Merge pull request #1648 from athomps/add_w_l_orientorder

Add w l orientorder
This commit is contained in:
Axel Kohlmeyer
2019-09-11 14:08:33 -04:00
committed by GitHub
6 changed files with 729 additions and 59 deletions

View File

@ -19,6 +19,8 @@ keyword = {cutoff} or {nnn} or {degrees} or {components}
{cutoff} value = distance cutoff
{nnn} value = number of nearest neighbors
{degrees} values = nlvalues, l1, l2,...
{wl} value = yes or no
{wl/hat} value = yes or no
{components} value = ldegree :pre
:ule
@ -27,7 +29,8 @@ keyword = {cutoff} or {nnn} or {degrees} or {components}
compute 1 all orientorder/atom
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5
compute 1 all orientorder/atom degrees 4 6 components 6 nnn NULL cutoff 3.0 :pre
compute 1 all orientorder/atom wl/hat yes
compute 1 all orientorder/atom components 6 :pre
[Description:]
@ -48,7 +51,7 @@ neighbors of the central atom.
The angles theta and phi are the standard spherical polar angles
defining the direction of the bond vector {rij}.
The second equation defines {Ql}, which is a
rotationally invariant scalar quantity obtained by summing
rotationally invariant non-negative amplitude obtained by summing
over all the components of degree {l}.
The optional keyword {cutoff} defines the distance cutoff
@ -63,7 +66,7 @@ specified distance cutoff are used.
The optional keyword {degrees} defines the list of order parameters to
be computed. The first argument {nlvalues} is the number of order
parameters. This is followed by that number of integers giving the
parameters. This is followed by that number of non-negative integers giving the
degree of each order parameter. Because {Q}2 and all odd-degree order
parameters are zero for atoms in cubic crystals (see
"Steinhardt"_#Steinhardt), the default order parameters are {Q}4,
@ -71,7 +74,20 @@ parameters are zero for atoms in cubic crystals (see
= sqrt(7/3)/8 = 0.19094.... The numerical values of all order
parameters up to {Q}12 for a range of commonly encountered
high-symmetry structures are given in Table I of "Mickel et
al."_#Mickel.
al."_#Mickel, and these can be reproduced with this compute
The optional keyword {wl} will output the third-order invariants {Wl}
(see Eq. 1.4 in "Steinhardt"_#Steinhardt) for the same degrees as
for the {Ql} parameters. For the FCC crystal with {nnn} =12,
{W}4 = -sqrt(14/143).(49/4096)/Pi^1.5 = -0.0006722136...
The optional keyword {wl/hat} will output the normalized third-order
invariants {Wlhat} (see Eq. 2.2 in "Steinhardt"_#Steinhardt)
for the same degrees as for the {Ql} parameters. For the FCC crystal
with {nnn} =12, {W}4hat = -7/3*sqrt(2/429) = -0.159317...The numerical
values of {Wlhat} for a range of commonly encountered high-symmetry
structures are given in Table I of "Steinhardt"_#Steinhardt, and these
can be reproduced with this keyword.
The optional keyword {components} will output the components of the
normalized complex vector {Ybar_lm} of degree {ldegree}, which must be
@ -82,7 +98,7 @@ particles, as discussed in "ten Wolde"_#tenWolde2.
The value of {Ql} is set to zero for atoms not in the
specified compute group, as well as for atoms that have less than
{nnn} neighbors within the distance cutoff.
{nnn} neighbors within the distance cutoff, unless {nnn} is NULL.
The neighbor list needed to compute this quantity is constructed each
time the calculation is performed (i.e. each time a snapshot of atoms
@ -108,6 +124,12 @@ This compute calculates a per-atom array with {nlvalues} columns,
giving the {Ql} values for each atom, which are real numbers on the
range 0 <= {Ql} <= 1.
If the keyword {wl} is set to yes, then the {Wl} values for each
atom will be added to the output array, which are real numbers.
If the keyword {wl/hat} is set to yes, then the {Wl_hat}
values for each atom will be added to the output array, which are real numbers.
If the keyword {components} is set, then the real and imaginary parts
of each component of (normalized) {Ybar_lm} will be added to the
output array in the following order: Re({Ybar_-m}) Im({Ybar_-m})
@ -130,7 +152,8 @@ hexorder/atom"_compute_hexorder_atom.html
[Default:]
The option defaults are {cutoff} = pair style cutoff, {nnn} = 12,
{degrees} = 5 4 6 8 10 12 i.e. {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12.
