modernize LaTeX for formatting text in math mode

This commit is contained in:
Axel Kohlmeyer
2025-03-12 15:53:33 -04:00
parent 1931427a57
commit c7f5d07a68
30 changed files with 89 additions and 89 deletions

View File

@ -197,7 +197,7 @@ The LPS model has a force scalar state
.. math:: .. math::
\underline{t} = \frac{3K\theta}{m}\underline{\omega}\,\underline{x} + \underline{t} = \frac{3K\theta}{m}\underline{\omega}\,\underline{x} +
\alpha \underline{\omega}\,\underline{e}^{\rm d}, \qquad\qquad\textrm{(3)} \alpha \underline{\omega}\,\underline{e}^\mathrm{d}, \qquad\qquad\textrm{(3)}
with :math:`K` the bulk modulus and :math:`\alpha` related to the shear with :math:`K` the bulk modulus and :math:`\alpha` related to the shear
modulus :math:`G` as modulus :math:`G` as
@ -242,14 +242,14 @@ scalar state are defined, respectively, as
.. math:: .. math::
\underline{e}^{\rm i}=\frac{\theta \underline{x}}{3}, \qquad \underline{e}^\mathrm{i}=\frac{\theta \underline{x}}{3}, \qquad
\underline{e}^{\rm d} = \underline{e}- \underline{e}^{\rm i}, \underline{e}^\mathrm{d} = \underline{e}- \underline{e}^\mathrm{i},
where the arguments of the state functions and the vectors on which they where the arguments of the state functions and the vectors on which they
operate are omitted for simplicity. We note that the LPS model is linear operate are omitted for simplicity. We note that the LPS model is linear
in the dilatation :math:`\theta`, and in the deviatoric part of the in the dilatation :math:`\theta`, and in the deviatoric part of the
extension :math:`\underline{e}^{\rm d}`. extension :math:`\underline{e}^\mathrm{d}`.
.. note:: .. note::

View File

@ -249,23 +249,23 @@ as follows:
.. math:: .. math::
a = & {\rm lx} \\ a = & \mathrm{lx} \\
b^2 = & {\rm ly}^2 + {\rm xy}^2 \\ b^2 = & \mathrm{ly}^2 + \mathrm{xy}^2 \\
c^2 = & {\rm lz}^2 + {\rm xz}^2 + {\rm yz}^2 \\ c^2 = & \mathrm{lz}^2 + \mathrm{xz}^2 + \mathrm{yz}^2 \\
\cos{\alpha} = & \frac{{\rm xy}*{\rm xz} + {\rm ly}*{\rm yz}}{b*c} \\ \cos{\alpha} = & \frac{\mathrm{xy}*\mathrm{xz} + \mathrm{ly}*\mathrm{yz}}{b*c} \\
\cos{\beta} = & \frac{\rm xz}{c} \\ \cos{\beta} = & \frac{\mathrm{xz}}{c} \\
\cos{\gamma} = & \frac{\rm xy}{b} \\ \cos{\gamma} = & \frac{\mathrm{xy}}{b} \\
The inverse relationship can be written as follows: The inverse relationship can be written as follows:
.. math:: .. math::
{\rm lx} = & a \\ \mathrm{lx} = & a \\
{\rm xy} = & b \cos{\gamma} \\ \mathrm{xy} = & b \cos{\gamma} \\
{\rm xz} = & c \cos{\beta}\\ \mathrm{xz} = & c \cos{\beta}\\
{\rm ly}^2 = & b^2 - {\rm xy}^2 \\ \mathrm{ly}^2 = & b^2 - \mathrm{xy}^2 \\
{\rm yz} = & \frac{b*c \cos{\alpha} - {\rm xy}*{\rm xz}}{\rm ly} \\ \mathrm{yz} = & \frac{b*c \cos{\alpha} - \mathrm{xy}*\mathrm{xz}}{\mathrm{ly}} \\
{\rm lz}^2 = & c^2 - {\rm xz}^2 - {\rm yz}^2 \\ \mathrm{lz}^2 = & c^2 - \mathrm{xz}^2 - \mathrm{yz}^2 \\
The values of *a*, *b*, *c*, :math:`\alpha` , :math:`\beta`, and The values of *a*, *b*, *c*, :math:`\alpha` , :math:`\beta`, and
:math:`\gamma` can be printed out or accessed by computes using the :math:`\gamma` can be printed out or accessed by computes using the

View File

@ -67,7 +67,7 @@ following relation should also be satisfied:
.. math:: .. math::
r_c + r_s > 2*{\rm cutoff} r_c + r_s > 2*\mathrm{cutoff}
where :math:`r_c` is the cutoff distance of the potential, :math:`r_s` where :math:`r_c` is the cutoff distance of the potential, :math:`r_s`
is the skin is the skin

