r^2\right]^2
|
||||||
\left[r_{\rm out}^2 + 2r^2 - 3{r_{\rm in}^2}\right]}
|
\left[r_\mathrm{out}^2 + 2r^2 - 3{r_\mathrm{in}^2}\right]}
|
||||||
{ \left[r_{\rm out}^2 - {r_{\rm in}}^2\right]^3 }
|
{ \left[r_\mathrm{out}^2 - {r_\mathrm{in}}^2\right]^3 }
|
||||||
|
|
||||||
where :math:`r_{\rm in}` is the inner spline distance cutoff,
|
where :math:`r_\mathrm{in}` is the inner spline distance cutoff,
|
||||||
:math:`r_{\rm out}` is the outer distance cutoff, :math:`\theta_c` is
|
:math:`r_\mathrm{out}` is the outer distance cutoff, :math:`\theta_c` is
|
||||||
the angle cutoff, and :math:`n` is the power of the cosine of the angle
|
the angle cutoff, and :math:`n` is the power of the cosine of the angle
|
||||||
:math:`\theta`.
|
:math:`\theta`.
|
||||||
|
|
||||||
@ -189,8 +189,8 @@ follows:
|
|||||||
* :math:`\epsilon` (energy units)
|
* :math:`\epsilon` (energy units)
|
||||||
* :math:`\sigma` (distance units)
|
* :math:`\sigma` (distance units)
|
||||||
* *n* = exponent in formula above
|
* *n* = exponent in formula above
|
||||||
* distance cutoff :math:`r_{\rm in}` (distance units)
|
* distance cutoff :math:`r_\mathrm{in}` (distance units)
|
||||||
* distance cutoff :math:`r_{\rm out}` (distance units)
|
* distance cutoff :math:`r_\mathrm{out}` (distance units)
|
||||||
* angle cutoff (degrees)
|
* angle cutoff (degrees)
|
||||||
|
|
||||||
For the *hbond/dreiding/morse* style the list of coefficients is as
|
For the *hbond/dreiding/morse* style the list of coefficients is as
|
||||||
@ -202,7 +202,7 @@ follows:
|
|||||||
* :math:`\alpha` (1/distance units)
|
* :math:`\alpha` (1/distance units)
|
||||||
* :math:`r_0` (distance units)
|
* :math:`r_0` (distance units)
|
||||||
* *n* = exponent in formula above
|
* *n* = exponent in formula above
|
||||||
* distance cutoff :math:`r_{\rm in}` (distance units)
|
* distance cutoff :math:`r_\mathrm{in}` (distance units)
|
||||||
* distance cutoff :math:`r_{out}` (distance units)
|
* distance cutoff :math:`r_{out}` (distance units)
|
||||||
* angle cutoff (degrees)
|
* angle cutoff (degrees)
|
||||||
|
|
||||||
|
|||||||
@ -44,14 +44,14 @@ in :ref:`(Kolmogorov) <Kolmogorov2>`.
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||||
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
||||||
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
||||||
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
||||||
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
||||||
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
||||||
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
||||||
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
||||||
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
\mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
||||||
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
||||||
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
||||||
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
||||||
|
|||||||
@ -41,14 +41,14 @@ as described in :ref:`(Ouyang7) <Ouyang7>` and :ref:`(Jiang) <Jiang>`.