{degrees} = 5 4 6 8 10 12 i.e. {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12,
{wl} = no, {wl/hat} = no, and {components} off
:line

View File

@ -0,0 +1,91 @@
# Steinhardt-Nelson bond orientational order parameters for BCC
variable rcut equal 3.0
boundary p p p
atom_style atomic
neighbor 0.3 bin
neigh_modify delay 5
# create geometry
lattice bcc 1.0
region box block 0 3 0 3 0 3
create_box 1 box
create_atoms 1 box
mass 1 1.0
# LJ potentials
pair_style lj/cut ${rcut}
pair_coeff * * 1.0 1.0 ${rcut}
# 14 neighbors, perfect crystal
compute qlwlhat all orientorder/atom degrees 6 2 4 6 8 10 12 nnn 14 wl/hat yes
compute avql all reduce ave c_qlwlhat[1] c_qlwlhat[2] c_qlwlhat[3] c_qlwlhat[4] c_qlwlhat[5] c_qlwlhat[6]
compute avwlhat all reduce ave c_qlwlhat[7] c_qlwlhat[8] c_qlwlhat[9] c_qlwlhat[10] c_qlwlhat[11] c_qlwlhat[12]
thermo_style custom step temp epair etotal c_avql[*] c_avwlhat[*]
run 0
# check Q_l values
print " "
print "*******************************************************************"
print " "
print "Comparison with reference values of Q_l "
print " [Table I in W. Mickel, S. C. Kapfer,"
print " G. E. Schroeder-Turkand, K. Mecke, "
print " J. Chem. Phys. 138, 044501 (2013).]"
print " "
variable q2ref equal 0.0
variable q4ref equal 0.036
variable q6ref equal 0.511
variable q8ref equal 0.429
variable q10ref equal 0.195
variable q12ref equal 0.405
variable q2 equal c_avql[1]
variable q4 equal c_avql[2]
variable q6 equal c_avql[3]
variable q8 equal c_avql[4]
variable q10 equal c_avql[5]
variable q12 equal c_avql[6]
print "q2 = $(v_q2:%10.6f) delta = $(v_q2-v_q2ref:%10.4f)"
print "q4 = $(v_q4:%10.6f) delta = $(v_q4-v_q4ref:%10.4f)"
print "q6 = $(v_q6:%10.6f) delta = $(v_q6-v_q6ref:%10.4f)"
print "q8 = $(v_q8:%10.6f) delta = $(v_q8-v_q8ref:%10.4f)"
print "q10 = $(v_q10:%10.6f) delta = $(v_q10-v_q10ref:%10.4f)"
print "q12 = $(v_q12:%10.6f) delta = $(v_q12-v_q12ref:%10.4f)"
# check W_l_hat values
print " "
print "Comparison with reference values of W_l_hat"
print " [Table I in P. Steinhardt, D. Nelson, and M. Ronchetti, "
print " Phys. Rev. B 28, 784 (1983).]"
print " "
variable w4hatref equal 0.159317
variable w6hatref equal 0.013161
variable w8hatref equal -0.058455
variable w10hatref equal -0.090130
variable w4hat equal c_avwlhat[2]
variable w6hat equal c_avwlhat[3]
variable w8hat equal c_avwlhat[4]
variable w10hat equal c_avwlhat[5]
print "w4hat = $(v_w4hat:%10.6f) delta = $(v_w4hat-v_w4hatref:%10.6f)"
print "w6hat = $(v_w6hat:%10.6f) delta = $(v_w6hat-v_w6hatref:%10.6f)"
print "w8hat = $(v_w8hat:%10.6f) delta = $(v_w8hat-v_w8hatref:%10.6f)"
print "w10hat = $(v_w10hat:%10.6f) delta = $(v_w10hat-v_w10hatref:%10.6f)"
print " "
print "*******************************************************************"
print " "

View File

@ -0,0 +1,88 @@
# Steinhardt-Nelson bond orientational order parameters for FCC
variable rcut equal 3.0
boundary p p p
atom_style atomic
neighbor 0.3 bin
neigh_modify delay 5
# create geometry
lattice fcc 1.0
region box block 0 3 0 3 0 3
create_box 1 box
create_atoms 1 box
mass 1 1.0
# LJ potentials
pair_style lj/cut ${rcut}
pair_coeff * * 1.0 1.0 ${rcut}
# 12 neighbors, perfect crystal
compute qlwlhat all orientorder/atom wl/hat yes
compute avql all reduce ave c_qlwlhat[1] c_qlwlhat[2] c_qlwlhat[3] c_qlwlhat[4] c_qlwlhat[5]
compute avwlhat all reduce ave c_qlwlhat[6] c_qlwlhat[7] c_qlwlhat[8] c_qlwlhat[9] c_qlwlhat[10]
thermo_style custom step temp epair etotal c_avql[*] c_avwlhat[*]
run 0
# check Q_l values
print " "
print "*******************************************************************"
print " "
print "Comparison with reference values of Q_l "
print " [Table I in W. Mickel, S. C. Kapfer,"
print " G. E. Schroeder-Turkand, K. Mecke, "
print " J. Chem. Phys. 138, 044501 (2013).]"
