spelling
This commit is contained in:
@ -63,15 +63,15 @@ All keywords except path_to_training_data_set have default values. If keywords a
|
||||
On successful training, it produces a number of output files:
|
||||
|
||||
* training_errors.txt reports the errors in energy and forces for the training data set
|
||||
* traning_analysis.txt reports detailed errors for all training configurations
|
||||
* training_analysis.txt reports detailed errors for all training configurations
|
||||
* test_errors.txt reports errors for the test data set
|
||||
* test_analysis.txt reports detailed errors for all test configurations
|
||||
* coefficents.txt contains the coeffcients of the POD potential
|
||||
* coefficients.txt contains the coefficients of the POD potential
|
||||
|
||||
After training the POD potential, pod.txt and coefficents.txt are two files needed to use the
|
||||
POD potential in LAMMPS. See :doc:`pair_style pod <pair_pod>` for using the POD potential. Examples about training and using POD potentials are found in the directory lammps/examples/PACKAGES/pod.
|
||||
|
||||
Parametrized Potential Energy Surface
|
||||
Parameterized Potential Energy Surface
|
||||
"""""""""""""""""""""""""""""""""""""
|
||||
|
||||
We consider a multi-element system of *N* atoms with :math:`N_{\rm e}` unique elements.
|
||||
@ -93,7 +93,7 @@ The superscript on each potential denotes its body order. Each *q*-body potentia
|
||||
depends on :math:`\boldsymbol \mu^{(q)}` which are sets of parameters to fit the PES. Note
|
||||
that :math:`\boldsymbol \mu` is a collection of all potential parameters
|
||||
:math:`\boldsymbol \mu^{(1)}`, :math:`\boldsymbol \mu^{(2)}`, :math:`\boldsymbol \mu^{(3)}`, etc,
|
||||
and that :math:`\boldsymbol \eta` is a set of hyperparameters such as inner cut-off radius
|
||||
and that :math:`\boldsymbol \eta` is a set of hyper-parameters such as inner cut-off radius
|
||||
:math:`r_{\rm in}` and outer cut-off radius :math:`r_{\rm cut}`.
|
||||
|
||||
Interatomic potentials rely on parameters to learn relationship between atomic environments
|
||||
@ -107,8 +107,8 @@ obtain *Q* different optimized potentials, :math:`E(\boldsymbol R,\boldsymbol Z,
|
||||
Consequently, there exist many different sets of optimized parameters for empirical interatomic potentials.
|
||||
|
||||
Instead of optimizing the potential parameters, inspired by the reduced basis method
|
||||
:ref:`(Grepl) <Grepl20072>` for parametrized partial differential equations,
|
||||
we view the parametrized PES as a parametric manifold of potential energies
|
||||
:ref:`(Grepl) <Grepl20072>` for parameterized partial differential equations,
|
||||
we view the parameterized PES as a parametric manifold of potential energies
|
||||
|
||||
.. math::
|
||||
|
||||
@ -120,8 +120,8 @@ of :math:`\boldsymbol \mu \in \Omega^{\boldsymbol \mu}`. Therefore, the paramet
|
||||
and more transferable atomic representation than any particular individual PES
|
||||
:math:`E(\boldsymbol R, \boldsymbol Z, \boldsymbol \eta, \boldsymbol \mu^*)`.
|
||||
|
||||
We propose specific forms of the parametrized potentials for one-body, two-body,
|
||||
and three-body interactions. We apply the Karhunen-Loeve expansion to snapshots of the parametrized potentials
|
||||
We propose specific forms of the parameterized potentials for one-body, two-body,
|
||||
and three-body interactions. We apply the Karhunen-Loeve expansion to snapshots of the parameterized potentials
|
||||
to obtain sets of orthogonal basis functions. These basis functions are aggregated
|
||||
according to the chemical elements of atoms, thus leading to multi-element proper orthogonal descriptors.
