update Lepton to current master branch

This commit is contained in:
Axel Kohlmeyer
2022-12-22 22:16:17 -05:00
parent 91c498c413
commit ca27fb3a98
9 changed files with 1801 additions and 127 deletions

View File

@ -9,7 +9,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2013-2019 Stanford University and the Authors. *
* Portions copyright (c) 2013-2022 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -40,7 +40,11 @@
#include <utility>
#include <vector>
#ifdef LEPTON_USE_JIT
#include "asmjit.h"
#if defined(__ARM__) || defined(__ARM64__)
#include "asmjit/a64.h"
#else
#include "asmjit/x86.h"
#endif
#endif
namespace LMP_Lepton {
@ -101,9 +105,15 @@ private:
std::map<std::string, double> dummyVariables;
double (*jitCode)();
#ifdef LEPTON_USE_JIT
void findPowerGroups(std::vector<std::vector<int> >& groups, std::vector<std::vector<int> >& groupPowers, std::vector<int>& stepGroup);
void generateJitCode();
void generateSingleArgCall(asmjit::X86Compiler& c, asmjit::X86Xmm& dest, asmjit::X86Xmm& arg, double (*function)(double));
void generateTwoArgCall(asmjit::X86Compiler& c, asmjit::X86Xmm& dest, asmjit::X86Xmm& arg1, asmjit::X86Xmm& arg2, double (*function)(double, double));
#if defined(__ARM__) || defined(__ARM64__)
void generateSingleArgCall(asmjit::a64::Compiler& c, asmjit::arm::Vec& dest, asmjit::arm::Vec& arg, double (*function)(double));
void generateTwoArgCall(asmjit::a64::Compiler& c, asmjit::arm::Vec& dest, asmjit::arm::Vec& arg1, asmjit::arm::Vec& arg2, double (*function)(double, double));
#else
void generateSingleArgCall(asmjit::x86::Compiler& c, asmjit::x86::Xmm& dest, asmjit::x86::Xmm& arg, double (*function)(double));
void generateTwoArgCall(asmjit::x86::Compiler& c, asmjit::x86::Xmm& dest, asmjit::x86::Xmm& arg1, asmjit::x86::Xmm& arg2, double (*function)(double, double));
#endif
std::vector<double> constants;
asmjit::JitRuntime runtime;
#endif

View File

@ -0,0 +1,145 @@
#ifndef LEPTON_VECTOR_EXPRESSION_H_
#define LEPTON_VECTOR_EXPRESSION_H_
/* -------------------------------------------------------------------------- *
* Lepton *
* -------------------------------------------------------------------------- *
* This is part of the Lepton expression parser originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2013-2022 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
* Permission is hereby granted, free of charge, to any person obtaining a *
* copy of this software and associated documentation files (the "Software"), *
* to deal in the Software without restriction, including without limitation *
* the rights to use, copy, modify, merge, publish, distribute, sublicense, *
* and/or sell copies of the Software, and to permit persons to whom the *
* Software is furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *
* THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, *
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR *
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE *
* USE OR OTHER DEALINGS IN THE SOFTWARE. *
* -------------------------------------------------------------------------- */
#include "ExpressionTreeNode.h"
#include "windowsIncludes.h"
#include <array>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#ifdef LEPTON_USE_JIT
#if defined(__ARM__) || defined(__ARM64__)
#include "asmjit/a64.h"
#else
#include "asmjit/x86.h"
#endif
#endif
namespace LMP_Lepton {
class Operation;
class ParsedExpression;
/**
* A CompiledVectorExpression is a highly optimized representation of an expression for cases when you want to evaluate
* it many times as quickly as possible. It is similar to CompiledExpression, with the extra feature that it uses the CPU's
* vector unit (AVX on x86, NEON on ARM) to evaluate the expression for multiple sets of arguments at once. It also differs
* from CompiledExpression and ParsedExpression in using single precision rather than double precision to evaluate the expression.
* You should treat it as an opaque object; none of the internal representation is visible.
*
* A CompiledVectorExpression is created by calling createCompiledVectorExpression() on a ParsedExpression. When you create
* it, you must specify the width of the vectors on which to compute the expression. The allowed widths depend on the type of
* CPU it is running on. 4 is always allowed, and 8 is allowed on x86 processors with AVX. Call getAllowedWidths() to query
* the allowed values.
*
* WARNING: CompiledVectorExpression is NOT thread safe. You should never access a CompiledVectorExpression from two threads at
* the same time.
*/
class LEPTON_EXPORT CompiledVectorExpression {
public:
CompiledVectorExpression();
CompiledVectorExpression(const CompiledVectorExpression& expression);
~CompiledVectorExpression();
CompiledVectorExpression& operator=(const CompiledVectorExpression& expression);
/**
* Get the width of the vectors on which the expression is computed.
*/
int getWidth() const;
/**
* Get the names of all variables used by this expression.
*/
const std::set<std::string>& getVariables() const;
/**
* Get a pointer to the memory location where the value of a particular variable is stored. This can be used
* to set the value of the variable before calling evaluate().
*
* @param name the name of the variable to query
* @return a pointer to N floating point values, where N is the vector width
*/
float* getVariablePointer(const std::string& name);
/**
* You can optionally specify the memory locations from which the values of variables should be read.
* This is useful, for example, when several expressions all use the same variable. You can then set
* the value of that variable in one place, and it will be seen by all of them. The location should
* be a pointer to N floating point values, where N is the vector width.
*/
void setVariableLocations(std::map<std::string, float*>& variableLocations);
/**
* Evaluate the expression. The values of all variables should have been set before calling this.
*
* @return a pointer to N floating point values, where N is the vector width
*/
const float* evaluate() const;
/**
* Get the list of vector widths that are supported on the current processor.
*/
static const std::vector<int>& getAllowedWidths();
private:
friend class ParsedExpression;
CompiledVectorExpression(const ParsedExpression& expression, int width);
void compileExpression(const ExpressionTreeNode& node, std::vector<std::pair<ExpressionTreeNode, int> >& temps, int& workspaceSize);
int findTempIndex(const ExpressionTreeNode& node, std::vector<std::pair<ExpressionTreeNode, int> >& temps);
int width;
std::map<std::string, float*> variablePointers;
std::vector<std::pair<float*, float*> > variablesToCopy;
std::vector<std::vector<int> > arguments;
std::vector<int> target;
std::vector<Operation*> operation;
std::map<std::string, int> variableIndices;
std::set<std::string> variableNames;
mutable std::vector<float> workspace;
mutable std::vector<double> argValues;
std::map<std::string, double> dummyVariables;
void (*jitCode)();
#ifdef LEPTON_USE_JIT
void findPowerGroups(std::vector<std::vector<int> >& groups, std::vector<std::vector<int> >& groupPowers, std::vector<int>& stepGroup);
void generateJitCode();
#if defined(__ARM__) || defined(__ARM64__)
void generateSingleArgCall(asmjit::a64::Compiler& c, asmjit::arm::Vec& dest, asmjit::arm::Vec& arg, float (*function)(float));
void generateTwoArgCall(asmjit::a64::Compiler& c, asmjit::arm::Vec& dest, asmjit::arm::Vec& arg1, asmjit::arm::Vec& arg2, float (*function)(float, float));
#else
void generateSingleArgCall(asmjit::x86::Compiler& c, asmjit::x86::Ymm& dest, asmjit::x86::Ymm& arg, float (*function)(float));
void generateTwoArgCall(asmjit::x86::Compiler& c, asmjit::x86::Ymm& dest, asmjit::x86::Ymm& arg1, asmjit::x86::Ymm& arg2, float (*function)(float, float));
#endif
std::vector<float> constants;
asmjit::JitRuntime runtime;
#endif
};
} // namespace LMP_Lepton
#endif /*LEPTON_VECTOR_EXPRESSION_H_*/

View File

@ -9,7 +9,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2009 Stanford University and the Authors. *
* Portions copyright (c) 2009-2021 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -39,6 +39,7 @@
namespace LMP_Lepton {
class Operation;
class ParsedExpression;
/**
* This class represents a node in the abstract syntax tree representation of an expression.
@ -82,11 +83,13 @@ public:
*/
ExpressionTreeNode(Operation* operation);
ExpressionTreeNode(const ExpressionTreeNode& node);
ExpressionTreeNode(ExpressionTreeNode&& node);
ExpressionTreeNode();
~ExpressionTreeNode();
bool operator==(const ExpressionTreeNode& node) const;
bool operator!=(const ExpressionTreeNode& node) const;
ExpressionTreeNode& operator=(const ExpressionTreeNode& node);
ExpressionTreeNode& operator=(ExpressionTreeNode&& node);
/**
* Get the Operation performed by this node.
*/
@ -96,8 +99,11 @@ public:
*/
const std::vector<ExpressionTreeNode>& getChildren() const;
private:
friend class ParsedExpression;
void assignTags(std::vector<const ExpressionTreeNode*>& examples) const;
Operation* operation;
std::vector<ExpressionTreeNode> children;
mutable int tag;
};
} // namespace LMP_Lepton

View File

@ -9,7 +9,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2009=2013 Stanford University and the Authors. *
* Portions copyright (c) 2009-2022 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -41,6 +41,7 @@ namespace LMP_Lepton {
class CompiledExpression;
class ExpressionProgram;
class CompiledVectorExpression;
/**
* This class represents the result of parsing an expression. It provides methods for working with the
@ -102,6 +103,16 @@ public:
* Create a CompiledExpression that represents the same calculation as this expression.
*/
CompiledExpression createCompiledExpression() const;
/**
* Create a CompiledVectorExpression that allows the expression to be evaluated efficiently
* using the CPU's vector unit.
*
* @param width the width of the vectors to evaluate it on. The allowed values
* depend on the CPU. 4 is always allowed, and 8 is allowed on
* x86 processors with AVX. Call CompiledVectorExpression::getAllowedWidths()
* to query the allowed widths on the current processor.
*/
CompiledVectorExpression createCompiledVectorExpression(int width) const;
/**
* Create a new ParsedExpression which is identical to this one, except that the names of some
* variables have been changed.
@ -113,9 +124,9 @@ public:
private:
static double evaluate(const ExpressionTreeNode& node, const std::map<std::string, double>& variables);
static ExpressionTreeNode preevaluateVariables(const ExpressionTreeNode& node, const std::map<std::string, double>& variables);
static ExpressionTreeNode precalculateConstantSubexpressions(const ExpressionTreeNode& node);
static ExpressionTreeNode substituteSimplerExpression(const ExpressionTreeNode& node);
static ExpressionTreeNode differentiate(const ExpressionTreeNode& node, const std::string& variable);
static ExpressionTreeNode precalculateConstantSubexpressions(const ExpressionTreeNode& node, std::map<int, ExpressionTreeNode>& nodeCache);
static ExpressionTreeNode substituteSimplerExpression(const ExpressionTreeNode& node, std::map<int, ExpressionTreeNode>& nodeCache);
static ExpressionTreeNode differentiate(const ExpressionTreeNode& node, const std::string& variable, std::map<int, ExpressionTreeNode>& nodeCache);
static bool isConstant(const ExpressionTreeNode& node);
static double getConstantValue(const ExpressionTreeNode& node);
static ExpressionTreeNode renameNodeVariables(const ExpressionTreeNode& node, const std::map<std::string, std::string>& replacements);