print " "
variable q4ref equal 0.190
variable q6ref equal 0.575
variable q8ref equal 0.404
variable q10ref equal 0.013
variable q12ref equal 0.600
variable q4 equal c_avql[1]
variable q6 equal c_avql[2]
variable q8 equal c_avql[3]
variable q10 equal c_avql[4]
variable q12 equal c_avql[5]
print "q4 = $(v_q4:%10.6f) delta = $(v_q4-v_q4ref:%10.4f)"
print "q6 = $(v_q6:%10.6f) delta = $(v_q6-v_q6ref:%10.4f)"
print "q8 = $(v_q8:%10.6f) delta = $(v_q8-v_q8ref:%10.4f)"
print "q10 = $(v_q10:%10.6f) delta = $(v_q10-v_q10ref:%10.4f)"
print "q12 = $(v_q12:%10.6f) delta = $(v_q12-v_q12ref:%10.4f)"
# check W_l_hat values
print " "
print "Comparison with reference values of W_l_hat"
print " [Table I in P. Steinhardt, D. Nelson, and M. Ronchetti, "
print " Phys. Rev. B 28, 784 (1983).]"
print " "
variable w4hatref equal -0.159316
variable w6hatref equal -0.013161
variable w8hatref equal 0.058454
variable w10hatref equal -0.090128
variable w4hat equal c_avwlhat[1]
variable w6hat equal c_avwlhat[2]
variable w8hat equal c_avwlhat[3]
variable w10hat equal c_avwlhat[4]
print "w4hat = $(v_w4hat:%10.6f) delta = $(v_w4hat-v_w4hatref:%10.6f)"
print "w6hat = $(v_w6hat:%10.6f) delta = $(v_w6hat-v_w6hatref:%10.6f)"
print "w8hat = $(v_w8hat:%10.6f) delta = $(v_w8hat-v_w8hatref:%10.6f)"
print "w10hat = $(v_w10hat:%10.6f) delta = $(v_w10hat-v_w10hatref:%10.6f)"
print " "
print "*******************************************************************"
print " "

106
examples/steinhardt/in.icos Normal file
View File

@ -0,0 +1,106 @@
# Steinhardt-Nelson bond orientational order parameters for icosahedral cluster
# W_6_hat is sensitive to icosohedral order
variable rcut equal 1.2 # a bit bigger than LJ Rmin
variable rcutred equal 0.75 # a bit bigger than 1/sqrt(2)
# create a perfect fcc crystallite
atom_style atomic
boundary s s s
lattice fcc 1.0 # neighbors at LJ Rmin
region box block 0 2 0 2 0 2
create_box 1 box
create_atoms 1 box
mass 1 1.0
region centralatom sphere 1 1 1 0.0 side in
group centralatom region centralatom
region mysphere sphere 1 1 1 ${rcutred} side out
delete_atoms region mysphere
# LJ potential
pair_style lj/cut 100.0
pair_coeff * * 1.0 1.0 100.0
# define output for central atom
compute qlwlhat all orientorder/atom wl/hat yes cutoff ${rcut} nnn NULL
compute avql centralatom reduce ave c_qlwlhat[1] c_qlwlhat[2] c_qlwlhat[3] c_qlwlhat[4] c_qlwlhat[5]
compute avwlhat centralatom reduce ave c_qlwlhat[6] c_qlwlhat[7] c_qlwlhat[8] c_qlwlhat[9] c_qlwlhat[10]
variable q6 equal c_avql[2]
variable w6hat equal c_avwlhat[2]
compute mype all pe/atom
compute centralatompe centralatom reduce ave c_mype
# gently equilibrate the crystallite
velocity all create 0.001 482748
fix 1 all nve
neighbor 0.3 bin
neigh_modify every 1 check no delay 0
timestep 0.003
thermo_style custom step temp epair etotal c_centralatompe v_q6 v_w6hat
thermo 10
run 10
# quench to icosehedral cluster
minimize 1.0e-10 1.0e-6 100 1000
# check Q_l values
print " "
print "*******************************************************************"
print " "
print "Comparison with reference values of Q_l "
print " [Table I in W. Mickel, S. C. Kapfer,"
print " G. E. Schroeder-Turkand, K. Mecke, "
print " J. Chem. Phys. 138, 044501 (2013).]"