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||||
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
||||||
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
||||||
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
||||||
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
||||||
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
||||||
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
||||||
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
||||||
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
\mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
||||||
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
||||||
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
||||||
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
||||||
|
|||||||
@ -194,9 +194,9 @@ summation method, described in :ref:`Wolf <Wolf3>`, given by:
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E_i = \frac{1}{2} \sum_{j \neq i}
|
E_i = \frac{1}{2} \sum_{j \neq i}
|
||||||
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} +
|
\frac{q_i q_j \mathrm{erfc}(\alpha r_{ij})}{r_{ij}} +
|
||||||
\frac{1}{2} \sum_{j \neq i}
|
\frac{1}{2} \sum_{j \neq i}
|
||||||
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
\frac{q_i q_j \mathrm{erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
||||||
|
|
||||||
where :math:`\alpha` is the damping parameter, and erfc() is the
|
where :math:`\alpha` is the damping parameter, and erfc() is the
|
||||||
complementary error-function terms. This potential is essentially a
|
complementary error-function terms. This potential is essentially a
|
||||||
|
|||||||
@ -200,7 +200,7 @@ force :math:`F_{ij}^C` are expressed as
|
|||||||
\mathbf{F}_{ij}^{D} & = -\gamma {\omega_{D}}(r_{ij})(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij})\mathbf{e}_{ij} \\
|
\mathbf{F}_{ij}^{D} & = -\gamma {\omega_{D}}(r_{ij})(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij})\mathbf{e}_{ij} \\
|
||||||
\mathbf{F}_{ij}^{R} & = \sigma {\omega_{R}}(r_{ij}){\xi_{ij}}\Delta t^{-1/2} \mathbf{e}_{ij} \\
|
\mathbf{F}_{ij}^{R} & = \sigma {\omega_{R}}(r_{ij}){\xi_{ij}}\Delta t^{-1/2} \mathbf{e}_{ij} \\
|
||||||
\omega_{C}(r) & = 1 - r/r_c \\
|
\omega_{C}(r) & = 1 - r/r_c \\
|
||||||
\omega_{D}(r) & = \omega^2_{R}(r) = (1-r/r_c)^{\rm power_f} \\
|
\omega_{D}(r) & = \omega^2_{R}(r) = (1-r/r_c)^\mathrm{power_f} \\
|
||||||
\sigma^2 = 2\gamma k_B T
|
\sigma^2 = 2\gamma k_B T
|
||||||
|
|
||||||
The concentration flux between two tDPD particles includes the Fickian
|
The concentration flux between two tDPD particles includes the Fickian
|
||||||
@ -211,7 +211,7 @@ by
|
|||||||
|
|
||||||
Q_{ij}^D & = -\kappa_{ij} w_{DC}(r_{ij}) \left( C_i - C_j \right) \\
|
Q_{ij}^D & = -\kappa_{ij} w_{DC}(r_{ij}) \left( C_i - C_j \right) \\
|
||||||
Q_{ij}^R & = \epsilon_{ij}\left( C_i + C_j \right) w_{RC}(r_{ij}) \xi_{ij} \\
|
Q_{ij}^R & = \epsilon_{ij}\left( C_i + C_j \right) w_{RC}(r_{ij}) \xi_{ij} \\
|
||||||
w_{DC}(r_{ij}) & =w^2_{RC}(r_{ij}) = (1 - r/r_{cc})^{\rm power_{cc}} \\
|
w_{DC}(r_{ij}) & =w^2_{RC}(r_{ij}) = (1 - r/r_{cc})^\mathrm{power_{cc}} \\
|
||||||
\epsilon_{ij}^2 & = m_s^2\kappa_{ij}\rho
|
\epsilon_{ij}^2 & = m_s^2\kappa_{ij}\rho
|
||||||
|
|
||||||
where the parameters kappa and epsilon determine the strength of the
|
where the parameters kappa and epsilon determine the strength of the
|
||||||
|
|||||||
@ -33,7 +33,7 @@ elemental bulk material in the form
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E_{\rm tot}({\bf R}_1 \ldots {\bf R}_N) = NE_{\rm vol}(\Omega )
|
E_\mathrm{tot}({\bf R}_1 \ldots {\bf R}_N) = NE_\mathrm{vol}(\Omega )
|
||||||
+ \frac{1}{2} \sum _{i,j} \mbox{}^\prime \ v_2(ij;\Omega )
|
+ \frac{1}{2} \sum _{i,j} \mbox{}^\prime \ v_2(ij;\Omega )
|
||||||
+ \frac{1}{6} \sum _{i,j,k} \mbox{}^\prime \ v_3(ijk;\Omega )
|
+ \frac{1}{6} \sum _{i,j,k} \mbox{}^\prime \ v_3(ijk;\Omega )
|
||||||
+ \frac{1}{24} \sum _{i,j,k,l} \mbox{}^\prime \ v_4(ijkl;\Omega )
|
+ \frac{1}{24} \sum _{i,j,k,l} \mbox{}^\prime \ v_4(ijkl;\Omega )
|
||||||
|
|||||||
@ -41,14 +41,14 @@ potential (ILP) potential for hetero-junctions formed with hexagonal
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||||
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
|
||||||
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
|
||||||
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
|
||||||
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
\cdot \frac{C_6}{r^6_{ij}} \right \}\\
|
||||||
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
|
||||||
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
|
||||||
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
|
||||||
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
\mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
||||||
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
||||||
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
||||||
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
||||||
|
|||||||
@ -43,7 +43,7 @@ vector omega and mechanical force between particles I and J.
