Merge pull request #4148 from jtclemm/small-patches

Small patches for various commands
This commit is contained in:
Stan Moore
2024-05-13 11:01:11 -06:00
committed by GitHub
12 changed files with 213 additions and 56 deletions

View File

@ -15,7 +15,8 @@ orientation for rotational models. This produces a stress-free initial
state. Furthermore, bonds are allowed to break under large strains,
producing fracture. The examples/bpm directory has sample input scripts
for simulations of the fragmentation of an impacted plate and the
pouring of extended, elastic bodies.
pouring of extended, elastic bodies. See :ref:`(Clemmer) <howto-Clemmer>`
for more general information on the approach and the LAMMPS implementation.
----------
@ -150,3 +151,9 @@ the following are currently compatible with BPM bond styles:
interactions, one will need to switch between different *special_bonds*
settings in the input script. An example is found in
``examples/bpm/impact``.
----------
.. _howto-Clemmer:
**(Clemmer)** Clemmer, Monti, Lechman, Soft Matter, 20, 1702 (2024).

View File

@ -29,10 +29,12 @@ Syntax
NOTE: All other styles are documented by the :doc:`fix deform <fix_deform>` command
*xy*, *xz*, *yz* args = style value
style = *final* or *delta* or *vel* or *erate* or *trate* or *wiggle* or *variable* or *pressure*
style = *final* or *delta* or *vel* or *erate* or *trate* or *wiggle* or *variable* or *pressure* or *erate/rescale*
*pressure* values = target gain
target = target pressure (pressure units)
gain = proportional gain constant (1/(time * pressure) or 1/time units)
*erate/rescale* value = R
R = engineering shear strain rate (1/time units)
NOTE: All other styles are documented by the :doc:`fix deform <fix_deform>` command
*box* = style value
@ -159,6 +161,21 @@ details of a simulation and testing different values is
recommended. One can also apply a maximum limit to the magnitude of
the applied strain using the :ref:`max/rate <deform_max_rate>` option.
The *erate/rescale* style operates similarly to the *erate* style with
a specified strain rate in units of 1/time. The difference is that
the change in the tilt factor will depend on the current length of
the box perpendicular to the shear direction, L, instead of the
original length, L0. The tilt factor T as a function of time will
change as
.. parsed-literal::
T(t) = T(t-1) + L\*erate\* \Delta t
where T(t-1) is the tilt factor on the previous timestep and :math:`\Delta t`
is the timestep size. This option may be useful in scenarios where
L changes in time.
----------
The *box* parameter provides an additional control over the *x*, *y*,

View File

@ -8,7 +8,7 @@ Syntax
.. parsed-literal::
fix ID group nonaffine/displacement style args reference/style nstep
fix ID group nonaffine/displacement style args reference/style nstep keyword values
* ID, group are documented in :doc:`fix <fix>` command
* nonaffine/displacement = style name of this fix command
@ -32,6 +32,13 @@ Syntax
*update* = update the reference frame every *nstep* timesteps
*offset* = update the reference frame *nstep* timesteps before calculating the nonaffine displacement
* zero or more keyword/value pairs may be appended
.. parsed-literal::
*z/min* values = zmin
zmin = minimum coordination number to calculate D2min
Examples
""""""""
@ -76,6 +83,12 @@ is the identity tensor. This calculation is only performed on timesteps that
are a multiple of *nevery* (including timestep zero). Data accessed before
this occurs will simply be zeroed.
For particles with low coordination numbers, calculations of :math:`D^2_\mathrm{min}`
may not be accurate. An optional minimum coordination number can be defined using
the *z/min* keyword. If any particle has fewer than the specified number of particles
in the cutoff distance or in contact, the above calculations will be skipped and the
corresponding peratom array entries will be zero.
The *integrated* style simply integrates the velocity of particles
every timestep to calculate a displacement. This style only works if
used in conjunction with another fix that deforms the box and displaces