print " "
variable q4ref equal 0.0
variable q6ref equal 0.663
variable q8ref equal 0.0
variable q10ref equal 0.363
variable q12ref equal 0.585
variable q4 equal c_avql[1]
variable q6 equal c_avql[2]
variable q8 equal c_avql[3]
variable q10 equal c_avql[4]
variable q12 equal c_avql[5]
print "q4 = $(v_q4:%10.6f) delta = $(v_q4-v_q4ref:%10.4f)"
print "q6 = $(v_q6:%10.6f) delta = $(v_q6-v_q6ref:%10.4f)"
print "q8 = $(v_q8:%10.6f) delta = $(v_q8-v_q8ref:%10.4f)"
print "q10 = $(v_q10:%10.6f) delta = $(v_q10-v_q10ref:%10.4f)"
print "q12 = $(v_q12:%10.6f) delta = $(v_q12-v_q12ref:%10.4f)"
# check W_l_hat values
print " "
print "Comparison with reference values of W_l_hat"
print " [Table I in P. Steinhardt, D. Nelson, and M. Ronchetti, "
print " Phys. Rev. B 28, 784 (1983).]"
print " "
variable w6hatref equal -0.169754
variable w10hatref equal -0.093967
variable w4hat equal c_avwlhat[1]
variable w6hat equal c_avwlhat[2]
variable w8hat equal c_avwlhat[3]
variable w10hat equal c_avwlhat[4]
variable w12hat equal c_avwlhat[5]
print "w6hat = $(v_w6hat:%10.6f) delta = $(v_w6hat-v_w6hatref:%10.6f)"
print "w10hat = $(v_w10hat:%10.6f) delta = $(v_w10hat-v_w10hatref:%10.6f)"
print " "
print "*******************************************************************"
print " "

View File

@ -43,12 +43,14 @@ using namespace std;
#define MY_EPSILON (10.0*2.220446049250313e-16)
#endif
#define QEPSILON 1.0e-6
/* ---------------------------------------------------------------------- */
ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg),
qlist(NULL), distsq(NULL), nearest(NULL), rlist(NULL),
qnarray(NULL), qnm_r(NULL), qnm_i(NULL)
qnarray(NULL), qnm_r(NULL), qnm_i(NULL), cglist(NULL)
{
if (narg < 3 ) error->all(FLERR,"Illegal compute orientorder/atom command");
@ -56,6 +58,8 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
nnn = 12;
cutsq = 0.0;
wlflag = 0;
wlhatflag = 0;
qlcompflag = 0;
// specify which orders to request
@ -96,27 +100,39 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
if (iarg+nqlist > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
qmax = 0;
for (int iw = 0; iw < nqlist; iw++) {
qlist[iw] = force->numeric(FLERR,arg[iarg+iw]);
if (qlist[iw] < 0)
for (int il = 0; il < nqlist; il++) {
qlist[il] = force->numeric(FLERR,arg[iarg+il]);
if (qlist[il] < 0)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (qlist[iw] > qmax) qmax = qlist[iw];
if (qlist[il] > qmax) qmax = qlist[il];
}
iarg += nqlist;
} else if (strcmp(arg[iarg],"wl") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (strcmp(arg[iarg+1],"yes") == 0) wlflag = 1;
else if (strcmp(arg[iarg+1],"no") == 0) wlflag = 0;
else error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"wl/hat") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (strcmp(arg[iarg+1],"yes") == 0) wlhatflag = 1;
else if (strcmp(arg[iarg+1],"no") == 0) wlhatflag = 0;
else error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"components") == 0) {
qlcompflag = 1;
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
qlcomp = force->numeric(FLERR,arg[iarg+1]);
if (qlcomp <= 0)
error->all(FLERR,"Illegal compute orientorder/atom command");
iqlcomp = -1;
for (int iw = 0; iw < nqlist; iw++)
if (qlcomp == qlist[iw]) {