View File

@ -6,7 +6,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2013-2019 Stanford University and the Authors. *
* Portions copyright (c) 2013-2022 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -151,7 +151,7 @@ void CompiledExpression::setVariableLocations(map<string, double*>& variableLoca
if (workspace.size() > 0)
generateJitCode();
#else
#endif
// Make a list of all variables we will need to copy before evaluating the expression.
variablesToCopy.clear();
@ -160,13 +160,11 @@ void CompiledExpression::setVariableLocations(map<string, double*>& variableLoca
if (pointer != variablePointers.end())
variablesToCopy.push_back(make_pair(&workspace[iter->second], pointer->second));
}
#endif
}
double CompiledExpression::evaluate() const {
#ifdef LEPTON_USE_JIT
return jitCode();
#else
if (jitCode)
return jitCode();
for (int i = 0; i < (int)variablesToCopy.size(); i++)
*variablesToCopy[i].first = *variablesToCopy[i].second;
@ -183,7 +181,6 @@ double CompiledExpression::evaluate() const {
}
}
return workspace[workspace.size()-1];
#endif
}
#ifdef LEPTON_USE_JIT
@ -192,24 +189,70 @@ static double evaluateOperation(Operation* op, double* args) {
return op->evaluate(args, dummyVariables);
}
void CompiledExpression::findPowerGroups(vector<vector<int> >& groups, vector<vector<int> >& groupPowers, vector<int>& stepGroup) {
// Identify every step that raises an argument to an integer power.
vector<int> stepPower(operation.size(), 0);
vector<int> stepArg(operation.size(), -1);
for (int step = 0; step < (int)operation.size(); step++) {
Operation& op = *operation[step];
int power = 0;
if (op.getId() == Operation::SQUARE)
power = 2;
else if (op.getId() == Operation::CUBE)
power = 3;
else if (op.getId() == Operation::POWER_CONSTANT) {
double realPower = dynamic_cast<const Operation::PowerConstant*>(&op)->getValue();
if (realPower == (int) realPower)
power = (int) realPower;
}
if (power != 0) {
stepPower[step] = power;
stepArg[step] = arguments[step][0];
}
}
// Find groups that operate on the same argument and whose powers have the same sign.
stepGroup.resize(operation.size(), -1);
for (int i = 0; i < (int)operation.size(); i++) {
if (stepGroup[i] != -1)
continue;
vector<int> group, power;
for (int j = i; j < (int)operation.size(); j++) {
if (stepArg[i] == stepArg[j] && stepPower[i]*stepPower[j] > 0) {
stepGroup[j] = groups.size();
group.push_back(j);
power.push_back(stepPower[j]);
}
}
groups.push_back(group);
groupPowers.push_back(power);
}
}
#if defined(__ARM__) || defined(__ARM64__)
void CompiledExpression::generateJitCode() {
CodeHolder code;
code.init(runtime.getCodeInfo());
X86Compiler c(&code);
c.addFunc(FuncSignature0<double>());
vector<X86Xmm> workspaceVar(workspace.size());
code.init(runtime.environment());
a64::Compiler c(&code);
c.addFunc(FuncSignatureT<double>());
vector<arm::Vec> workspaceVar(workspace.size());
for (int i = 0; i < (int) workspaceVar.size(); i++)
workspaceVar[i] = c.newXmmSd();
X86Gp argsPointer = c.newIntPtr();
c.mov(argsPointer, imm_ptr(&argValues[0]));
workspaceVar[i] = c.newVecD();
arm::Gp argsPointer = c.newIntPtr();
c.mov(argsPointer, imm(&argValues[0]));
vector<vector<int> > groups, groupPowers;
vector<int> stepGroup;
findPowerGroups(groups, groupPowers, stepGroup);
// Load the arguments into variables.
for (set<string>::const_iterator iter = variableNames.begin(); iter != variableNames.end(); ++iter) {
map<string, int>::iterator index = variableIndices.find(*iter);
X86Gp variablePointer = c.newIntPtr();
c.mov(variablePointer, imm_ptr(&getVariableReference(index->first)));
c.movsd(workspaceVar[index->second], x86::ptr(variablePointer, 0, 0));
arm::Gp variablePointer = c.newIntPtr();
c.mov(variablePointer, imm(&getVariableReference(index->first)));
c.ldr(workspaceVar[index->second], arm::ptr(variablePointer, 0));
}
// Make a list of all constants that will be needed for evaluation.
@ -232,6 +275,12 @@ void CompiledExpression::generateJitCode() {
value = 1.0;
else if (op.getId() == Operation::DELTA)
value = 1.0;
else if (op.getId() == Operation::POWER_CONSTANT) {
if (stepGroup[step] == -1)
value = dynamic_cast<Operation::PowerConstant&>(op).getValue();
else
value = 1.0;
}
else
continue;
@ -250,19 +299,63 @@ void CompiledExpression::generateJitCode() {
// Load constants into variables.
vector<X86Xmm> constantVar(constants.size());
vector<arm::Vec> constantVar(constants.size());
if (constants.size() > 0) {
X86Gp constantsPointer = c.newIntPtr();
c.mov(constantsPointer, imm_ptr(&constants[0]));
arm::Gp constantsPointer = c.newIntPtr();
c.mov(constantsPointer, imm(&constants[0]));
for (int i = 0; i < (int) constants.size(); i++) {
constantVar[i] = c.newXmmSd();
c.movsd(constantVar[i], x86::ptr(constantsPointer, 8*i, 0));
constantVar[i] = c.newVecD();
c.ldr(constantVar[i], arm::ptr(constantsPointer, 8*i));
}
}
// Evaluate the operations.
vector<bool> hasComputedPower(operation.size(), false);
for (int step = 0; step < (int) operation.size(); step++) {
if (hasComputedPower[step])
continue;
// When one or more steps involve raising the same argument to multiple integer
// powers, we can compute them all together for efficiency.
if (stepGroup[step] != -1) {
vector<int>& group = groups[stepGroup[step]];
vector<int>& powers = groupPowers[stepGroup[step]];
arm::Vec multiplier = c.newVecD();
if (powers[0] > 0)
c.fmov(multiplier, workspaceVar[arguments[step][0]]);
else {
c.fdiv(multiplier, constantVar[operationConstantIndex[step]], workspaceVar[arguments[step][0]]);
for (int i = 0; i < powers.size(); i++)
powers[i] = -powers[i];
}
vector<bool> hasAssigned(group.size(), false);
bool done = false;
while (!done) {
done = true;
for (int i = 0; i < group.size(); i++) {
if (powers[i]%2 == 1) {
if (!hasAssigned[i])
c.fmov(workspaceVar[target[group[i]]], multiplier);
else
c.fmul(workspaceVar[target[group[i]]], workspaceVar[target[group[i]]], multiplier);
hasAssigned[i] = true;
}
powers[i] >>= 1;
if (powers[i] != 0)
done = false;
}
if (!done)
c.fmul(multiplier, multiplier, multiplier);
}
for (int step : group)
hasComputedPower[step] = true;
continue;
}
// Evaluate the step.
Operation& op = *operation[step];
vector<int> args = arguments[step];
if (args.size() == 1) {
@ -276,33 +369,28 @@ void CompiledExpression::generateJitCode() {
switch (op.getId()) {
case Operation::CONSTANT:
c.movsd(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
c.fmov(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::ADD:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.addsd(workspaceVar[target[step]], workspaceVar[args[1]]);
c.fadd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::SUBTRACT:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.subsd(workspaceVar[target[step]], workspaceVar[args[1]]);
c.fsub(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::MULTIPLY:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.mulsd(workspaceVar[target[step]], workspaceVar[args[1]]);
c.fmul(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::DIVIDE:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.divsd(workspaceVar[target[step]], workspaceVar[args[1]]);
c.fdiv(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::POWER:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], pow);
break;
case Operation::NEGATE:
c.xorps(workspaceVar[target[step]], workspaceVar[target[step]]);
c.subsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.fneg(workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::SQRT:
c.sqrtsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.fsqrt(workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::EXP:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], exp);
@ -341,56 +429,63 @@ void CompiledExpression::generateJitCode() {
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tanh);
break;
case Operation::STEP:
c.xorps(workspaceVar[target[step]], workspaceVar[target[step]]);
c.cmpsd(workspaceVar[target[step]], workspaceVar[args[0]], imm(18)); // Comparison mode is _CMP_LE_OQ = 18
c.andps(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
c.cmge(workspaceVar[target[step]], workspaceVar[args[0]], imm(0));
c.and_(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::DELTA:
c.xorps(workspaceVar[target[step]], workspaceVar[target[step]]);
c.cmpsd(workspaceVar[target[step]], workspaceVar[args[0]], imm(16)); // Comparison mode is _CMP_EQ_OS = 16
c.andps(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
c.cmeq(workspaceVar[target[step]], workspaceVar[args[0]], imm(0));
c.and_(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::SQUARE:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.mulsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.fmul(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
break;
case Operation::CUBE:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.mulsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.mulsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.fmul(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
c.fmul(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::RECIPROCAL:
c.movsd(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
c.divsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.fdiv(workspaceVar[target[step]], constantVar[operationConstantIndex[step]], workspaceVar[args[0]]);
break;
case Operation::ADD_CONSTANT:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.addsd(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
c.fadd(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::MULTIPLY_CONSTANT:
c.movsd(workspaceVar[target[step]], workspaceVar[args[0]]);
c.mulsd(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
c.fmul(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::POWER_CONSTANT:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]], pow);
break;
case Operation::MIN:
c.fmin(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::MAX:
c.fmax(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::ABS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], fabs);
c.fabs(workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::FLOOR:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], floor);
c.frintm(workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::CEIL:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], ceil);
c.frintp(workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::SELECT:
c.fcmeq(workspaceVar[target[step]], workspaceVar[args[0]], imm(0));
c.bsl(workspaceVar[target[step]], workspaceVar[args[2]], workspaceVar[args[1]]);
break;
default:
// Just invoke evaluateOperation().
for (int i = 0; i < (int) args.size(); i++)
c.movsd(x86::ptr(argsPointer, 8*i, 0), workspaceVar[args[i]]);
X86Gp fn = c.newIntPtr();
c.mov(fn, imm_ptr((void*) evaluateOperation));
CCFuncCall* call = c.call(fn, FuncSignature2<double, Operation*, double*>());
call->setArg(0, imm_ptr(&op));
call->setArg(1, imm_ptr(&argValues[0]));