View File

@ -74,7 +74,7 @@ following relation should also be satisfied:
.. math:: .. math::
r_c + r_s > 2*{\rm cutoff} r_c + r_s > 2*\mathrm{cutoff}
where :math:`r_c` is the cutoff distance of the potential, :math:`r_s` is where :math:`r_c` is the cutoff distance of the potential, :math:`r_s` is
the skin the skin

View File

@ -50,9 +50,9 @@ the potential energy using the Wolf summation method, described in
.. math:: .. math::
E_i = \frac{1}{2} \sum_{j \neq i} E_i = \frac{1}{2} \sum_{j \neq i}
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} + \frac{q_i q_j \mathrm{erfc}(\alpha r_{ij})}{r_{ij}} +
\frac{1}{2} \sum_{j \neq i} \frac{1}{2} \sum_{j \neq i}
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c \frac{q_i q_j \mathrm{erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()* where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
are error-function and complementary error-function terms. This are error-function and complementary error-function terms. This

View File

@ -40,7 +40,7 @@ is a complex number (stored as two real numbers) defined as follows:
.. math:: .. math::
q_n = \frac{1}{nnn}\sum_{j = 1}^{nnn} e^{n i \theta({\bf r}_{ij})} q_n = \frac{1}{nnn}\sum_{j = 1}^{nnn} e^{n i \theta({\textbf{r}}_{ij})}
where the sum is over the *nnn* nearest neighbors where the sum is over the *nnn* nearest neighbors
of the central atom. The angle :math:`\theta` of the central atom. The angle :math:`\theta`

View File

@ -65,7 +65,7 @@ In case of compute *stress/atom*, the virial contribution is:
W_{ab} & = \frac{1}{2} \sum_{n = 1}^{N_p} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) + \frac{1}{2} \sum_{n = 1}^{N_b} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) \\ W_{ab} & = \frac{1}{2} \sum_{n = 1}^{N_p} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) + \frac{1}{2} \sum_{n = 1}^{N_b} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) \\
& + \frac{1}{3} \sum_{n = 1}^{N_a} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b}) + \frac{1}{4} \sum_{n = 1}^{N_d} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) \\ & + \frac{1}{3} \sum_{n = 1}^{N_a} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b}) + \frac{1}{4} \sum_{n = 1}^{N_d} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) \\
& + \frac{1}{4} \sum_{n = 1}^{N_i} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) + {\rm Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b} & + \frac{1}{4} \sum_{n = 1}^{N_i} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} + r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) + \mathrm{Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b}
The first term is a pairwise energy contribution where :math:`n` loops The first term is a pairwise energy contribution where :math:`n` loops
over the :math:`N_p` neighbors of atom :math:`I`, :math:`\mathbf{r}_1` over the :math:`N_p` neighbors of atom :math:`I`, :math:`\mathbf{r}_1`
@ -97,7 +97,7 @@ In case of compute *centroid/stress/atom*, the virial contribution is:
.. math:: .. math::
W_{ab} & = \sum_{n = 1}^{N_p} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_b} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_a} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_d} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_i} r_{I0_a} F_{I_b} \\ W_{ab} & = \sum_{n = 1}^{N_p} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_b} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_a} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_d} r_{I0_a} F_{I_b} + \sum_{n = 1}^{N_i} r_{I0_a} F_{I_b} \\
& + {\rm Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b} & + \mathrm{Kspace}(r_{i_a},F_{i_b}) + \sum_{n = 1}^{N_f} r_{i_a} F_{i_b}
As with compute *stress/atom*, the first, second, third, fourth and As with compute *stress/atom*, the first, second, third, fourth and
fifth terms are pairwise, bond, angle, dihedral and improper fifth terms are pairwise, bond, angle, dihedral and improper

View File

@ -263,10 +263,10 @@ then the globally defined weights from the ``fitting_weight_energy`` and
POD Potential POD Potential
""""""""""""" """""""""""""
We consider a multi-element system of *N* atoms with :math:`N_{\rm e}` We consider a multi-element system of *N* atoms with :math:`N_\mathrm{e}`
unique elements. We denote by :math:`\boldsymbol r_n` and :math:`Z_n` unique elements. We denote by :math:`\boldsymbol r_n` and :math:`Z_n`
position vector and type of an atom *n* in the system, position vector and type of an atom *n* in the system,
respectively. Note that we have :math:`Z_n \in \{1, \ldots, N_{\rm e} respectively. Note that we have :math:`Z_n \in \{1, \ldots, N_\mathrm{e}
\}`, :math:`\boldsymbol R = (\boldsymbol r_1, \boldsymbol r_2, \ldots, \}`, :math:`\boldsymbol R = (\boldsymbol r_1, \boldsymbol r_2, \ldots,
\boldsymbol r_N) \in \mathbb{R}^{3N}`, and :math:`\boldsymbol Z = (Z_1, \boldsymbol r_N) \in \mathbb{R}^{3N}`, and :math:`\boldsymbol Z = (Z_1,
Z_2, \ldots, Z_N) \in \mathbb{N}^{N}`. The total energy of the Z_2, \ldots, Z_N) \in \mathbb{N}^{N}`. The total energy of the

