Moved fphi_uind up to BaseAmoeba

This commit is contained in:
Trung Nguyen
2022-09-02 10:18:59 -05:00
parent aac264f2e2
commit cad7e1b364
5 changed files with 36 additions and 41 deletions

View File

@ -259,38 +259,6 @@ int AmoebaT::umutual2b(const int eflag, const int vflag) {
return GX; return GX;
} }
// ---------------------------------------------------------------------------
// Interpolate the potential from the PME grid
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int AmoebaT::fphi_uind() {
int ainum=this->ans->inum();
if (ainum == 0)
return 0;
int _nall=this->atom->nall();
int nbor_pitch=this->nbor->nbor_pitch();
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
this->time_pair.start();
int ngridyz = this->_ngridy * this->_ngridz;
this->k_fphi_uind.set_size(GX,BX);
this->k_fphi_uind.run(&this->atom->x, &this->_thetai1,
&this->_thetai2, &this->_thetai3,
&this->_igrid, &this->_cgrid_brick,
&this->_fdip_phi1, &this->_fdip_phi2,
&this->_fdip_sum_phi, &this->_bsorder,
&ainum, &ngridyz, &this->_ngridy,
&this->_threads_per_atom);
this->time_pair.stop();
return GX;
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// Calculate the polar real-space term, returning tep // Calculate the polar real-space term, returning tep
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------

View File

@ -1706,7 +1706,7 @@ __kernel void k_fphi_uind(const __global numtyp4 *restrict x_,
tuv012 = (numtyp)0.0; tuv012 = (numtyp)0.0;
tuv111 = (numtyp)0.0; tuv111 = (numtyp)0.0;
k = igrid[3*i+2] - nlpts; k = igrid[4*i+2] - nlpts;
for (int kb = 0; kb < bsorder; kb++) { for (int kb = 0; kb < bsorder; kb++) {
/* /*
v0 = thetai3[m][kb][0]; v0 = thetai3[m][kb][0];
@ -1742,7 +1742,7 @@ __kernel void k_fphi_uind(const __global numtyp4 *restrict x_,
tu12 = (numtyp)0.0; tu12 = (numtyp)0.0;
tu03 = (numtyp)0.0; tu03 = (numtyp)0.0;
j = igrid[3*i+1] - nlpts; j = igrid[4*i+1] - nlpts;
for (int jb = 0; jb < bsorder; jb++) { for (int jb = 0; jb < bsorder; jb++) {
/* /*
u0 = thetai2[m][jb][0]; u0 = thetai2[m][jb][0];
@ -1763,7 +1763,7 @@ __kernel void k_fphi_uind(const __global numtyp4 *restrict x_,
t2_2 = (numtyp)0.0; t2_2 = (numtyp)0.0;
t3 = (numtyp)0.0; t3 = (numtyp)0.0;
int ii = igrid[3*i] - nlpts; int ii = igrid[4*i] - nlpts;
for (int ib = 0; ib < bsorder; ib++) { for (int ib = 0; ib < bsorder; ib++) {
/* /*
tq_1 = grid[k][j][ii][0]; tq_1 = grid[k][j][ii][0];

View File

@ -91,7 +91,6 @@ class Amoeba : public BaseAmoeba<numtyp, acctyp> {
int multipole_real(const int eflag, const int vflag); int multipole_real(const int eflag, const int vflag);
int udirect2b(const int eflag, const int vflag); int udirect2b(const int eflag, const int vflag);
int umutual2b(const int eflag, const int vflag); int umutual2b(const int eflag, const int vflag);
int fphi_uind();
int polar_real(const int eflag, const int vflag); int polar_real(const int eflag, const int vflag);
}; };