call->setRet(0, workspaceVar[target[step]]);
c.str(workspaceVar[args[i]], arm::ptr(argsPointer, 8*i));
arm::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) evaluateOperation));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, Operation*, double*>());
invoke->setArg(0, imm(&op));
invoke->setArg(1, imm(&argValues[0]));
invoke->setRet(0, workspaceVar[target[step]]);
}
}
c.ret(workspaceVar[workspace.size()-1]);
@ -399,20 +494,319 @@ void CompiledExpression::generateJitCode() {
runtime.add(&jitCode, &code);
}
void CompiledExpression::generateSingleArgCall(X86Compiler& c, X86Xmm& dest, X86Xmm& arg, double (*function)(double)) {
X86Gp fn = c.newIntPtr();
c.mov(fn, imm_ptr((void*) function));
CCFuncCall* call = c.call(fn, FuncSignature1<double, double>());
call->setArg(0, arg);
call->setRet(0, dest);
void CompiledExpression::generateSingleArgCall(a64::Compiler& c, arm::Vec& dest, arm::Vec& arg, double (*function)(double)) {
arm::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, double>());
invoke->setArg(0, arg);
invoke->setRet(0, dest);
}
void CompiledExpression::generateTwoArgCall(X86Compiler& c, X86Xmm& dest, X86Xmm& arg1, X86Xmm& arg2, double (*function)(double, double)) {
X86Gp fn = c.newIntPtr();
c.mov(fn, imm_ptr((void*) function));
CCFuncCall* call = c.call(fn, FuncSignature2<double, double, double>());
call->setArg(0, arg1);
call->setArg(1, arg2);
call->setRet(0, dest);
void CompiledExpression::generateTwoArgCall(a64::Compiler& c, arm::Vec& dest, arm::Vec& arg1, arm::Vec& arg2, double (*function)(double, double)) {
arm::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, double, double>());
invoke->setArg(0, arg1);
invoke->setArg(1, arg2);
invoke->setRet(0, dest);
}
#else
void CompiledExpression::generateJitCode() {
const CpuInfo& cpu = CpuInfo::host();
if (!cpu.hasFeature(CpuFeatures::X86::kAVX))
return;
CodeHolder code;
code.init(runtime.environment());
x86::Compiler c(&code);
FuncNode* funcNode = c.addFunc(FuncSignatureT<double>());
funcNode->frame().setAvxEnabled();
vector<x86::Xmm> workspaceVar(workspace.size());
for (int i = 0; i < (int) workspaceVar.size(); i++)
workspaceVar[i] = c.newXmmSd();
x86::Gp argsPointer = c.newIntPtr();
c.mov(argsPointer, imm(&argValues[0]));
vector<vector<int> > groups, groupPowers;
vector<int> stepGroup;
findPowerGroups(groups, groupPowers, stepGroup);
// Load the arguments into variables.
x86::Gp variablePointer = c.newIntPtr();
for (set<string>::const_iterator iter = variableNames.begin(); iter != variableNames.end(); ++iter) {
map<string, int>::iterator index = variableIndices.find(*iter);
c.mov(variablePointer, imm(&getVariableReference(index->first)));
c.vmovsd(workspaceVar[index->second], x86::ptr(variablePointer, 0, 0));
}
// Make a list of all constants that will be needed for evaluation.
vector<int> operationConstantIndex(operation.size(), -1);
for (int step = 0; step < (int) operation.size(); step++) {
// Find the constant value (if any) used by this operation.
Operation& op = *operation[step];
double value;
if (op.getId() == Operation::CONSTANT)
value = dynamic_cast<Operation::Constant&>(op).getValue();
else if (op.getId() == Operation::ADD_CONSTANT)
value = dynamic_cast<Operation::AddConstant&>(op).getValue();
else if (op.getId() == Operation::MULTIPLY_CONSTANT)
value = dynamic_cast<Operation::MultiplyConstant&>(op).getValue();
else if (op.getId() == Operation::RECIPROCAL)
value = 1.0;
else if (op.getId() == Operation::STEP)
value = 1.0;
else if (op.getId() == Operation::DELTA)
value = 1.0;
else if (op.getId() == Operation::ABS) {
long long mask = 0x7FFFFFFFFFFFFFFF;
value = *reinterpret_cast<double*>(&mask);
}
else if (op.getId() == Operation::POWER_CONSTANT) {
if (stepGroup[step] == -1)
value = dynamic_cast<Operation::PowerConstant&>(op).getValue();
else
value = 1.0;
}
else
continue;
// See if we already have a variable for this constant.
for (int i = 0; i < (int) constants.size(); i++)
if (value == constants[i]) {
operationConstantIndex[step] = i;
break;
}
if (operationConstantIndex[step] == -1) {
operationConstantIndex[step] = constants.size();
constants.push_back(value);
}
}
// Load constants into variables.
vector<x86::Xmm> constantVar(constants.size());
if (constants.size() > 0) {
x86::Gp constantsPointer = c.newIntPtr();
c.mov(constantsPointer, imm(&constants[0]));
for (int i = 0; i < (int) constants.size(); i++) {
constantVar[i] = c.newXmmSd();
c.vmovsd(constantVar[i], x86::ptr(constantsPointer, 8*i, 0));
}
}
// Evaluate the operations.
vector<bool> hasComputedPower(operation.size(), false);
for (int step = 0; step < (int) operation.size(); step++) {
if (hasComputedPower[step])
continue;
// When one or more steps involve raising the same argument to multiple integer
// powers, we can compute them all together for efficiency.
if (stepGroup[step] != -1) {
vector<int>& group = groups[stepGroup[step]];
vector<int>& powers = groupPowers[stepGroup[step]];
x86::Xmm multiplier = c.newXmmSd();
if (powers[0] > 0)
c.vmovsd(multiplier, workspaceVar[arguments[step][0]], workspaceVar[arguments[step][0]]);
else {
c.vdivsd(multiplier, constantVar[operationConstantIndex[step]], workspaceVar[arguments[step][0]]);
for (int i = 0; i < (int)powers.size(); i++)
powers[i] = -powers[i];
}
vector<bool> hasAssigned(group.size(), false);
bool done = false;
while (!done) {
done = true;
for (int i = 0; i < (int)group.size(); i++) {
if (powers[i]%2 == 1) {
if (!hasAssigned[i])
c.vmovsd(workspaceVar[target[group[i]]], multiplier, multiplier);
else
c.vmulsd(workspaceVar[target[group[i]]], workspaceVar[target[group[i]]], multiplier);
hasAssigned[i] = true;
}
powers[i] >>= 1;
if (powers[i] != 0)
done = false;
}
if (!done)
c.vmulsd(multiplier, multiplier, multiplier);
}
for (int step : group)
hasComputedPower[step] = true;
continue;
}
// Evaluate the step.
Operation& op = *operation[step];
vector<int> args = arguments[step];
if (args.size() == 1) {
// One or more sequential arguments. Fill out the list.
for (int i = 1; i < op.getNumArguments(); i++)
args.push_back(args[0]+i);
}
// Generate instructions to execute this operation.
switch (op.getId()) {
case Operation::CONSTANT:
c.vmovsd(workspaceVar[target[step]], constantVar[operationConstantIndex[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::ADD:
c.vaddsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::SUBTRACT:
c.vsubsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::MULTIPLY:
c.vmulsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::DIVIDE:
c.vdivsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::POWER:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], pow);
break;
case Operation::NEGATE:
c.vxorps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[target[step]]);
c.vsubsd(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::SQRT:
c.vsqrtsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
break;
case Operation::EXP:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], exp);
break;
case Operation::LOG:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], log);
break;
case Operation::SIN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], sin);
break;
case Operation::COS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], cos);
break;
case Operation::TAN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tan);
break;
case Operation::ASIN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], asin);
break;
case Operation::ACOS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], acos);
break;
case Operation::ATAN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], atan);
break;
case Operation::ATAN2:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], atan2);
break;
case Operation::SINH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], sinh);
break;
case Operation::COSH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], cosh);
break;
case Operation::TANH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tanh);
break;
case Operation::STEP:
c.vxorps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[target[step]]);
c.vcmpsd(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]], imm(18)); // Comparison mode is _CMP_LE_OQ = 18
c.vandps(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::DELTA:
c.vxorps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[target[step]]);
c.vcmpsd(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]], imm(16)); // Comparison mode is _CMP_EQ_OS = 16
c.vandps(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::SQUARE:
c.vmulsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
break;
case Operation::CUBE:
c.vmulsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
c.vmulsd(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::RECIPROCAL:
c.vdivsd(workspaceVar[target[step]], constantVar[operationConstantIndex[step]], workspaceVar[args[0]]);
break;
case Operation::ADD_CONSTANT:
c.vaddsd(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::MULTIPLY_CONSTANT:
c.vmulsd(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::POWER_CONSTANT:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]], pow);
break;
case Operation::MIN:
c.vminsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::MAX:
c.vmaxsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::ABS:
c.vandpd(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::FLOOR:
c.vroundsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]], imm(1));
break;
case Operation::CEIL:
c.vroundsd(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]], imm(2));
break;
case Operation::SELECT:
{
x86::Xmm mask = c.newXmmSd();
c.vxorps(mask, mask, mask);
c.vcmpsd(mask, mask, workspaceVar[args[0]], imm(0)); // Comparison mode is _CMP_EQ_OQ = 0
c.vblendvps(workspaceVar[target[step]], workspaceVar[args[1]], workspaceVar[args[2]], mask);
break;
}
default:
// Just invoke evaluateOperation().
for (int i = 0; i < (int) args.size(); i++)
c.vmovsd(x86::ptr(argsPointer, 8*i, 0), workspaceVar[args[i]]);
x86::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) evaluateOperation));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, Operation*, double*>());
invoke->setArg(0, imm(&op));
invoke->setArg(1, imm(&argValues[0]));
invoke->setRet(0, workspaceVar[target[step]]);
}
}
c.ret(workspaceVar[workspace.size()-1]);
c.endFunc();
c.finalize();
runtime.add(&jitCode, &code);
}
void CompiledExpression::generateSingleArgCall(x86::Compiler& c, x86::Xmm& dest, x86::Xmm& arg, double (*function)(double)) {
x86::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, double>());
invoke->setArg(0, arg);
invoke->setRet(0, dest);
}
void CompiledExpression::generateTwoArgCall(x86::Compiler& c, x86::Xmm& dest, x86::Xmm& arg1, x86::Xmm& arg2, double (*function)(double, double)) {
x86::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, double, double>());
invoke->setArg(0, arg1);
invoke->setArg(1, arg2);
invoke->setRet(0, dest);
}
#endif
#endif