View File

@ -208,19 +208,19 @@ The relaxation rate of the barostat is set by its inertia :math:`W`:
.. math:: .. math::
W = (N + 1) k_B T_{\rm target} P_{\rm damp}^2 W = (N + 1) k_B T_\mathrm{target} P_\mathrm{damp}^2
where :math:`N` is the number of atoms, :math:`k_B` is the Boltzmann constant, where :math:`N` is the number of atoms, :math:`k_B` is the Boltzmann constant,
and :math:`T_{\rm target}` is the target temperature of the barostat :ref:`(Martyna) <nh-Martyna>`. and :math:`T_\mathrm{target}` is the target temperature of the barostat :ref:`(Martyna) <nh-Martyna>`.
If a thermostat is defined, :math:`T_{\rm target}` is the target temperature If a thermostat is defined, :math:`T_\mathrm{target}` is the target temperature
of the thermostat. If a thermostat is not defined, :math:`T_{\rm target}` of the thermostat. If a thermostat is not defined, :math:`T_\mathrm{target}`
is set to the current temperature of the system when the barostat is initialized. is set to the current temperature of the system when the barostat is initialized.
If this temperature is too low the simulation will quit with an error. If this temperature is too low the simulation will quit with an error.
Note: in previous versions of LAMMPS, :math:`T_{\rm target}` would default to Note: in previous versions of LAMMPS, :math:`T_\mathrm{target}` would default to
a value of 1.0 for *lj* units and 300.0 otherwise if the system had a temperature a value of 1.0 for *lj* units and 300.0 otherwise if the system had a temperature
of exactly zero. of exactly zero.
If a thermostat is not specified by this fix, :math:`T_{\rm target}` can be If a thermostat is not specified by this fix, :math:`T_\mathrm{target}` can be
manually specified using the *Ptemp* parameter. This may be useful if the manually specified using the *Ptemp* parameter. This may be useful if the
barostat is initialized when the current temperature does not reflect the barostat is initialized when the current temperature does not reflect the
steady state temperature of the system. This keyword may also be useful in steady state temperature of the system. This keyword may also be useful in
@ -512,8 +512,8 @@ according to the following factorization of the Liouville propagator
.. math:: .. math::
\exp \left(\mathrm{i} L \Delta t \right) = & \hat{E} \exp \left(\mathrm{i} L \Delta t \right) = & \hat{E}
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\ \exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
&\times \left[ &\times \left[
@ -526,8 +526,8 @@ according to the following factorization of the Liouville propagator
&\times &\times
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right) \\ \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right) \\
&+ \mathcal{O} \left(\Delta t^3 \right) &+ \mathcal{O} \left(\Delta t^3 \right)
This factorization differs somewhat from that of Tuckerman et al, in This factorization differs somewhat from that of Tuckerman et al, in

View File

@ -426,8 +426,8 @@ according to the following factorization of the Liouville propagator
.. math:: .. math::
\exp \left(\mathrm{i} L \Delta t \right) = & \hat{E} \exp \left(\mathrm{i} L \Delta t \right) = & \hat{E}
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\ \exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
&\times \left[ &\times \left[
@ -440,8 +440,8 @@ according to the following factorization of the Liouville propagator
&\times &\times
\exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_{2}^{(2)} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\rm T\textrm{-}part} \frac{\Delta t}{2} \right) \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}part} \frac{\Delta t}{2} \right)
\exp \left(\mathrm{i} L_{\rm T\textrm{-}baro} \frac{\Delta t}{2} \right) \\ \exp \left(\mathrm{i} L_\mathrm{T\textrm{-}baro} \frac{\Delta t}{2} \right) \\
&+ \mathcal{O} \left(\Delta t^3 \right) &+ \mathcal{O} \left(\Delta t^3 \right)
This factorization differs somewhat from that of Tuckerman et al, in This factorization differs somewhat from that of Tuckerman et al, in