iqlcomp = iw;
for (int il = 0; il < nqlist; il++)
if (qlcomp == qlist[il]) {
iqlcomp = il;
break;
}
if (iqlcomp < 0)
if (iqlcomp == -1)
error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"cutoff") == 0) {
@ -130,8 +146,10 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
} else error->all(FLERR,"Illegal compute orientorder/atom command");
}
if (qlcompflag) ncol = nqlist + 2*(2*qlcomp+1);
else ncol = nqlist;
ncol = nqlist;
if (wlflag) ncol += nqlist;
if (wlhatflag) ncol += nqlist;
if (qlcompflag) ncol += 2*(2*qlcomp+1);
peratom_flag = 1;
size_peratom_cols = ncol;
@ -151,7 +169,7 @@ ComputeOrientOrderAtom::~ComputeOrientOrderAtom()
memory->destroy(qlist);
memory->destroy(qnm_r);
memory->destroy(qnm_i);
memory->destroy(cglist);
}
/* ---------------------------------------------------------------------- */
@ -166,8 +184,8 @@ void ComputeOrientOrderAtom::init()
error->all(FLERR,"Compute orientorder/atom cutoff is "
"longer than pairwise cutoff");
memory->create(qnm_r,qmax,2*qmax+1,"orientorder/atom:qnm_r");
memory->create(qnm_i,qmax,2*qmax+1,"orientorder/atom:qnm_i");
memory->create(qnm_r,nqlist,2*qmax+1,"orientorder/atom:qnm_r");
memory->create(qnm_i,nqlist,2*qmax+1,"orientorder/atom:qnm_i");
// need an occasional full neighbor list
@ -183,6 +201,8 @@ void ComputeOrientOrderAtom::init()
if (strcmp(modify->compute[i]->style,"orientorder/atom") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute orientorder/atom");
if (wlflag || wlhatflag) init_clebsch_gordan();
}
/* ---------------------------------------------------------------------- */
@ -274,8 +294,8 @@ void ComputeOrientOrderAtom::compute_peratom()
// if not nnn neighbors, order parameter = 0;
if ((ncount == 0) || (ncount < nnn)) {
for (int iw = 0; iw < nqlist; iw++)
qn[iw] = 0.0;
for (int jj = 0; jj < ncol; jj++)
qn[jj] = 0.0;
continue;
}
@ -287,6 +307,7 @@ void ComputeOrientOrderAtom::compute_peratom()
}
calc_boop(rlist, ncount, qn, qlist, nqlist);
}
}
}
@ -403,13 +424,12 @@ void ComputeOrientOrderAtom::select3(int k, int n, double *arr, int *iarr, doubl
void ComputeOrientOrderAtom::calc_boop(double **rlist,
int ncount, double qn[],
int qlist[], int nqlist) {
for (int iw = 0; iw < nqlist; iw++) {
int n = qlist[iw];
qn[iw] = 0.0;
for(int m = 0; m < 2*n+1; m++) {
qnm_r[iw][m] = 0.0;
qnm_i[iw][m] = 0.0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m = 0; m < 2*l+1; m++) {
qnm_r[il][m] = 0.0;
qnm_i[il][m] = 0.0;
}
}
@ -433,24 +453,24 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
expphi_i *= rxymaginv;
}
for (int iw = 0; iw < nqlist; iw++) {
int n = qlist[iw];
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
qnm_r[iw][n] += polar_prefactor(n, 0, costheta);
qnm_r[il][l] += polar_prefactor(l, 0, costheta);
double expphim_r = expphi_r;
double expphim_i = expphi_i;
for(int m = 1; m <= +n; m++) {
double prefactor = polar_prefactor(n, m, costheta);
for(int m = 1; m <= +l; m++) {
double prefactor = polar_prefactor(l, m, costheta);
double c_r = prefactor * expphim_r;
double c_i = prefactor * expphim_i;
qnm_r[iw][m+n] += c_r;
qnm_i[iw][m+n] += c_i;
qnm_r[il][m+l] += c_r;
qnm_i[il][m+l] += c_i;
if(m & 1) {
qnm_r[iw][-m+n] -= c_r;
qnm_i[iw][-m+n] += c_i;
qnm_r[il][-m+l] -= c_r;