|
||||
|
||||
@ -153,7 +153,7 @@ We adopt the usual assumption that the direct interaction between two atoms vani
|
||||
when their distance is greater than the outer cutoff distance :math:`r_{\rm cut}`. Furthermore, we
|
||||
assume that two atoms can not get closer than the inner cutoff distance :math:`r_{\rm in}`
|
||||
due to the Pauli repulsion principle. Let :math:`r \in (r_{\rm in}, r_{\rm cut})`, we introduce the
|
||||
following parametrized radial functions
|
||||
following parameterized radial functions
|
||||
|
||||
.. math::
|
||||
|
||||
@ -176,7 +176,7 @@ and :math:`r_{\rm cut}`, and parameters :math:`\alpha, \beta, \gamma, \kappa`. T
|
||||
these parameters allow the function :math:`\psi` to characterize a diverse spectrum of
|
||||
two-body interactions within the cut-off interval :math:`(r_{\rm in}, r_{\rm cut})`.
|
||||
|
||||
Next, we introduce the following parametrized potential
|
||||
Next, we introduce the following parameterized potential
|
||||
|
||||
.. math::
|
||||
|
||||
@ -191,7 +191,7 @@ its derivative for :math:`r_{ij} \ge r_{\rm cut}`:
|
||||
|
||||
f_{\rm c}(r_{ij}, r_{\rm in}, r_{\rm cut}) = \exp \left(1 -\frac{1}{\sqrt{\left(1 - \frac{(r-r_{\rm in})^3}{(r_{\rm cut} - r_{\rm in})^3} \right)^2 + 10^{-6}}} \right)
|
||||
|
||||
Based on the parametrized potential, we form a set of snapshots as follows.
|
||||
Based on the parameterized potential, we form a set of snapshots as follows.
|
||||
We assume that we are given :math:`N_{\rm s}` parameter tuples
|
||||
:math:`\boldsymbol \mu^{(2)}_\ell, 1 \le \ell \le N_{\rm s}`. We introduce the
|
||||
following set of snapshots on :math:`(r_{\rm in}, r_{\rm cut})`:
|
||||
@ -276,7 +276,7 @@ descriptors depend on :math:`\boldsymbol Z`, their computational complexity
|
||||
is independent of :math:`N_{\rm e}`.
|
||||
|
||||
In order to provide proper orthogonal descriptors for three-body interactions,
|
||||
we need to introduce a three-body parametrized potential. In particular, the
|
||||
we need to introduce a three-body parameterized potential. In particular, the
|
||||
three-body potential is defined as a product of radial and angular functions as follows
|
||||
|
||||
.. math::
|
||||
@ -308,7 +308,7 @@ obtain orthogonal basis functions as follows
|
||||
U^{r}_m(r_{ij}, r_{\rm min}, r_{\rm max} ) = \sum_{\ell = 1}^{L_{\rm r}} A_{\ell m} \, \zeta_\ell(r_{ij}, r_{\rm min}, r_{\rm max} ), \qquad m = 1, \ldots, N_{\rm r} ,
|
||||
|
||||
where the matrix :math:`\boldsymbol A \in \mathbb{R}^{L_{\rm r} \times L_{\rm r}}` consists
|
||||
of eigenvectors of the eigenvalue problem. For the parametrized angular function,
|
||||
of eigenvectors of the eigenvalue problem. For the parameterized angular function,
|
||||
we consider angular basis functions
|
||||
|
||||
.. math::
|
||||
@ -316,7 +316,7 @@ we consider angular basis functions
|
||||
U^{a}_n(\theta_{ijk}) = \cos ((n-1) \theta_{ijk}), \qquad n = 1,\ldots, N_{\rm a},
|
||||
|
||||
where :math:`N_{\rm a}` is the number of angular basis functions. The orthogonal
|
||||
basis functions for the parametrized potential are computed as follows
|
||||
basis functions for the parameterized potential are computed as follows
|
||||
|
||||
.. math::
|
||||
|
||||
@ -353,7 +353,7 @@ where
|
||||
\right.
|
||||
|
||||
The number of three-body descriptors per atom is thus :math:`N_{\rm 3b} N_{\rm e}^2(N_{\rm e}+1)/2`.
|
||||
While the number of three-body PODs increases cubically as a function of the number of elements,
|
||||
While the number of three-body PODs is cubic function of the number of elements,
|
||||
the computational complexity of the three-body PODs is independent of the number of elements.