View File

@ -62,19 +62,19 @@ The potential energy added to atom I is given by these formulas
.. math:: .. math::
\xi_{i} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j} - \mathbf{r}_{j}^{\rm I} \right| \qquad\qquad\left(1\right) \\ \xi_{i} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j} - \mathbf{r}_{j}^\mathrm{I} \right| \qquad\qquad\left(1\right) \\
\\ \\
\xi_{\rm IJ} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j}^{\rm J} - \mathbf{r}_{j}^{\rm I} \right| \qquad\qquad\left(2\right)\\ \xi_\mathrm{IJ} = & \sum_{j=1}^{12} \left| \mathbf{r}_{j}^\mathrm{J} - \mathbf{r}_{j}^\mathrm{I} \right| \qquad\qquad\left(2\right)\\
\\ \\
\xi_{\rm low} = & {\rm cutlo} \, \xi_{\rm IJ} \qquad\qquad\qquad\left(3\right)\\ \xi_\mathrm{low} = & \mathrm{cutlo} \, \xi_\mathrm{IJ} \qquad\qquad\qquad\left(3\right)\\
\xi_{\rm high} = & {\rm cuthi} \, \xi_{\rm IJ} \qquad\qquad\qquad\left(4\right) \\ \xi_\mathrm{high} = & \mathrm{cuthi} \, \xi_\mathrm{IJ} \qquad\qquad\qquad\left(4\right) \\
\\ \\
\omega_{i} = & \frac{\pi}{2} \frac{\xi_{i} - \xi_{\rm low}}{\xi_{\rm high} - \xi_{\rm low}} \qquad\qquad\left(5\right)\\ \omega_{i} = & \frac{\pi}{2} \frac{\xi_{i} - \xi_\mathrm{low}}{\xi_\mathrm{high} - \xi_\mathrm{low}} \qquad\qquad\left(5\right)\\
\\ \\
u_{i} = & 0 \quad\quad\qquad\qquad\qquad \textrm{ for } \qquad \xi_{i} < \xi_{\rm low}\\ u_{i} = & 0 \quad\quad\qquad\qquad\qquad \textrm{ for } \qquad \xi_{i} < \xi_\mathrm{low}\\
= & {\rm dE}\,\frac{1 - \cos(2 \omega_{i})}{2} = & \mathrm{dE}\,\frac{1 - \cos(2 \omega_{i})}{2}
\qquad \mathrm{ for }\qquad \xi_{\rm low} < \xi_{i} < \xi_{\rm high} \quad \left(6\right) \\ \qquad \mathrm{for }\qquad \xi_\mathrm{low} < \xi_{i} < \xi_\mathrm{high} \quad \left(6\right) \\
= & {\rm dE} \quad\qquad\qquad\qquad\textrm{ for } \qquad \xi_{\rm high} < \xi_{i} = & \mathrm{dE} \quad\qquad\qquad\qquad\textrm{ for } \qquad \xi_\mathrm{high} < \xi_{i}
which are fully explained in :ref:`(Janssens) <Janssens>`. For fcc crystals which are fully explained in :ref:`(Janssens) <Janssens>`. For fcc crystals
this order parameter Xi for atom I in equation (1) is a sum over the this order parameter Xi for atom I in equation (1) is a sum over the

View File

@ -98,14 +98,14 @@ all atoms
.. math:: .. math::
|| \vec{F} ||_{max} = {\rm max}\left(||\vec{F}_1||, \cdots, ||\vec{F}_N||\right) || \vec{F} ||_{max} = \mathrm{max}\left(||\vec{F}_1||, \cdots, ||\vec{F}_N||\right)
The *inf* norm takes the maximum component across the forces of The *inf* norm takes the maximum component across the forces of
all atoms in the system: all atoms in the system:
.. math:: .. math::
|| \vec{F} ||_{inf} = {\rm max}\left(|F_1^1|, |F_1^2|, |F_1^3| \cdots, |F_N^1|, |F_N^2|, |F_N^3|\right) || \vec{F} ||_{inf} = \mathrm{max}\left(|F_1^1|, |F_1^2|, |F_1^3| \cdots, |F_N^1|, |F_N^2|, |F_N^3|\right)
For the min styles *spin*, *spin/cg* and *spin/lbfgs*, the force For the min styles *spin*, *spin/cg* and *spin/lbfgs*, the force
norm is replaced by the spin-torque norm. norm is replaced by the spin-torque norm.

View File

@ -50,9 +50,9 @@ system:
.. math:: .. math::
{\Delta t}_{\rm max} = \frac{2\pi}{\kappa \left|\vec{\omega}_{\rm max} \right|} {\Delta t}_\mathrm{max} = \frac{2\pi}{\kappa \left|\vec{\omega}_\mathrm{max} \right|}
with :math:`\left|\vec{\omega}_{\rm max}\right|` the norm of the largest precession with :math:`\left|\vec{\omega}_\mathrm{max}\right|` the norm of the largest precession
frequency in the system (across all processes, and across all replicas if a frequency in the system (across all processes, and across all replicas if a
spin/neb calculation is performed). spin/neb calculation is performed).