qnm_i[il][-m+l] += c_i;
} else {
qnm_r[iw][-m+n] += c_r;
qnm_i[iw][-m+n] -= c_i;
qnm_r[il][-m+l] += c_r;
qnm_i[il][-m+l] -= c_i;
}
double tmp_r = expphim_r*expphi_r - expphim_i*expphi_i;
double tmp_i = expphim_r*expphi_i + expphim_i*expphi_r;
@ -461,30 +481,110 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
}
}
double fac = sqrt(MY_4PI) / ncount;
double normfac = 0.0;
for (int iw = 0; iw < nqlist; iw++) {
int n = qlist[iw];
// convert sums to averages
double facn = 1.0 / ncount;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m = 0; m < 2*l+1; m++) {
qnm_r[il][m] *= facn;
qnm_i[il][m] *= facn;
}
}
// calculate Q_l
// NOTE: optional W_l_hat and components of Q_qlcomp use these stored Q_l values
int jj = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double qnormfac = sqrt(MY_4PI/(2*l+1));
double qm_sum = 0.0;
for(int m = 0; m < 2*n+1; m++) {
qm_sum += qnm_r[iw][m]*qnm_r[iw][m] + qnm_i[iw][m]*qnm_i[iw][m];
// printf("Ylm^2 = %d %d %g\n",n,m,
// qnm_r[iw][m]*qnm_r[iw][m] + qnm_i[iw][m]*qnm_i[iw][m]);
}
qn[iw] = fac * sqrt(qm_sum / (2*n+1));
if (qlcompflag && iqlcomp == iw) normfac = 1.0/sqrt(qm_sum);
for(int m = 0; m < 2*l+1; m++)
qm_sum += qnm_r[il][m]*qnm_r[il][m] + qnm_i[il][m]*qnm_i[il][m];
qn[jj++] = qnormfac * sqrt(qm_sum);
}
// output of the complex vector
// TODO:
// 1. [done]Need to allocate extra memory in qnarray[] for this option
// 2. [done]Need to add keyword option
// 3. [done]Need to caclulate Clebsch-Gordan/Wigner 3j coefficients
// (Can try getting them from boop.py first)
// 5. [done]Compare to bcc values in /Users/athomps/netapp/codes/MatMiner/matminer/matminer/featurizers/boop.py
// 6. [done]I get the right answer for W_l, but need to make sure that factor of 1/sqrt(l+1) is right for cglist
// 7. Add documentation
// 8. [done] run valgrind
// 9. [done] Add Wlhat
// 10. Update memory_usage()
// 11. Add exact FCC values for W_4, W_4_hat
// calculate W_l
if (wlflag) {
int idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double wlsum = 0.0;
for(int m1 = 0; m1 < 2*l+1; m1++) {
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
int m = m1 + m2 - l;
double qm1qm2_r = qnm_r[il][m1]*qnm_r[il][m2] - qnm_i[il][m1]*qnm_i[il][m2];
double qm1qm2_i = qnm_r[il][m1]*qnm_i[il][m2] + qnm_i[il][m1]*qnm_r[il][m2];
wlsum += (qm1qm2_r*qnm_r[il][m] + qm1qm2_i*qnm_i[il][m])*cglist[idxcg_count];
idxcg_count++;
}
}
qn[jj++] = wlsum/sqrt(2*l+1);
}
}
// calculate W_l_hat
if (wlhatflag) {
int idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double wlsum = 0.0;
for(int m1 = 0; m1 < 2*l+1; m1++) {
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
int m = m1 + m2 - l;
double qm1qm2_r = qnm_r[il][m1]*qnm_r[il][m2] - qnm_i[il][m1]*qnm_i[il][m2];
double qm1qm2_i = qnm_r[il][m1]*qnm_i[il][m2] + qnm_i[il][m1]*qnm_r[il][m2];
wlsum += (qm1qm2_r*qnm_r[il][m] + qm1qm2_i*qnm_i[il][m])*cglist[idxcg_count];
idxcg_count++;
}
}
// Whats = [w/(q/np.sqrt(np.pi * 4 / (2 * l + 1)))**3 if abs(q) > 1.0e-6 else 0.0 for l,q,w in zip(range(1,max_l+1),Qs,Ws)]
if (qn[il] < QEPSILON)
qn[jj++] = 0.0;
else {
double qnormfac = sqrt(MY_4PI/(2*l+1));
double qnfac = qnormfac/qn[il];
qn[jj++] = wlsum/sqrt(2*l+1)*(qnfac*qnfac*qnfac);
}
}
}
// Calculate components of Q_l, for l=qlcomp