View File

@ -144,7 +144,7 @@ int BaseAmoebaT::init_atomic(const int nlocal, const int nall,
_max_fieldp_size = _max_tep_size; _max_fieldp_size = _max_tep_size;
_fieldp.alloc(_max_fieldp_size*8,*(this->ucl_device),UCL_READ_WRITE,UCL_READ_WRITE); _fieldp.alloc(_max_fieldp_size*8,*(this->ucl_device),UCL_READ_WRITE,UCL_READ_WRITE);
_max_thetai_size = 0; _max_thetai_size = _max_tep_size;
_nmax = nall; _nmax = nall;
dev_nspecial15.alloc(nall,*(this->ucl_device),UCL_READ_ONLY); dev_nspecial15.alloc(nall,*(this->ucl_device),UCL_READ_ONLY);
@ -466,7 +466,7 @@ void BaseAmoebaT::precompute_induce(const int inum_full, const int bsorder,
_thetai1.alloc(_max_thetai_size*bsorder*4,*(this->ucl_device),UCL_READ_ONLY); _thetai1.alloc(_max_thetai_size*bsorder*4,*(this->ucl_device),UCL_READ_ONLY);
_thetai2.alloc(_max_thetai_size*bsorder*4,*(this->ucl_device),UCL_READ_ONLY); _thetai2.alloc(_max_thetai_size*bsorder*4,*(this->ucl_device),UCL_READ_ONLY);
_thetai3.alloc(_max_thetai_size*bsorder*4,*(this->ucl_device),UCL_READ_ONLY); _thetai3.alloc(_max_thetai_size*bsorder*4,*(this->ucl_device),UCL_READ_ONLY);
_igrid.alloc(_max_thetai_size*3,*(this->ucl_device),UCL_READ_ONLY); _igrid.alloc(_max_thetai_size*4,*(this->ucl_device),UCL_READ_ONLY);
_fdip_phi1.alloc(_max_thetai_size*10,*(this->ucl_device),UCL_WRITE_ONLY); _fdip_phi1.alloc(_max_thetai_size*10,*(this->ucl_device),UCL_WRITE_ONLY);
_fdip_phi2.alloc(_max_thetai_size*10,*(this->ucl_device),UCL_WRITE_ONLY); _fdip_phi2.alloc(_max_thetai_size*10,*(this->ucl_device),UCL_WRITE_ONLY);
@ -478,7 +478,7 @@ void BaseAmoebaT::precompute_induce(const int inum_full, const int bsorder,
_thetai1.resize(_max_thetai_size*bsorder*4); _thetai1.resize(_max_thetai_size*bsorder*4);
_thetai2.resize(_max_thetai_size*bsorder*4); _thetai2.resize(_max_thetai_size*bsorder*4);
_thetai3.resize(_max_thetai_size*bsorder*4); _thetai3.resize(_max_thetai_size*bsorder*4);
_igrid.resize(_max_thetai_size*3); _igrid.resize(_max_thetai_size*4);
_fdip_phi1.resize(_max_thetai_size*10); _fdip_phi1.resize(_max_thetai_size*10);
_fdip_phi2.resize(_max_thetai_size*10); _fdip_phi2.resize(_max_thetai_size*10);
@ -498,7 +498,7 @@ void BaseAmoebaT::precompute_induce(const int inum_full, const int bsorder,
ucl_copy(_thetai3,dview,false); ucl_copy(_thetai3,dview,false);
UCL_H_Vec<int> dview_int; UCL_H_Vec<int> dview_int;
dview_int.view(&host_igrid[0][0],inum_full*3,*(this->ucl_device)); dview_int.view(&host_igrid[0][0],inum_full*4,*(this->ucl_device));
ucl_copy(_igrid,dview_int,false); ucl_copy(_igrid,dview_int,false);
_nzlo_out = nzlo_out; _nzlo_out = nzlo_out;
@ -666,6 +666,34 @@ void BaseAmoebaT::compute_fphi_uind(const int inum_full, const int bsorder,
const int red_blocks = fphi_uind(); const int red_blocks = fphi_uind();
} }
// ---------------------------------------------------------------------------
// Interpolate the potential from the PME grid
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int BaseAmoebaT::fphi_uind() {
int ainum=ans->inum();
if (ainum == 0)
return 0;
int _nall=atom->nall();
int nbor_pitch=nbor->nbor_pitch();
// Compute the block size and grid size to keep all cores busy
const int BX=block_size();
int GX=static_cast<int>(ceil(static_cast<double>(ans->inum())/
(BX/_threads_per_atom)));
time_pair.start();
int ngridyz = _ngridy * _ngridz;
k_fphi_uind.set_size(GX,BX);
k_fphi_uind.run(&atom->x, &_thetai1, &_thetai2, &_thetai3,
&_igrid, &_cgrid_brick, &_fdip_phi1, &_fdip_phi2,
&_fdip_sum_phi, &_bsorder, &ainum, &ngridyz, &_ngridy,
&_threads_per_atom);
time_pair.stop();
return GX;
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// Reneighbor on GPU if necessary, and then compute polar real-space // Reneighbor on GPU if necessary, and then compute polar real-space

View File

@ -311,7 +311,7 @@ class BaseAmoeba {
virtual int multipole_real(const int eflag, const int vflag) = 0; virtual int multipole_real(const int eflag, const int vflag) = 0;
virtual int udirect2b(const int eflag, const int vflag) = 0; virtual int udirect2b(const int eflag, const int vflag) = 0;
virtual int umutual2b(const int eflag, const int vflag) = 0; virtual int umutual2b(const int eflag, const int vflag) = 0;
virtual int fphi_uind() = 0; virtual int fphi_uind();
virtual int polar_real(const int eflag, const int vflag) = 0; virtual int polar_real(const int eflag, const int vflag) = 0;