View File

@ -148,7 +148,7 @@ spin i, :math:`\omega_i^{\nu}` is a rotation angle defined as:
.. math:: .. math::
\omega_i^{\nu} = (\nu - 1) \Delta \omega_i {\rm ~~and~~} \Delta \omega_i = \frac{\omega_i}{Q-1} \omega_i^{\nu} = (\nu - 1) \Delta \omega_i \mathrm{~~and~~} \Delta \omega_i = \frac{\omega_i}{Q-1}
with :math:`\nu` the image number, Q the total number of images, and with :math:`\nu` the image number, Q the total number of images, and
:math:`\omega_i` the total rotation between the initial and final spins. :math:`\omega_i` the total rotation between the initial and final spins.

View File

@ -53,14 +53,14 @@ materials as described in :ref:`(Feng1) <Feng1>` and :ref:`(Feng2) <Feng2>`.
.. math:: .. math::
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\ E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)} V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] - \left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}} \frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
\cdot \frac{C_6}{r^6_{ij}} \right \}\\ \cdot \frac{C_6}{r^6_{ij}} \right \}\\
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\ \rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\ \rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\ f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 - \mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 + 70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 - 84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1 35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1

View File

@ -241,9 +241,9 @@ summation method, described in :ref:`Wolf <Wolf1>`, given by:
.. math:: .. math::
E_i = \frac{1}{2} \sum_{j \neq i} E_i = \frac{1}{2} \sum_{j \neq i}
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} + \frac{q_i q_j \mathrm{erfc}(\alpha r_{ij})}{r_{ij}} +
\frac{1}{2} \sum_{j \neq i} \frac{1}{2} \sum_{j \neq i}
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c \frac{q_i q_j \mathrm{erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()* where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
are error-function and complementary error-function terms. This are error-function and complementary error-function terms. This

View File

@ -40,8 +40,8 @@ the pair style :doc:`ilp/graphene/hbn <pair_ilp_graphene_hbn>`
.. math:: .. math::
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\ E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
V_{ij} = & {\rm Tap}(r_{ij})\frac{\kappa q_i q_j}{\sqrt[3]{r_{ij}^3+(1/\lambda_{ij})^3}}\\ V_{ij} = & \mathrm{Tap}(r_{ij})\frac{\kappa q_i q_j}{\sqrt[3]{r_{ij}^3+(1/\lambda_{ij})^3}}\\
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 - \mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 + 70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 - 84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1 35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1

View File

@ -62,8 +62,8 @@ a sum of 3 terms
\mathbf{f} = & f^C + f^D + f^R \qquad \qquad r < r_c \\ \mathbf{f} = & f^C + f^D + f^R \qquad \qquad r < r_c \\
f^C = & A_{ij} w(r) \hat{\mathbf{r}}_{ij} \\ f^C = & A_{ij} w(r) \hat{\mathbf{r}}_{ij} \\
f^D = & - \gamma_{\parallel} w_{\parallel}^2(r) (\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij}) \hat{\mathbf{r}}_{ij} - \gamma_{\perp} w_{\perp}^2 (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^{\rm T} ) \mathbf{v}_{ij} \\ f^D = & - \gamma_{\parallel} w_{\parallel}^2(r) (\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij}) \hat{\mathbf{r}}_{ij} - \gamma_{\perp} w_{\perp}^2 (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^\mathrm{T} ) \mathbf{v}_{ij} \\
f^R = & \sigma_{\parallel} w_{\parallel}(r) \frac{\alpha}{\sqrt{\Delta t}} \hat{\mathbf{r}}_{ij} + \sigma_{\perp} w_{\perp} (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^{\rm T} ) \frac{\mathbf{\xi}_{ij}}{\sqrt{\Delta t}}\\ f^R = & \sigma_{\parallel} w_{\parallel}(r) \frac{\alpha}{\sqrt{\Delta t}} \hat{\mathbf{r}}_{ij} + \sigma_{\perp} w_{\perp} (r) ( \mathbf{I} - \hat{\mathbf{r}}_{ij} \hat{\mathbf{r}}_{ij}^\mathrm{T} ) \frac{\mathbf{\xi}_{ij}}{\sqrt{\Delta t}}\\
w(r) = & 1 - r/r_c \\ w(r) = & 1 - r/r_c \\
where :math:`\mathbf{f}^C` is a conservative force, :math:`\mathbf{f}^D` where :math:`\mathbf{f}^C` is a conservative force, :math:`\mathbf{f}^D`