View File

@ -0,0 +1,933 @@
/* -------------------------------------------------------------------------- *
* Lepton *
* -------------------------------------------------------------------------- *
* This is part of the Lepton expression parser originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2013-2022 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
* Permission is hereby granted, free of charge, to any person obtaining a *
* copy of this software and associated documentation files (the "Software"), *
* to deal in the Software without restriction, including without limitation *
* the rights to use, copy, modify, merge, publish, distribute, sublicense, *
* and/or sell copies of the Software, and to permit persons to whom the *
* Software is furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *
* THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, *
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR *
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE *
* USE OR OTHER DEALINGS IN THE SOFTWARE. *
* -------------------------------------------------------------------------- */
#include "lepton/CompiledVectorExpression.h"
#include "lepton/Operation.h"
#include "lepton/ParsedExpression.h"
#include <algorithm>
#include <utility>
using namespace LMP_Lepton;
using namespace std;
#ifdef LEPTON_USE_JIT
using namespace asmjit;
#endif
CompiledVectorExpression::CompiledVectorExpression() : jitCode(NULL) {
}
CompiledVectorExpression::CompiledVectorExpression(const ParsedExpression& expression, int width) : width(width), jitCode(NULL) {
const vector<int> allowedWidths = getAllowedWidths();
if (find(allowedWidths.begin(), allowedWidths.end(), width) == allowedWidths.end())
throw Exception("Unsupported width for vector expression: "+to_string(width));
ParsedExpression expr = expression.optimize(); // Just in case it wasn't already optimized.
vector<pair<ExpressionTreeNode, int> > temps;
int workspaceSize = 0;
compileExpression(expr.getRootNode(), temps, workspaceSize);
workspace.resize(workspaceSize*width);
int maxArguments = 1;
for (int i = 0; i < (int) operation.size(); i++)
if (operation[i]->getNumArguments() > maxArguments)
maxArguments = operation[i]->getNumArguments();
argValues.resize(maxArguments);
#ifdef LEPTON_USE_JIT
generateJitCode();
#endif
}
CompiledVectorExpression::~CompiledVectorExpression() {
for (int i = 0; i < (int) operation.size(); i++)
if (operation[i] != NULL)
delete operation[i];
}
CompiledVectorExpression::CompiledVectorExpression(const CompiledVectorExpression& expression) : jitCode(NULL) {
*this = expression;
}
CompiledVectorExpression& CompiledVectorExpression::operator=(const CompiledVectorExpression& expression) {
arguments = expression.arguments;
width = expression.width;
target = expression.target;
variableIndices = expression.variableIndices;
variableNames = expression.variableNames;
workspace.resize(expression.workspace.size());
argValues.resize(expression.argValues.size());
operation.resize(expression.operation.size());
for (int i = 0; i < (int) operation.size(); i++)
operation[i] = expression.operation[i]->clone();
setVariableLocations(variablePointers);
return *this;
}
const vector<int>& CompiledVectorExpression::getAllowedWidths() {
static vector<int> widths;
if (widths.size() == 0) {
widths.push_back(4);
#ifdef LEPTON_USE_JIT
const CpuInfo& cpu = CpuInfo::host();
if (cpu.hasFeature(CpuFeatures::X86::kAVX))
widths.push_back(8);
#endif
}
return widths;
}
void CompiledVectorExpression::compileExpression(const ExpressionTreeNode& node, vector<pair<ExpressionTreeNode, int> >& temps, int& workspaceSize) {
if (findTempIndex(node, temps) != -1)
return; // We have already processed a node identical to this one.
// Process the child nodes.
vector<int> args;
for (int i = 0; i < (int)node.getChildren().size(); i++) {
compileExpression(node.getChildren()[i], temps, workspaceSize);
args.push_back(findTempIndex(node.getChildren()[i], temps));
}
// Process this node.
if (node.getOperation().getId() == Operation::VARIABLE) {
variableIndices[node.getOperation().getName()] = workspaceSize;
variableNames.insert(node.getOperation().getName());
}
else {
int stepIndex = (int) arguments.size();
arguments.push_back(vector<int>());
target.push_back(workspaceSize);
operation.push_back(node.getOperation().clone());
if (args.size() == 0)
arguments[stepIndex].push_back(0); // The value won't actually be used. We just need something there.
else {
// If the arguments are sequential, we can just pass a pointer to the first one.
bool sequential = true;
for (int i = 1; i < (int)args.size(); i++)
if (args[i] != args[i - 1] + 1)
sequential = false;
if (sequential)
arguments[stepIndex].push_back(args[0]);
else
arguments[stepIndex] = args;
}
}
temps.push_back(make_pair(node, workspaceSize));
workspaceSize++;
}
int CompiledVectorExpression::findTempIndex(const ExpressionTreeNode& node, vector<pair<ExpressionTreeNode, int> >& temps) {
for (int i = 0; i < (int) temps.size(); i++)
if (temps[i].first == node)
return i;
return -1;
}
int CompiledVectorExpression::getWidth() const {
return width;
}
const set<string>& CompiledVectorExpression::getVariables() const {
return variableNames;
}
float* CompiledVectorExpression::getVariablePointer(const string& name) {
map<string, float*>::iterator pointer = variablePointers.find(name);
if (pointer != variablePointers.end())
return pointer->second;
map<string, int>::iterator index = variableIndices.find(name);
if (index == variableIndices.end())
throw Exception("getVariableReference: Unknown variable '" + name + "'");
return &workspace[index->second*width];
}
void CompiledVectorExpression::setVariableLocations(map<string, float*>& variableLocations) {
variablePointers = variableLocations;
#ifdef LEPTON_USE_JIT
// Rebuild the JIT code.
if (workspace.size() > 0)
generateJitCode();
#endif
// Make a list of all variables we will need to copy before evaluating the expression.
variablesToCopy.clear();
for (map<string, int>::const_iterator iter = variableIndices.begin(); iter != variableIndices.end(); ++iter) {
map<string, float*>::iterator pointer = variablePointers.find(iter->first);
if (pointer != variablePointers.end())
variablesToCopy.push_back(make_pair(&workspace[iter->second*width], pointer->second));
}
}
const float* CompiledVectorExpression::evaluate() const {
if (jitCode) {
jitCode();
return &workspace[workspace.size()-width];
}
for (int i = 0; i < (int)variablesToCopy.size(); i++)
for (int j = 0; j < width; j++)
variablesToCopy[i].first[j] = variablesToCopy[i].second[j];
// Loop over the operations and evaluate each one.
for (int step = 0; step < (int)operation.size(); step++) {
const vector<int>& args = arguments[step];
if (args.size() == 1) {
for (int j = 0; j < width; j++) {
for (int i = 0; i < operation[step]->getNumArguments(); i++)
argValues[i] = workspace[(args[0]+i)*width+j];
workspace[target[step]*width+j] = operation[step]->evaluate(&argValues[0], dummyVariables);
}
} else {
for (int j = 0; j < width; j++) {
for (int i = 0; i < (int)args.size(); i++)
argValues[i] = workspace[args[i]*width+j];
workspace[target[step]*width+j] = operation[step]->evaluate(&argValues[0], dummyVariables);
}
}
}
return &workspace[workspace.size()-width];
}
#ifdef LEPTON_USE_JIT
static double evaluateOperation(Operation* op, double* args) {
static map<string, double> dummyVariables;
return op->evaluate(args, dummyVariables);
}
void CompiledVectorExpression::findPowerGroups(vector<vector<int> >& groups, vector<vector<int> >& groupPowers, vector<int>& stepGroup) {
// Identify every step that raises an argument to an integer power.
vector<int> stepPower(operation.size(), 0);
vector<int> stepArg(operation.size(), -1);
for (int step = 0; step < (int)operation.size(); step++) {
Operation& op = *operation[step];
int power = 0;
if (op.getId() == Operation::SQUARE)
power = 2;
else if (op.getId() == Operation::CUBE)
power = 3;
else if (op.getId() == Operation::POWER_CONSTANT) {
double realPower = dynamic_cast<const Operation::PowerConstant*> (&op)->getValue();
if (realPower == (int) realPower)
power = (int) realPower;
}
if (power != 0) {
stepPower[step] = power;
stepArg[step] = arguments[step][0];
}
}
// Find groups that operate on the same argument and whose powers have the same sign.
stepGroup.resize(operation.size(), -1);
for (int i = 0; i < (int)operation.size(); i++) {
if (stepGroup[i] != -1)
continue;
vector<int> group, power;
for (int j = i; j < (int)operation.size(); j++) {
if (stepArg[i] == stepArg[j] && stepPower[i] * stepPower[j] > 0) {
stepGroup[j] = groups.size();
group.push_back(j);
power.push_back(stepPower[j]);
}
}
groups.push_back(group);
groupPowers.push_back(power);
}
}
#if defined(__ARM__) || defined(__ARM64__)
void CompiledVectorExpression::generateJitCode() {
CodeHolder code;
code.init(runtime.environment());
a64::Compiler c(&code);
c.addFunc(FuncSignatureT<void>());
vector<arm::Vec> workspaceVar(workspace.size()/width);
for (int i = 0; i < (int) workspaceVar.size(); i++)
workspaceVar[i] = c.newVecQ();
arm::Gp argsPointer = c.newIntPtr();
c.mov(argsPointer, imm(&argValues[0]));
vector<vector<int> > groups, groupPowers;
vector<int> stepGroup;
findPowerGroups(groups, groupPowers, stepGroup);
// Load the arguments into variables.
arm::Gp variablePointer = c.newIntPtr();
for (set<string>::const_iterator iter = variableNames.begin(); iter != variableNames.end(); ++iter) {
map<string, int>::iterator index = variableIndices.find(*iter);
c.mov(variablePointer, imm(getVariablePointer(index->first)));
c.ldr(workspaceVar[index->second].s4(), arm::ptr(variablePointer, 0));
}
// Make a list of all constants that will be needed for evaluation.
vector<int> operationConstantIndex(operation.size(), -1);
for (int step = 0; step < (int) operation.size(); step++) {
// Find the constant value (if any) used by this operation.
Operation& op = *operation[step];
float value;
if (op.getId() == Operation::CONSTANT)