|
||||
|
||||
Four-Body SNAP Descriptors
|
||||
@ -558,8 +558,8 @@ descriptors, it is more expensive to train the linear POD potential. This is
|
||||
because the training of the quadratic POD potential
|
||||
still requires us to calculate and store the quadratic global descriptors and
|
||||
their gradient. Furthermore, the quadratic POD potential may require more training
|
||||
data in order to prevent overfitting. In order to reduce the computational cost of fitting
|
||||
the quadratic POD potential and avoid overfitting, we can use subsets of two-body and three-body
|
||||
data in order to prevent over-fitting. In order to reduce the computational cost of fitting
|
||||
the quadratic POD potential and avoid over-fitting, we can use subsets of two-body and three-body
|
||||
PODs for constructing the new descriptors.
|
||||
|
||||
|
||||
|
||||
@ -256,6 +256,7 @@ berlin
|
||||
Berne
|
||||
Bertotti
|
||||
Bessarab
|
||||
bessel
|
||||
Beutler
|
||||
Bext
|
||||
Bfrac
|
||||
@ -447,6 +448,7 @@ checkbox
|
||||
checkmark
|
||||
checkqeq
|
||||
checksum
|
||||
chemflag
|
||||
chemistries
|
||||
Chemnitz
|
||||
Cheng
|
||||
@ -1028,6 +1030,7 @@ exe
|
||||
executables
|
||||
extep
|
||||
extrema
|
||||
extxyz
|
||||
exy
|
||||
ey
|
||||
ez
|
||||
@ -1096,6 +1099,7 @@ fingerprintconstants
|
||||
fingerprintsperelement
|
||||
Finnis
|
||||
Fiorin
|
||||
fitpod
|
||||
fixID
|
||||
fj
|
||||
Fji
|
||||
@ -1138,6 +1142,7 @@ Forschungszentrum
|
||||
fortran
|
||||
Fortran
|
||||
Fosado
|
||||
fourbody
|
||||
fourier
|
||||
fp
|
||||
fphi
|
||||
@ -1271,6 +1276,7 @@ greenyellow
|
||||
Greffet
|
||||
grem
|
||||
gREM
|
||||
Grepl
|
||||
Grest
|
||||
Grigera
|
||||
Grimme
|
||||
@ -1629,6 +1635,7 @@ Kalia
|
||||
Kamberaj
|
||||
Kantorovich
|
||||
Kapfer
|
||||
Karhunen
|
||||
Karls
|
||||
Karlsruhe
|
||||
Karniadakis
|
||||
@ -1883,6 +1890,7 @@ ln
|
||||
localhost
|
||||
localTemp
|
||||
localvectors
|
||||
Loeve
|
||||
Loewen
|
||||
logfile
|
||||
logfreq
|
||||
@ -1934,6 +1942,7 @@ Mackrodt
|
||||
MacOS
|
||||
Macromolecules
|
||||
macroparticle
|
||||
Maday
|
||||
Madura
|
||||
Magda
|
||||
Magdeburg
|
||||
@ -2551,6 +2560,7 @@ Omelyan
|
||||
omp
|
||||
OMP
|
||||
oneAPI
|
||||
onebody
|
||||
onelevel
|
||||
oneway
|
||||
onlysalt
|
||||
@ -2632,6 +2642,7 @@ Pastewka
|
||||
pathangle
|
||||
pathname
|
||||
pathnames
|
||||
Patera
|
||||
Patomtrans
|
||||
Pattnaik
|
||||
Pavese
|
||||
@ -2927,6 +2938,7 @@ Rcmx
|
||||
Rcmy
|
||||
Rco
|
||||
Rcut
|
||||
rcut
|
||||
rcutfac
|
||||
rdc
|
||||
rdf
|
||||
@ -3019,6 +3031,7 @@ Rij
|
||||
RIj
|
||||
Rik
|
||||
Rin
|
||||
rin
|
||||
Rinaldi
|
||||
Rino
|
||||
RiRj
|
||||
|
||||
Reference in New Issue
Block a user