View File

@ -68,21 +68,21 @@ force field, given by:
.. math:: .. math::
E = & \left[LJ(r) | Morse(r) \right] \qquad \qquad \qquad r < r_{\rm in} \\ E = & \left[LJ(r) | Morse(r) \right] \qquad \qquad \qquad r < r_\mathrm{in} \\
= & S(r) * \left[LJ(r) | Morse(r) \right] \qquad \qquad r_{\rm in} < r < r_{\rm out} \\ = & S(r) * \left[LJ(r) | Morse(r) \right] \qquad \qquad r_\mathrm{in} < r < r_\mathrm{out} \\
= & 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad r > r_{\rm out} \\ = & 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad r > r_\mathrm{out} \\
LJ(r) = & AR^{-12}-BR^{-10}cos^n\theta= LJ(r) = & AR^{-12}-BR^{-10}cos^n\theta=
\epsilon\left\lbrace 5\left[ \frac{\sigma}{r}\right]^{12}- \epsilon\left\lbrace 5\left[ \frac{\sigma}{r}\right]^{12}-
6\left[ \frac{\sigma}{r}\right]^{10} \right\rbrace cos^n\theta\\ 6\left[ \frac{\sigma}{r}\right]^{10} \right\rbrace cos^n\theta\\
Morse(r) = & D_0\left\lbrace \chi^2 - 2\chi\right\rbrace cos^n\theta= Morse(r) = & D_0\left\lbrace \chi^2 - 2\chi\right\rbrace cos^n\theta=
D_{0}\left\lbrace e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)} D_{0}\left\lbrace e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)}
\right\rbrace cos^n\theta \\ \right\rbrace cos^n\theta \\
S(r) = & \frac{ \left[r_{\rm out}^2 - r^2\right]^2 S(r) = & \frac{ \left[r_\mathrm{out}^2 - r^2\right]^2
\left[r_{\rm out}^2 + 2r^2 - 3{r_{\rm in}^2}\right]} \left[r_\mathrm{out}^2 + 2r^2 - 3{r_\mathrm{in}^2}\right]}
{ \left[r_{\rm out}^2 - {r_{\rm in}}^2\right]^3 } { \left[r_\mathrm{out}^2 - {r_\mathrm{in}}^2\right]^3 }
where :math:`r_{\rm in}` is the inner spline distance cutoff, where :math:`r_\mathrm{in}` is the inner spline distance cutoff,
:math:`r_{\rm out}` is the outer distance cutoff, :math:`\theta_c` is :math:`r_\mathrm{out}` is the outer distance cutoff, :math:`\theta_c` is
the angle cutoff, and :math:`n` is the power of the cosine of the angle the angle cutoff, and :math:`n` is the power of the cosine of the angle
:math:`\theta`. :math:`\theta`.
@ -189,8 +189,8 @@ follows:
* :math:`\epsilon` (energy units) * :math:`\epsilon` (energy units)
* :math:`\sigma` (distance units) * :math:`\sigma` (distance units)
* *n* = exponent in formula above * *n* = exponent in formula above
* distance cutoff :math:`r_{\rm in}` (distance units) * distance cutoff :math:`r_\mathrm{in}` (distance units)
* distance cutoff :math:`r_{\rm out}` (distance units) * distance cutoff :math:`r_\mathrm{out}` (distance units)
* angle cutoff (degrees) * angle cutoff (degrees)
For the *hbond/dreiding/morse* style the list of coefficients is as For the *hbond/dreiding/morse* style the list of coefficients is as
@ -202,7 +202,7 @@ follows:
* :math:`\alpha` (1/distance units) * :math:`\alpha` (1/distance units)
* :math:`r_0` (distance units) * :math:`r_0` (distance units)
* *n* = exponent in formula above * *n* = exponent in formula above
* distance cutoff :math:`r_{\rm in}` (distance units) * distance cutoff :math:`r_\mathrm{in}` (distance units)
* distance cutoff :math:`r_{out}` (distance units) * distance cutoff :math:`r_{out}` (distance units)
* angle cutoff (degrees) * angle cutoff (degrees)

View File

@ -44,14 +44,14 @@ in :ref:`(Kolmogorov) <Kolmogorov2>`.
.. math:: .. math::
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\ E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)} V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] - \left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}} \frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
\cdot \frac{C_6}{r^6_{ij}} \right \}\\ \cdot \frac{C_6}{r^6_{ij}} \right \}\\
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\ \rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\ \rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\ f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 - \mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 + 70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 - 84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1 35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1