value = dynamic_cast<Operation::Constant&> (op).getValue();
else if (op.getId() == Operation::ADD_CONSTANT)
value = dynamic_cast<Operation::AddConstant&> (op).getValue();
else if (op.getId() == Operation::MULTIPLY_CONSTANT)
value = dynamic_cast<Operation::MultiplyConstant&> (op).getValue();
else if (op.getId() == Operation::RECIPROCAL)
value = 1.0;
else if (op.getId() == Operation::STEP)
value = 1.0;
else if (op.getId() == Operation::DELTA)
value = 1.0;
else if (op.getId() == Operation::POWER_CONSTANT) {
if (stepGroup[step] == -1)
value = dynamic_cast<Operation::PowerConstant&> (op).getValue();
else
value = 1.0;
} else
continue;
// See if we already have a variable for this constant.
for (int i = 0; i < (int) constants.size(); i++)
if (value == constants[i]) {
operationConstantIndex[step] = i;
break;
}
if (operationConstantIndex[step] == -1) {
operationConstantIndex[step] = constants.size();
constants.push_back(value);
}
}
// Load constants into variables.
vector<arm::Vec> constantVar(constants.size());
if (constants.size() > 0) {
arm::Gp constantsPointer = c.newIntPtr();
for (int i = 0; i < (int) constants.size(); i++) {
c.mov(constantsPointer, imm(&constants[i]));
constantVar[i] = c.newVecQ();
c.ld1r(constantVar[i].s4(), arm::ptr(constantsPointer));
}
}
// Evaluate the operations.
vector<bool> hasComputedPower(operation.size(), false);
arm::Vec argReg = c.newVecS();
arm::Vec doubleArgReg = c.newVecD();
arm::Vec doubleResultReg = c.newVecD();
for (int step = 0; step < (int) operation.size(); step++) {
if (hasComputedPower[step])
continue;
// When one or more steps involve raising the same argument to multiple integer
// powers, we can compute them all together for efficiency.
if (stepGroup[step] != -1) {
vector<int>& group = groups[stepGroup[step]];
vector<int>& powers = groupPowers[stepGroup[step]];
arm::Vec multiplier = c.newVecQ();
if (powers[0] > 0)
c.mov(multiplier.s4(), workspaceVar[arguments[step][0]].s4());
else {
c.fdiv(multiplier.s4(), constantVar[operationConstantIndex[step]].s4(), workspaceVar[arguments[step][0]].s4());
for (int i = 0; i < powers.size(); i++)
powers[i] = -powers[i];
}
vector<bool> hasAssigned(group.size(), false);
bool done = false;
while (!done) {
done = true;
for (int i = 0; i < group.size(); i++) {
if (powers[i] % 2 == 1) {
if (!hasAssigned[i])
c.mov(workspaceVar[target[group[i]]].s4(), multiplier.s4());
else
c.fmul(workspaceVar[target[group[i]]].s4(), workspaceVar[target[group[i]]].s4(), multiplier.s4());
hasAssigned[i] = true;
}
powers[i] >>= 1;
if (powers[i] != 0)
done = false;
}
if (!done)
c.fmul(multiplier.s4(), multiplier.s4(), multiplier.s4());
}
for (int step : group)
hasComputedPower[step] = true;
continue;
}
// Evaluate the step.
Operation& op = *operation[step];
vector<int> args = arguments[step];
if (args.size() == 1) {
// One or more sequential arguments. Fill out the list.
for (int i = 1; i < op.getNumArguments(); i++)
args.push_back(args[0] + i);
}
// Generate instructions to execute this operation.
switch (op.getId()) {
case Operation::CONSTANT:
c.mov(workspaceVar[target[step]].s4(), constantVar[operationConstantIndex[step]].s4());
break;
case Operation::ADD:
c.fadd(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[1]].s4());
break;
case Operation::SUBTRACT:
c.fsub(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[1]].s4());
break;
case Operation::MULTIPLY:
c.fmul(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[1]].s4());
break;
case Operation::DIVIDE:
c.fdiv(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[1]].s4());
break;
case Operation::POWER:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], powf);
break;
case Operation::NEGATE:
c.fneg(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::SQRT:
c.fsqrt(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::EXP:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], expf);
break;
case Operation::LOG:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], logf);
break;
case Operation::SIN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], sinf);
break;
case Operation::COS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], cosf);
break;
case Operation::TAN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tanf);
break;
case Operation::ASIN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], asinf);
break;
case Operation::ACOS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], acosf);
break;
case Operation::ATAN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], atanf);
break;
case Operation::ATAN2:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], atan2f);
break;
case Operation::SINH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], sinhf);
break;
case Operation::COSH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], coshf);
break;
case Operation::TANH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tanhf);
break;
case Operation::STEP:
c.cmge(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), imm(0));
c.and_(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::DELTA:
c.cmeq(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), imm(0));
c.and_(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::SQUARE:
c.fmul(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::CUBE:
c.fmul(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[0]].s4());
c.fmul(workspaceVar[target[step]].s4(), workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::RECIPROCAL:
c.fdiv(workspaceVar[target[step]].s4(), constantVar[operationConstantIndex[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::ADD_CONSTANT:
c.fadd(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), constantVar[operationConstantIndex[step]].s4());
break;
case Operation::MULTIPLY_CONSTANT:
c.fmul(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), constantVar[operationConstantIndex[step]].s4());
break;
case Operation::POWER_CONSTANT:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]], powf);
break;
case Operation::MIN:
c.fmin(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[1]].s4());
break;
case Operation::MAX:
c.fmax(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), workspaceVar[args[1]].s4());
break;
case Operation::ABS:
c.fabs(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::FLOOR:
c.frintm(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::CEIL:
c.frintp(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4());
break;
case Operation::SELECT:
c.fcmeq(workspaceVar[target[step]].s4(), workspaceVar[args[0]].s4(), imm(0));
c.bsl(workspaceVar[target[step]], workspaceVar[args[2]], workspaceVar[args[1]]);
break;
default:
// Just invoke evaluateOperation().
for (int element = 0; element < width; element++) {
for (int i = 0; i < (int) args.size(); i++) {
c.ins(argReg.s(0), workspaceVar[args[i]].s(element));
c.fcvt(doubleArgReg, argReg);
c.str(doubleArgReg, arm::ptr(argsPointer, 8*i));
}
arm::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) evaluateOperation));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, Operation*, double*>());
invoke->setArg(0, imm(&op));
invoke->setArg(1, imm(&argValues[0]));
invoke->setRet(0, doubleResultReg);
c.fcvt(argReg, doubleResultReg);
c.ins(workspaceVar[target[step]].s(element), argReg.s(0));
}
}
}
arm::Gp resultPointer = c.newIntPtr();
c.mov(resultPointer, imm(&workspace[workspace.size()-width]));
c.str(workspaceVar.back().s4(), arm::ptr(resultPointer, 0));
c.endFunc();
c.finalize();
runtime.add(&jitCode, &code);
}
void CompiledVectorExpression::generateSingleArgCall(a64::Compiler& c, arm::Vec& dest, arm::Vec& arg, float (*function)(float)) {
arm::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
arm::Vec a = c.newVecS();
arm::Vec d = c.newVecS();
for (int element = 0; element < width; element++) {
c.ins(a.s(0), arg.s(element));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<float, float>());
invoke->setArg(0, a);
invoke->setRet(0, d);
c.ins(dest.s(element), d.s(0));
}
}
void CompiledVectorExpression::generateTwoArgCall(a64::Compiler& c, arm::Vec& dest, arm::Vec& arg1, arm::Vec& arg2, float (*function)(float, float)) {
arm::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
arm::Vec a1 = c.newVecS();
arm::Vec a2 = c.newVecS();
arm::Vec d = c.newVecS();
for (int element = 0; element < width; element++) {
c.ins(a1.s(0), arg1.s(element));
c.ins(a2.s(0), arg2.s(element));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<float, float, float>());
invoke->setArg(0, a1);
invoke->setArg(1, a2);
invoke->setRet(0, d);
c.ins(dest.s(element), d.s(0));
}
}
#else
void CompiledVectorExpression::generateJitCode() {
const CpuInfo& cpu = CpuInfo::host();
if (!cpu.hasFeature(CpuFeatures::X86::kAVX))
return;
CodeHolder code;
code.init(runtime.environment());
x86::Compiler c(&code);
FuncNode* funcNode = c.addFunc(FuncSignatureT<void>());
funcNode->frame().setAvxEnabled();
vector<x86::Ymm> workspaceVar(workspace.size()/width);
for (int i = 0; i < (int) workspaceVar.size(); i++)
workspaceVar[i] = c.newYmmPs();
x86::Gp argsPointer = c.newIntPtr();
c.mov(argsPointer, imm(&argValues[0]));
vector<vector<int> > groups, groupPowers;
vector<int> stepGroup;
findPowerGroups(groups, groupPowers, stepGroup);
// Load the arguments into variables.
for (set<string>::const_iterator iter = variableNames.begin(); iter != variableNames.end(); ++iter) {
map<string, int>::iterator index = variableIndices.find(*iter);
x86::Gp variablePointer = c.newIntPtr();
c.mov(variablePointer, imm(getVariablePointer(index->first)));
if (width == 4)
c.vmovdqu(workspaceVar[index->second].xmm(), x86::ptr(variablePointer, 0, 0));
else
c.vmovdqu(workspaceVar[index->second], x86::ptr(variablePointer, 0, 0));
}
// Make a list of all constants that will be needed for evaluation.
vector<int> operationConstantIndex(operation.size(), -1);
for (int step = 0; step < (int) operation.size(); step++) {
// Find the constant value (if any) used by this operation.
Operation& op = *operation[step];
double value;
if (op.getId() == Operation::CONSTANT)