|
|||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\mathcal{H}_{\rm long} & =
|
\mathcal{H}_\mathrm{long} & =
|
||||||
-\frac{\mu_{0} \left( \mu_B\right)^2}{4\pi}
|
-\frac{\mu_{0} \left( \mu_B\right)^2}{4\pi}
|
||||||
\sum_{i,j,i\neq j}^{N}
|
\sum_{i,j,i\neq j}^{N}
|
||||||
\frac{g_i g_j}{r_{ij}^3}
|
\frac{g_i g_j}{r_{ij}^3}
|
||||||
|
|||||||
@ -52,7 +52,7 @@ particle i:
|
|||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\vec{\omega}_i = -\frac{1}{\hbar} \sum_{j}^{Neighb} \vec{s}_{j}\times \left(\vec{e}_{ij}\times \vec{D} \right)
|
\vec{\omega}_i = -\frac{1}{\hbar} \sum_{j}^{Neighb} \vec{s}_{j}\times \left(\vec{e}_{ij}\times \vec{D} \right)
|
||||||
~~{\rm and}~~
|
~~\mathrm{and}~~
|
||||||
\vec{F}_i = -\sum_{j}^{Neighb} \frac{1}{r_{ij}} \vec{D} \times \left( \vec{s}_{i}\times \vec{s}_{j} \right)
|
\vec{F}_i = -\sum_{j}^{Neighb} \frac{1}{r_{ij}} \vec{D} \times \left( \vec{s}_{i}\times \vec{s}_{j} \right)
|
||||||
|
|
||||||
More details about the derivation of these torques/forces are reported in
|
More details about the derivation of these torques/forces are reported in
|
||||||
|
|||||||
@ -94,7 +94,7 @@ submitted to a force :math:`\vec{F}_{i}` for spin-lattice calculations (see
|
|||||||
|
|
||||||
\vec{\omega}_{i} = \frac{1}{\hbar} \sum_{j}^{Neighb} {J}
|
\vec{\omega}_{i} = \frac{1}{\hbar} \sum_{j}^{Neighb} {J}
|
||||||
\left(r_{ij} \right)\,\vec{s}_{j}
|
\left(r_{ij} \right)\,\vec{s}_{j}
|
||||||
~~{\rm and}~~
|
~~\mathrm{and}~~
|
||||||
\vec{F}_{i} = \sum_{j}^{Neighb} \frac{\partial {J} \left(r_{ij} \right)}{
|
\vec{F}_{i} = \sum_{j}^{Neighb} \frac{\partial {J} \left(r_{ij} \right)}{
|
||||||
\partial r_{ij}} \left( \vec{s}_{i}\cdot \vec{s}_{j} \right) \vec{e}_{ij}
|
\partial r_{ij}} \left( \vec{s}_{i}\cdot \vec{s}_{j} \right) \vec{e}_{ij}
|
||||||
|
|
||||||
|
|||||||
@ -290,7 +290,7 @@ rst_prolog = r"""
|
|||||||
|
|
||||||
.. only:: html
|
.. only:: html
|
||||||
|
|
||||||
:math:`\renewcommand{\AA}{\text{Å}}`
|
:math:`\renewcommand{\AA}{\textup{\r{A}}`
|
||||||
|
|
||||||
.. role:: lammps(code)
|
.. role:: lammps(code)
|
||||||
:language: LAMMPS
|
:language: LAMMPS
|
||||||
|
|||||||
@ -110,5 +110,5 @@ modules:
|
|||||||
- -D BUILD_WHAM=yes
|
- -D BUILD_WHAM=yes
|
||||||
sources:
|
sources:
|
||||||
- type: git
|
- type: git
|
||||||
url: https://github.com/lammps/lammps.git
|
url: https://github.com/akohlmey/lammps.git
|
||||||
branch: release
|
branch: collected-small-fixes
|
||||||
|
|||||||
Reference in New Issue
Block a user