View File

@ -41,14 +41,14 @@ as described in :ref:`(Ouyang7) <Ouyang7>` and :ref:`(Jiang) <Jiang>`.
.. math:: .. math::
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\ E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)} V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] - \left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}} \frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
\cdot \frac{C_6}{r^6_{ij}} \right \}\\ \cdot \frac{C_6}{r^6_{ij}} \right \}\\
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\ \rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\ \rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\ f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 - \mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 + 70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 - 84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1 35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1

View File

@ -194,9 +194,9 @@ summation method, described in :ref:`Wolf <Wolf3>`, given by:
.. math:: .. math::
E_i = \frac{1}{2} \sum_{j \neq i} E_i = \frac{1}{2} \sum_{j \neq i}
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} + \frac{q_i q_j \mathrm{erfc}(\alpha r_{ij})}{r_{ij}} +
\frac{1}{2} \sum_{j \neq i} \frac{1}{2} \sum_{j \neq i}
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c \frac{q_i q_j \mathrm{erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
where :math:`\alpha` is the damping parameter, and erfc() is the where :math:`\alpha` is the damping parameter, and erfc() is the
complementary error-function terms. This potential is essentially a complementary error-function terms. This potential is essentially a

View File

@ -200,7 +200,7 @@ force :math:`F_{ij}^C` are expressed as
\mathbf{F}_{ij}^{D} & = -\gamma {\omega_{D}}(r_{ij})(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij})\mathbf{e}_{ij} \\ \mathbf{F}_{ij}^{D} & = -\gamma {\omega_{D}}(r_{ij})(\mathbf{e}_{ij} \cdot \mathbf{v}_{ij})\mathbf{e}_{ij} \\
\mathbf{F}_{ij}^{R} & = \sigma {\omega_{R}}(r_{ij}){\xi_{ij}}\Delta t^{-1/2} \mathbf{e}_{ij} \\ \mathbf{F}_{ij}^{R} & = \sigma {\omega_{R}}(r_{ij}){\xi_{ij}}\Delta t^{-1/2} \mathbf{e}_{ij} \\
\omega_{C}(r) & = 1 - r/r_c \\ \omega_{C}(r) & = 1 - r/r_c \\
\omega_{D}(r) & = \omega^2_{R}(r) = (1-r/r_c)^{\rm power_f} \\ \omega_{D}(r) & = \omega^2_{R}(r) = (1-r/r_c)^\mathrm{power_f} \\
\sigma^2 = 2\gamma k_B T \sigma^2 = 2\gamma k_B T
The concentration flux between two tDPD particles includes the Fickian The concentration flux between two tDPD particles includes the Fickian
@ -211,7 +211,7 @@ by
Q_{ij}^D & = -\kappa_{ij} w_{DC}(r_{ij}) \left( C_i - C_j \right) \\ Q_{ij}^D & = -\kappa_{ij} w_{DC}(r_{ij}) \left( C_i - C_j \right) \\
Q_{ij}^R & = \epsilon_{ij}\left( C_i + C_j \right) w_{RC}(r_{ij}) \xi_{ij} \\ Q_{ij}^R & = \epsilon_{ij}\left( C_i + C_j \right) w_{RC}(r_{ij}) \xi_{ij} \\
w_{DC}(r_{ij}) & =w^2_{RC}(r_{ij}) = (1 - r/r_{cc})^{\rm power_{cc}} \\ w_{DC}(r_{ij}) & =w^2_{RC}(r_{ij}) = (1 - r/r_{cc})^\mathrm{power_{cc}} \\
\epsilon_{ij}^2 & = m_s^2\kappa_{ij}\rho \epsilon_{ij}^2 & = m_s^2\kappa_{ij}\rho
where the parameters kappa and epsilon determine the strength of the where the parameters kappa and epsilon determine the strength of the

View File

@ -33,7 +33,7 @@ elemental bulk material in the form
.. math:: .. math::
E_{\rm tot}({\bf R}_1 \ldots {\bf R}_N) = NE_{\rm vol}(\Omega ) E_\mathrm{tot}({\bf R}_1 \ldots {\bf R}_N) = NE_\mathrm{vol}(\Omega )
+ \frac{1}{2} \sum _{i,j} \mbox{}^\prime \ v_2(ij;\Omega ) + \frac{1}{2} \sum _{i,j} \mbox{}^\prime \ v_2(ij;\Omega )
+ \frac{1}{6} \sum _{i,j,k} \mbox{}^\prime \ v_3(ijk;\Omega ) + \frac{1}{6} \sum _{i,j,k} \mbox{}^\prime \ v_3(ijk;\Omega )
+ \frac{1}{24} \sum _{i,j,k,l} \mbox{}^\prime \ v_4(ijkl;\Omega ) + \frac{1}{24} \sum _{i,j,k,l} \mbox{}^\prime \ v_4(ijkl;\Omega )