value = dynamic_cast<Operation::Constant&> (op).getValue();
else if (op.getId() == Operation::ADD_CONSTANT)
value = dynamic_cast<Operation::AddConstant&> (op).getValue();
else if (op.getId() == Operation::MULTIPLY_CONSTANT)
value = dynamic_cast<Operation::MultiplyConstant&> (op).getValue();
else if (op.getId() == Operation::RECIPROCAL)
value = 1.0;
else if (op.getId() == Operation::STEP)
value = 1.0;
else if (op.getId() == Operation::DELTA)
value = 1.0;
else if (op.getId() == Operation::ABS) {
int mask = 0x7FFFFFFF;
value = *reinterpret_cast<float*>(&mask);
}
else if (op.getId() == Operation::POWER_CONSTANT) {
if (stepGroup[step] == -1)
value = dynamic_cast<Operation::PowerConstant&> (op).getValue();
else
value = 1.0;
} else
continue;
// See if we already have a variable for this constant.
for (int i = 0; i < (int) constants.size(); i++)
if (value == constants[i]) {
operationConstantIndex[step] = i;
break;
}
if (operationConstantIndex[step] == -1) {
operationConstantIndex[step] = constants.size();
constants.push_back(value);
}
}
// Load constants into variables.
vector<x86::Ymm> constantVar(constants.size());
if (constants.size() > 0) {
x86::Gp constantsPointer = c.newIntPtr();
c.mov(constantsPointer, imm(&constants[0]));
for (int i = 0; i < (int) constants.size(); i++) {
constantVar[i] = c.newYmmPs();
c.vbroadcastss(constantVar[i], x86::ptr(constantsPointer, 4*i, 0));
}
}
// Evaluate the operations.
vector<bool> hasComputedPower(operation.size(), false);
x86::Ymm argReg = c.newYmm();
x86::Ymm doubleArgReg = c.newYmm();
x86::Ymm doubleResultReg = c.newYmm();
for (int step = 0; step < (int) operation.size(); step++) {
if (hasComputedPower[step])
continue;
// When one or more steps involve raising the same argument to multiple integer
// powers, we can compute them all together for efficiency.
if (stepGroup[step] != -1) {
vector<int>& group = groups[stepGroup[step]];
vector<int>& powers = groupPowers[stepGroup[step]];
x86::Ymm multiplier = c.newYmmPs();
if (powers[0] > 0)
c.vmovdqu(multiplier, workspaceVar[arguments[step][0]]);
else {
c.vdivps(multiplier, constantVar[operationConstantIndex[step]], workspaceVar[arguments[step][0]]);
for (int i = 0; i < (int)powers.size(); i++)
powers[i] = -powers[i];
}
vector<bool> hasAssigned(group.size(), false);
bool done = false;
while (!done) {
done = true;
for (int i = 0; i < (int)group.size(); i++) {
if (powers[i] % 2 == 1) {
if (!hasAssigned[i])
c.vmovdqu(workspaceVar[target[group[i]]], multiplier);
else
c.vmulps(workspaceVar[target[group[i]]], workspaceVar[target[group[i]]], multiplier);
hasAssigned[i] = true;
}
powers[i] >>= 1;
if (powers[i] != 0)
done = false;
}
if (!done)
c.vmulps(multiplier, multiplier, multiplier);
}
for (int step : group)
hasComputedPower[step] = true;
continue;
}
// Evaluate the step.
Operation& op = *operation[step];
vector<int> args = arguments[step];
if (args.size() == 1) {
// One or more sequential arguments. Fill out the list.
for (int i = 1; i < op.getNumArguments(); i++)
args.push_back(args[0] + i);
}
// Generate instructions to execute this operation.
switch (op.getId()) {
case Operation::CONSTANT:
c.vmovdqu(workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::ADD:
c.vaddps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::SUBTRACT:
c.vsubps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::MULTIPLY:
c.vmulps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::DIVIDE:
c.vdivps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::POWER:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], powf);
break;
case Operation::NEGATE:
c.vxorps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[target[step]]);
c.vsubps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::SQRT:
c.vsqrtps(workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::EXP:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], expf);
break;
case Operation::LOG:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], logf);
break;
case Operation::SIN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], sinf);
break;
case Operation::COS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], cosf);
break;
case Operation::TAN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tanf);
break;
case Operation::ASIN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], asinf);
break;
case Operation::ACOS:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], acosf);
break;
case Operation::ATAN:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], atanf);
break;
case Operation::ATAN2:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]], atan2f);
break;
case Operation::SINH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], sinhf);
break;
case Operation::COSH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], coshf);
break;
case Operation::TANH:
generateSingleArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], tanhf);
break;
case Operation::STEP:
c.vxorps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[target[step]]);
c.vcmpps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]], imm(18)); // Comparison mode is _CMP_LE_OQ = 18
c.vandps(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::DELTA:
c.vxorps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[target[step]]);
c.vcmpps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]], imm(16)); // Comparison mode is _CMP_EQ_OQ = 0
c.vandps(workspaceVar[target[step]], workspaceVar[target[step]], constantVar[operationConstantIndex[step]]);
break;
case Operation::SQUARE:
c.vmulps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
break;
case Operation::CUBE:
c.vmulps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[0]]);
c.vmulps(workspaceVar[target[step]], workspaceVar[target[step]], workspaceVar[args[0]]);
break;
case Operation::RECIPROCAL:
c.vdivps(workspaceVar[target[step]], constantVar[operationConstantIndex[step]], workspaceVar[args[0]]);
break;
case Operation::ADD_CONSTANT:
c.vaddps(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::MULTIPLY_CONSTANT:
c.vmulps(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::POWER_CONSTANT:
generateTwoArgCall(c, workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]], powf);
break;
case Operation::MIN:
c.vminps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::MAX:
c.vmaxps(workspaceVar[target[step]], workspaceVar[args[0]], workspaceVar[args[1]]);
break;
case Operation::ABS:
c.vandps(workspaceVar[target[step]], workspaceVar[args[0]], constantVar[operationConstantIndex[step]]);
break;
case Operation::FLOOR:
c.vroundps(workspaceVar[target[step]], workspaceVar[args[0]], imm(1));
break;
case Operation::CEIL:
c.vroundps(workspaceVar[target[step]], workspaceVar[args[0]], imm(2));
break;
case Operation::SELECT:
{
x86::Ymm mask = c.newYmmPs();
c.vxorps(mask, mask, mask);
c.vcmpps(mask, mask, workspaceVar[args[0]], imm(0)); // Comparison mode is _CMP_EQ_OQ = 0
c.vblendvps(workspaceVar[target[step]], workspaceVar[args[1]], workspaceVar[args[2]], mask);
break;
}
default:
// Just invoke evaluateOperation().
for (int element = 0; element < width; element++) {
for (int i = 0; i < (int) args.size(); i++) {
if (element < 4)
c.vshufps(argReg, workspaceVar[args[i]], workspaceVar[args[i]], imm(element));
else {
c.vperm2f128(argReg, workspaceVar[args[i]], workspaceVar[args[i]], imm(1));
c.vshufps(argReg, argReg, argReg, imm(element-4));
}
c.vcvtss2sd(doubleArgReg.xmm(), doubleArgReg.xmm(), argReg.xmm());
c.vmovsd(x86::ptr(argsPointer, 8*i, 0), doubleArgReg.xmm());
}
x86::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) evaluateOperation));
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<double, Operation*, double*>());
invoke->setArg(0, imm(&op));
invoke->setArg(1, imm(&argValues[0]));
invoke->setRet(0, doubleResultReg);
c.vcvtsd2ss(argReg.xmm(), argReg.xmm(), doubleResultReg.xmm());
if (element > 3)
c.vperm2f128(argReg, argReg, argReg, imm(0));
if (element != 0)
c.vshufps(argReg, argReg, argReg, imm(0));
c.vblendps(workspaceVar[target[step]], workspaceVar[target[step]], argReg, 1<<element);
}
}
}
x86::Gp resultPointer = c.newIntPtr();
c.mov(resultPointer, imm(&workspace[workspace.size()-width]));
if (width == 4)
c.vmovdqu(x86::ptr(resultPointer, 0, 0), workspaceVar.back().xmm());
else
c.vmovdqu(x86::ptr(resultPointer, 0, 0), workspaceVar.back());
c.endFunc();
c.finalize();
runtime.add(&jitCode, &code);
}
void CompiledVectorExpression::generateSingleArgCall(x86::Compiler& c, x86::Ymm& dest, x86::Ymm& arg, float (*function)(float)) {
x86::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
x86::Ymm a = c.newYmm();
x86::Ymm d = c.newYmm();
for (int element = 0; element < width; element++) {
if (element < 4)
c.vshufps(a, arg, arg, imm(element));
else {
c.vperm2f128(a, arg, arg, imm(1));
c.vshufps(a, a, a, imm(element-4));
}
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<float, float>());
invoke->setArg(0, a);
invoke->setRet(0, d);
if (element > 3)
c.vperm2f128(d, d, d, imm(0));
if (element != 0)
c.vshufps(d, d, d, imm(0));
c.vblendps(dest, dest, d, 1<<element);
}
}
void CompiledVectorExpression::generateTwoArgCall(x86::Compiler& c, x86::Ymm& dest, x86::Ymm& arg1, x86::Ymm& arg2, float (*function)(float, float)) {
x86::Gp fn = c.newIntPtr();
c.mov(fn, imm((void*) function));
x86::Ymm a1 = c.newYmm();
x86::Ymm a2 = c.newYmm();
x86::Ymm d = c.newYmm();
for (int element = 0; element < width; element++) {
if (element < 4) {
c.vshufps(a1, arg1, arg1, imm(element));
c.vshufps(a2, arg2, arg2, imm(element));
}
else {
c.vperm2f128(a1, arg1, arg1, imm(1));
c.vperm2f128(a2, arg2, arg2, imm(1));
c.vshufps(a1, a1, a1, imm(element-4));
c.vshufps(a2, a2, a2, imm(element-4));
}
InvokeNode* invoke;
c.invoke(&invoke, fn, FuncSignatureT<float, float, float>());
invoke->setArg(0, a1);
invoke->setArg(1, a2);
invoke->setRet(0, d);
if (element > 3)
c.vperm2f128(d, d, d, imm(0));
if (element != 0)
c.vshufps(d, d, d, imm(0));
c.vblendps(dest, dest, d, 1<<element);
}
}
#endif
#endif