View File

@ -41,14 +41,14 @@ potential (ILP) potential for hetero-junctions formed with hexagonal
.. math:: .. math::
E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\ E = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
V_{ij} = & {\rm Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)} V_{ij} = & \mathrm{Tap}(r_{ij})\left \{ e^{-\alpha (r_{ij}/\beta -1)}
\left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] - \left [ \epsilon + f(\rho_{ij}) + f(\rho_{ji})\right ] -
\frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}} \frac{1}{1+e^{-d\left [ \left ( r_{ij}/\left (s_R \cdot r^{eff} \right ) \right )-1 \right ]}}
\cdot \frac{C_6}{r^6_{ij}} \right \}\\ \cdot \frac{C_6}{r^6_{ij}} \right \}\\
\rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\ \rho_{ij}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_i)^2 \\
\rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\ \rho_{ji}^2 = & r_{ij}^2 - ({\bf r}_{ij} \cdot {\bf n}_j)^2 \\
f(\rho) = & C e^{ -( \rho / \delta )^2 } \\ f(\rho) = & C e^{ -( \rho / \delta )^2 } \\
{\rm Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 - \mathrm{Tap}(r_{ij}) = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 + 70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 - 84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1 35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1

View File

@ -43,7 +43,7 @@ vector omega and mechanical force between particles I and J.
.. math:: .. math::
\mathcal{H}_{\rm long} & = \mathcal{H}_\mathrm{long} & =
-\frac{\mu_{0} \left( \mu_B\right)^2}{4\pi} -\frac{\mu_{0} \left( \mu_B\right)^2}{4\pi}
\sum_{i,j,i\neq j}^{N} \sum_{i,j,i\neq j}^{N}
\frac{g_i g_j}{r_{ij}^3} \frac{g_i g_j}{r_{ij}^3}

View File

@ -52,7 +52,7 @@ particle i:
.. math:: .. math::
\vec{\omega}_i = -\frac{1}{\hbar} \sum_{j}^{Neighb} \vec{s}_{j}\times \left(\vec{e}_{ij}\times \vec{D} \right) \vec{\omega}_i = -\frac{1}{\hbar} \sum_{j}^{Neighb} \vec{s}_{j}\times \left(\vec{e}_{ij}\times \vec{D} \right)
~~{\rm and}~~ ~~\mathrm{and}~~
\vec{F}_i = -\sum_{j}^{Neighb} \frac{1}{r_{ij}} \vec{D} \times \left( \vec{s}_{i}\times \vec{s}_{j} \right) \vec{F}_i = -\sum_{j}^{Neighb} \frac{1}{r_{ij}} \vec{D} \times \left( \vec{s}_{i}\times \vec{s}_{j} \right)
More details about the derivation of these torques/forces are reported in More details about the derivation of these torques/forces are reported in

View File

@ -94,7 +94,7 @@ submitted to a force :math:`\vec{F}_{i}` for spin-lattice calculations (see
\vec{\omega}_{i} = \frac{1}{\hbar} \sum_{j}^{Neighb} {J} \vec{\omega}_{i} = \frac{1}{\hbar} \sum_{j}^{Neighb} {J}
\left(r_{ij} \right)\,\vec{s}_{j} \left(r_{ij} \right)\,\vec{s}_{j}
~~{\rm and}~~ ~~\mathrm{and}~~
\vec{F}_{i} = \sum_{j}^{Neighb} \frac{\partial {J} \left(r_{ij} \right)}{ \vec{F}_{i} = \sum_{j}^{Neighb} \frac{\partial {J} \left(r_{ij} \right)}{
\partial r_{ij}} \left( \vec{s}_{i}\cdot \vec{s}_{j} \right) \vec{e}_{ij} \partial r_{ij}} \left( \vec{s}_{i}\cdot \vec{s}_{j} \right) \vec{e}_{ij}

View File

@ -290,7 +290,7 @@ rst_prolog = r"""
.. only:: html .. only:: html
:math:`\renewcommand{\AA}{\text{}}` :math:`\renewcommand{\AA}{\textup{\r{A}}`
.. role:: lammps(code) .. role:: lammps(code)
:language: LAMMPS :language: LAMMPS

View File

@ -110,5 +110,5 @@ modules:
- -D BUILD_WHAM=yes - -D BUILD_WHAM=yes
sources: sources:
- type: git - type: git
url: https://github.com/lammps/lammps.git url: https://github.com/akohlmey/lammps.git
branch: release branch: collected-small-fixes