View File

@ -6,7 +6,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2009-2015 Stanford University and the Authors. *
* Portions copyright (c) 2009-2021 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -32,6 +32,7 @@
#include "lepton/ExpressionTreeNode.h"
#include "lepton/Exception.h"
#include "lepton/Operation.h"
#include <utility>
using namespace LMP_Lepton;
using namespace std;
@ -62,6 +63,11 @@ ExpressionTreeNode::ExpressionTreeNode(Operation* operation) : operation(operati
ExpressionTreeNode::ExpressionTreeNode(const ExpressionTreeNode& node) : operation(node.operation == NULL ? NULL : node.operation->clone()), children(node.getChildren()) {
}
ExpressionTreeNode::ExpressionTreeNode(ExpressionTreeNode&& node) : operation(node.operation), children(move(node.children)) {
node.operation = NULL;
node.children.clear();
}
ExpressionTreeNode::ExpressionTreeNode() : operation(NULL) {
}
@ -98,6 +104,16 @@ ExpressionTreeNode& ExpressionTreeNode::operator=(const ExpressionTreeNode& node
return *this;
}
ExpressionTreeNode& ExpressionTreeNode::operator=(ExpressionTreeNode&& node) {
if (operation != NULL)
delete operation;
operation = node.operation;
children = move(node.children);
node.operation = NULL;
node.children.clear();
return *this;
}
const Operation& ExpressionTreeNode::getOperation() const {
return *operation;
}
@ -105,3 +121,33 @@ const Operation& ExpressionTreeNode::getOperation() const {
const vector<ExpressionTreeNode>& ExpressionTreeNode::getChildren() const {
return children;
}
void ExpressionTreeNode::assignTags(vector<const ExpressionTreeNode*>& examples) const {
// Assign tag values to all nodes in a tree, such that two nodes have the same
// tag if and only if they (and all their children) are equal. This is used to
// optimize other operations.
int numTags = examples.size();
for (const ExpressionTreeNode& child : getChildren())
child.assignTags(examples);
if (numTags == (int)examples.size()) {
// All the children matched existing tags, so possibly this node does too.
for (int i = 0; i < (int)examples.size(); i++) {
const ExpressionTreeNode& example = *examples[i];
bool matches = (getChildren().size() == example.getChildren().size() && getOperation() == example.getOperation());
for (int j = 0; matches && j < (int)getChildren().size(); j++)
if (getChildren()[j].tag != example.getChildren()[j].tag)
matches = false;
if (matches) {
tag = i;
return;
}
}
}
// This node does not match any previous node, so assign a new tag.
tag = examples.size();
examples.push_back(this);
}

View File

@ -7,7 +7,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2009-2019 Stanford University and the Authors. *
* Portions copyright (c) 2009-2021 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -37,7 +37,13 @@
using namespace LMP_Lepton;
using namespace std;
double Operation::Erf::evaluate(double* args, const map<string, double>& ) const {
static bool isZero(const ExpressionTreeNode& node) {
if (node.getOperation().getId() != Operation::CONSTANT)
return false;
return dynamic_cast<const Operation::Constant&>(node.getOperation()).getValue() == 0.0;
}
double Operation::Erf::evaluate(double* args, const map<string, double>&) const {
return erf(args[0]);
}
@ -58,35 +64,71 @@ ExpressionTreeNode Operation::Variable::differentiate(const std::vector<Expressi
ExpressionTreeNode Operation::Custom::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (function->getNumArguments() == 0)
return ExpressionTreeNode(new Operation::Constant(0.0));
ExpressionTreeNode result = ExpressionTreeNode(new Operation::Multiply(), ExpressionTreeNode(new Operation::Custom(*this, 0), children), childDerivs[0]);
for (int i = 1; i < getNumArguments(); i++) {
result = ExpressionTreeNode(new Operation::Add(),
result,
ExpressionTreeNode(new Operation::Multiply(), ExpressionTreeNode(new Operation::Custom(*this, i), children), childDerivs[i]));
ExpressionTreeNode result;
bool foundTerm = false;
for (int i = 0; i < getNumArguments(); i++) {
if (!isZero(childDerivs[i])) {
if (foundTerm)
result = ExpressionTreeNode(new Operation::Add(),
result,
ExpressionTreeNode(new Operation::Multiply(), ExpressionTreeNode(new Operation::Custom(*this, i), children), childDerivs[i]));
else {
result = ExpressionTreeNode(new Operation::Multiply(), ExpressionTreeNode(new Operation::Custom(*this, i), children), childDerivs[i]);
foundTerm = true;
}
}
}
return result;
if (foundTerm)
return result;
return ExpressionTreeNode(new Operation::Constant(0.0));
}
ExpressionTreeNode Operation::Add::differentiate(const std::vector<ExpressionTreeNode>& , const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return childDerivs[1];
if (isZero(childDerivs[1]))
return childDerivs[0];
return ExpressionTreeNode(new Operation::Add(), childDerivs[0], childDerivs[1]);
}
ExpressionTreeNode Operation::Subtract::differentiate(const std::vector<ExpressionTreeNode>& , const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0])) {
if (isZero(childDerivs[1]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Negate(), childDerivs[1]);
}
if (isZero(childDerivs[1]))
return childDerivs[0];
return ExpressionTreeNode(new Operation::Subtract(), childDerivs[0], childDerivs[1]);
}
ExpressionTreeNode Operation::Multiply::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0])) {
if (isZero(childDerivs[1]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(), children[0], childDerivs[1]);
}
if (isZero(childDerivs[1]))
return ExpressionTreeNode(new Operation::Multiply(), children[1], childDerivs[0]);
return ExpressionTreeNode(new Operation::Add(),
ExpressionTreeNode(new Operation::Multiply(), children[0], childDerivs[1]),
ExpressionTreeNode(new Operation::Multiply(), children[1], childDerivs[0]));
}
ExpressionTreeNode Operation::Divide::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
return ExpressionTreeNode(new Operation::Divide(),
ExpressionTreeNode(new Operation::Subtract(),
ExpressionTreeNode subexp;
if (isZero(childDerivs[0])) {
if (isZero(childDerivs[1]))
return ExpressionTreeNode(new Operation::Constant(0.0));
subexp = ExpressionTreeNode(new Operation::Negate(), ExpressionTreeNode(new Operation::Multiply(), children[0], childDerivs[1]));
}
else if (isZero(childDerivs[1]))
subexp = ExpressionTreeNode(new Operation::Multiply(), children[1], childDerivs[0]);
else
subexp = ExpressionTreeNode(new Operation::Subtract(),
ExpressionTreeNode(new Operation::Multiply(), children[1], childDerivs[0]),
ExpressionTreeNode(new Operation::Multiply(), children[0], childDerivs[1])),
ExpressionTreeNode(new Operation::Square(), children[1]));
ExpressionTreeNode(new Operation::Multiply(), children[0], childDerivs[1]));
return ExpressionTreeNode(new Operation::Divide(), subexp, ExpressionTreeNode(new Operation::Square(), children[1]));
}
ExpressionTreeNode Operation::Power::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
@ -105,10 +147,14 @@ ExpressionTreeNode Operation::Power::differentiate(const std::vector<ExpressionT
}
ExpressionTreeNode Operation::Negate::differentiate(const std::vector<ExpressionTreeNode>& , const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Negate(), childDerivs[0]);
}
ExpressionTreeNode Operation::Sqrt::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::MultiplyConstant(0.5),
ExpressionTreeNode(new Operation::Reciprocal(),
@ -117,24 +163,32 @@ ExpressionTreeNode Operation::Sqrt::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Exp::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Exp(), children[0]),
childDerivs[0]);
}
ExpressionTreeNode Operation::Log::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Reciprocal(), children[0]),
childDerivs[0]);
}
ExpressionTreeNode Operation::Sin::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Cos(), children[0]),
childDerivs[0]);
}
ExpressionTreeNode Operation::Cos::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Negate(),
ExpressionTreeNode(new Operation::Sin(), children[0])),
@ -142,6 +196,8 @@ ExpressionTreeNode Operation::Cos::differentiate(const std::vector<ExpressionTre
}
ExpressionTreeNode Operation::Sec::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Sec(), children[0]),
@ -150,6 +206,8 @@ ExpressionTreeNode Operation::Sec::differentiate(const std::vector<ExpressionTre
}
ExpressionTreeNode Operation::Csc::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Negate(),
ExpressionTreeNode(new Operation::Multiply(),
@ -159,6 +217,8 @@ ExpressionTreeNode Operation::Csc::differentiate(const std::vector<ExpressionTre
}
ExpressionTreeNode Operation::Tan::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Square(),
ExpressionTreeNode(new Operation::Sec(), children[0])),
@ -166,6 +226,8 @@ ExpressionTreeNode Operation::Tan::differentiate(const std::vector<ExpressionTre
}
ExpressionTreeNode Operation::Cot::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Negate(),
ExpressionTreeNode(new Operation::Square(),
@ -174,6 +236,8 @@ ExpressionTreeNode Operation::Cot::differentiate(const std::vector<ExpressionTre
}
ExpressionTreeNode Operation::Asin::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Reciprocal(),
ExpressionTreeNode(new Operation::Sqrt(),
@ -184,6 +248,8 @@ ExpressionTreeNode Operation::Asin::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Acos::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Negate(),
ExpressionTreeNode(new Operation::Reciprocal(),
@ -195,6 +261,8 @@ ExpressionTreeNode Operation::Acos::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Atan::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Reciprocal(),
ExpressionTreeNode(new Operation::AddConstant(1.0),
@ -213,6 +281,8 @@ ExpressionTreeNode Operation::Atan2::differentiate(const std::vector<ExpressionT
}
ExpressionTreeNode Operation::Sinh::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Cosh(),
children[0]),
@ -220,6 +290,8 @@ ExpressionTreeNode Operation::Sinh::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Cosh::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Sinh(),
children[0]),
@ -227,6 +299,8 @@ ExpressionTreeNode Operation::Cosh::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Tanh::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Subtract(),
ExpressionTreeNode(new Operation::Constant(1.0)),
@ -236,6 +310,8 @@ ExpressionTreeNode Operation::Tanh::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Erf::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Constant(2.0/sqrt(M_PI))),
@ -246,6 +322,8 @@ ExpressionTreeNode Operation::Erf::differentiate(const std::vector<ExpressionTre
}
ExpressionTreeNode Operation::Erfc::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Constant(-2.0/sqrt(M_PI))),
@ -264,6 +342,8 @@ ExpressionTreeNode Operation::Delta::differentiate(const std::vector<ExpressionT
}
ExpressionTreeNode Operation::Square::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::MultiplyConstant(2.0),
children[0]),
@ -271,6 +351,8 @@ ExpressionTreeNode Operation::Square::differentiate(const std::vector<Expression
}
ExpressionTreeNode Operation::Cube::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::MultiplyConstant(3.0),
ExpressionTreeNode(new Operation::Square(), children[0])),
@ -278,6 +360,8 @@ ExpressionTreeNode Operation::Cube::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Reciprocal::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::Negate(),
ExpressionTreeNode(new Operation::Reciprocal(),
@ -290,11 +374,15 @@ ExpressionTreeNode Operation::AddConstant::differentiate(const std::vector<Expre
}
ExpressionTreeNode Operation::MultiplyConstant::differentiate(const std::vector<ExpressionTreeNode>& , const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::MultiplyConstant(value),
childDerivs[0]);
}
ExpressionTreeNode Operation::PowerConstant::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
return ExpressionTreeNode(new Operation::Multiply(),
ExpressionTreeNode(new Operation::MultiplyConstant(value),
ExpressionTreeNode(new Operation::PowerConstant(value-1),
@ -305,22 +393,18 @@ ExpressionTreeNode Operation::PowerConstant::differentiate(const std::vector<Exp
ExpressionTreeNode Operation::Min::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
ExpressionTreeNode step(new Operation::Step(),
ExpressionTreeNode(new Operation::Subtract(), children[0], children[1]));
return ExpressionTreeNode(new Operation::Subtract(),
ExpressionTreeNode(new Operation::Multiply(), childDerivs[1], step),
ExpressionTreeNode(new Operation::Multiply(), childDerivs[0],
ExpressionTreeNode(new Operation::AddConstant(-1), step)));
return ExpressionTreeNode(new Operation::Select(), {step, childDerivs[1], childDerivs[0]});
}
ExpressionTreeNode Operation::Max::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
ExpressionTreeNode step(new Operation::Step(),
ExpressionTreeNode(new Operation::Subtract(), children[0], children[1]));
return ExpressionTreeNode(new Operation::Subtract(),
ExpressionTreeNode(new Operation::Multiply(), childDerivs[0], step),
ExpressionTreeNode(new Operation::Multiply(), childDerivs[1],
ExpressionTreeNode(new Operation::AddConstant(-1), step)));
return ExpressionTreeNode(new Operation::Select(), {step, childDerivs[0], childDerivs[1]});
}
ExpressionTreeNode Operation::Abs::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
if (isZero(childDerivs[0]))
return ExpressionTreeNode(new Operation::Constant(0.0));
ExpressionTreeNode step(new Operation::Step(), children[0]);
return ExpressionTreeNode(new Operation::Multiply(),
childDerivs[0],
@ -337,9 +421,5 @@ ExpressionTreeNode Operation::Ceil::differentiate(const std::vector<ExpressionTr
}
ExpressionTreeNode Operation::Select::differentiate(const std::vector<ExpressionTreeNode>& children, const std::vector<ExpressionTreeNode>& childDerivs, const std::string& ) const {
vector<ExpressionTreeNode> derivChildren;
derivChildren.push_back(children[0]);
derivChildren.push_back(childDerivs[1]);
derivChildren.push_back(childDerivs[2]);
return ExpressionTreeNode(new Operation::Select(), derivChildren);
return ExpressionTreeNode(new Operation::Select(), {children[0], childDerivs[1], childDerivs[2]});
}

View File

@ -6,7 +6,7 @@
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2009 Stanford University and the Authors. *
* Portions copyright (c) 2009-2022 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
@ -31,6 +31,7 @@
#include "lepton/ParsedExpression.h"
#include "lepton/CompiledExpression.h"
#include "lepton/CompiledVectorExpression.h"
#include "lepton/ExpressionProgram.h"
#include "lepton/Operation.h"
#include <limits>
@ -68,9 +69,16 @@ double ParsedExpression::evaluate(const ExpressionTreeNode& node, const map<stri
}
ParsedExpression ParsedExpression::optimize() const {
ExpressionTreeNode result = precalculateConstantSubexpressions(getRootNode());
ExpressionTreeNode result = getRootNode();
vector<const ExpressionTreeNode*> examples;
result.assignTags(examples);
map<int, ExpressionTreeNode> nodeCache;
result = precalculateConstantSubexpressions(result, nodeCache);
while (true) {
ExpressionTreeNode simplified = substituteSimplerExpression(result);
examples.clear();
result.assignTags(examples);
nodeCache.clear();
ExpressionTreeNode simplified = substituteSimplerExpression(result, nodeCache);
if (simplified == result)
break;
result = simplified;
@ -80,9 +88,15 @@ ParsedExpression ParsedExpression::optimize() const {
ParsedExpression ParsedExpression::optimize(const map<string, double>& variables) const {
ExpressionTreeNode result = preevaluateVariables(getRootNode(), variables);
result = precalculateConstantSubexpressions(result);
vector<const ExpressionTreeNode*> examples;
result.assignTags(examples);
map<int, ExpressionTreeNode> nodeCache;
result = precalculateConstantSubexpressions(result, nodeCache);
while (true) {
ExpressionTreeNode simplified = substituteSimplerExpression(result);
examples.clear();
result.assignTags(examples);
nodeCache.clear();
ExpressionTreeNode simplified = substituteSimplerExpression(result, nodeCache);
if (simplified == result)
break;
result = simplified;
@ -104,27 +118,44 @@ ExpressionTreeNode ParsedExpression::preevaluateVariables(const ExpressionTreeNo
return ExpressionTreeNode(node.getOperation().clone(), children);
}
ExpressionTreeNode ParsedExpression::precalculateConstantSubexpressions(const ExpressionTreeNode& node) {
ExpressionTreeNode ParsedExpression::precalculateConstantSubexpressions(const ExpressionTreeNode& node, map<int, ExpressionTreeNode>& nodeCache) {
auto cached = nodeCache.find(node.tag);
if (cached != nodeCache.end())
return cached->second;
vector<ExpressionTreeNode> children(node.getChildren().size());
for (int i = 0; i < (int) children.size(); i++)
children[i] = precalculateConstantSubexpressions(node.getChildren()[i]);
children[i] = precalculateConstantSubexpressions(node.getChildren()[i], nodeCache);
ExpressionTreeNode result = ExpressionTreeNode(node.getOperation().clone(), children);
if (node.getOperation().getId() == Operation::VARIABLE || node.getOperation().getId() == Operation::CUSTOM)
if (node.getOperation().getId() == Operation::VARIABLE || node.getOperation().getId() == Operation::CUSTOM) {
nodeCache[node.tag] = result;
return result;
}
for (int i = 0; i < (int) children.size(); i++)
if (children[i].getOperation().getId() != Operation::CONSTANT)
if (children[i].getOperation().getId() != Operation::CONSTANT) {
nodeCache[node.tag] = result;
return result;
return ExpressionTreeNode(new Operation::Constant(evaluate(result, map<string, double>())));
}
result = ExpressionTreeNode(new Operation::Constant(evaluate(result, map<string, double>())));
nodeCache[node.tag] = result;
return result;
}
ExpressionTreeNode ParsedExpression::substituteSimplerExpression(const ExpressionTreeNode& node) {
ExpressionTreeNode ParsedExpression::substituteSimplerExpression(const ExpressionTreeNode& node, map<int, ExpressionTreeNode>& nodeCache) {
vector<ExpressionTreeNode> children(node.getChildren().size());
for (int i = 0; i < (int) children.size(); i++)
children[i] = substituteSimplerExpression(node.getChildren()[i]);
for (int i = 0; i < (int) children.size(); i++) {
const ExpressionTreeNode& child = node.getChildren()[i];
auto cached = nodeCache.find(child.tag);
if (cached == nodeCache.end()) {
children[i] = substituteSimplerExpression(child, nodeCache);
nodeCache[child.tag] = children[i];
}
else
children[i] = cached->second;
}
// Collect some info on constant expressions in children
bool first_const = children.size() > 0 && isConstant(children[0]); // is first child constant?
bool second_const = children.size() > 1 && isConstant(children[1]); ; // is second child constant?
bool second_const = children.size() > 1 && isConstant(children[1]); // is second child constant?
double first, second; // if yes, value of first and second child
if (first_const)
first = getConstantValue(children[0]);
@ -296,6 +327,12 @@ ExpressionTreeNode ParsedExpression::substituteSimplerExpression(const Expressio
return children[0].getChildren()[0];
break;
}
case Operation::SELECT:
{
if (children[1] == children[2]) // Select between two identical values
return children[1];
break;
}
default:
{
// If operation ID is not one of the above,
@ -308,14 +345,22 @@ ExpressionTreeNode ParsedExpression::substituteSimplerExpression(const Expressio
}
ParsedExpression ParsedExpression::differentiate(const string& variable) const {
return differentiate(getRootNode(), variable);
vector<const ExpressionTreeNode*> examples;
getRootNode().assignTags(examples);
map<int, ExpressionTreeNode> nodeCache;
return differentiate(getRootNode(), variable, nodeCache);
}
ExpressionTreeNode ParsedExpression::differentiate(const ExpressionTreeNode& node, const string& variable) {
ExpressionTreeNode ParsedExpression::differentiate(const ExpressionTreeNode& node, const string& variable, map<int, ExpressionTreeNode>& nodeCache) {
auto cached = nodeCache.find(node.tag);
if (cached != nodeCache.end())
return cached->second;
vector<ExpressionTreeNode> childDerivs(node.getChildren().size());
for (int i = 0; i < (int) childDerivs.size(); i++)
childDerivs[i] = differentiate(node.getChildren()[i], variable);
return node.getOperation().differentiate(node.getChildren(),childDerivs, variable);
childDerivs[i] = differentiate(node.getChildren()[i], variable, nodeCache);
ExpressionTreeNode result = node.getOperation().differentiate(node.getChildren(), childDerivs, variable);
nodeCache[node.tag] = result;
return result;
}
bool ParsedExpression::isConstant(const ExpressionTreeNode& node) {
@ -337,6 +382,10 @@ CompiledExpression ParsedExpression::createCompiledExpression() const {
return CompiledExpression(*this);
}
CompiledVectorExpression ParsedExpression::createCompiledVectorExpression(int width) const {
return CompiledVectorExpression(*this, width);
}
ParsedExpression ParsedExpression::renameVariables(const map<string, string>& replacements) const {
return ParsedExpression(renameNodeVariables(getRootNode(), replacements));
}