if (qlcompflag) {
int j = nqlist;
for(int m = 0; m < 2*qlcomp+1; m++) {
qn[j++] = qnm_r[iqlcomp][m] * normfac;
qn[j++] = qnm_i[iqlcomp][m] * normfac;
int il = iqlcomp;
int l = qlcomp;
if (qn[il] < QEPSILON)
for(int m = 0; m < 2*l+1; m++) {
qn[jj++] = 0.0;
qn[jj++] = 0.0;
}
else {
double qnormfac = sqrt(MY_4PI/(2*l+1));
double qnfac = qnormfac/qn[il];
for(int m = 0; m < 2*l+1; m++) {
qn[jj++] = qnm_r[il][m] * qnfac;
qn[jj++] = qnm_i[il][m] * qnfac;
}
}
}
}
/* ----------------------------------------------------------------------
@ -542,3 +642,258 @@ double ComputeOrientOrderAtom::associated_legendre(int l, int m, double x)
return p;
}
/* ----------------------------------------------------------------------
assign Clebsch-Gordan coefficients
using the quasi-binomial formula VMK 8.2.1(3)
specialized for case j1=j2=j=l
------------------------------------------------------------------------- */
void ComputeOrientOrderAtom::init_clebsch_gordan()
{
double sum,dcg,sfaccg, sfac1, sfac2;
int m, aa2, bb2, cc2;
int ifac, idxcg_count;
idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m1 = 0; m1 < 2*l+1; m1++)
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++)
idxcg_count++;
}
idxcg_max = idxcg_count;
memory->create(cglist, idxcg_max, "computeorientorderatom:cglist");
idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m1 = 0; m1 < 2*l+1; m1++) {
aa2 = m1 - l;
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
bb2 = m2 - l;
m = aa2 + bb2 + l;
sum = 0.0;
for (int z = MAX(0, MAX(-aa2, bb2));
z <= MIN(l, MIN(l - aa2, l + bb2)); z++) {
ifac = z % 2 ? -1 : 1;
sum += ifac /
(factorial(z) *
factorial(l - z) *
factorial(l - aa2 - z) *
factorial(l + bb2 - z) *
factorial(aa2 + z) *
factorial(-bb2 + z));
}
cc2 = m - l;
sfaccg = sqrt(factorial(l + aa2) *
factorial(l - aa2) *
factorial(l + bb2) *
factorial(l - bb2) *
factorial(l + cc2) *
factorial(l - cc2) *
(2*l + 1));
sfac1 = factorial(3*l + 1);
sfac2 = factorial(l);
dcg = sqrt(sfac2*sfac2*sfac2 / sfac1);
cglist[idxcg_count] = sum * dcg * sfaccg;
idxcg_count++;
}
}
}
}
/* ----------------------------------------------------------------------
factorial n, wrapper for precomputed table
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::factorial(int n)
{
if (n < 0 || n > nmaxfactorial) {
char str[128];
sprintf(str, "Invalid argument to factorial %d", n);
error->all(FLERR, str);
}
return nfac_table[n];
}
/* ----------------------------------------------------------------------
factorial n table, size SNA::nmaxfactorial+1
------------------------------------------------------------------------- */
const double ComputeOrientOrderAtom::nfac_table[] = {
1,
1,
2,
6,
24,
120,
720,
5040,
40320,
362880,
3628800,
39916800,
479001600,
6227020800,
87178291200,
1307674368000,
20922789888000,
355687428096000,
6.402373705728e+15,
1.21645100408832e+17,
2.43290200817664e+18,
5.10909421717094e+19,
1.12400072777761e+21,
2.5852016738885e+22,
6.20448401733239e+23,
1.5511210043331e+25,
4.03291461126606e+26,
1.08888694504184e+28,
3.04888344611714e+29,
8.8417619937397e+30,
2.65252859812191e+32,
8.22283865417792e+33,
2.63130836933694e+35,
8.68331761881189e+36,
2.95232799039604e+38,
1.03331479663861e+40,
3.71993326789901e+41,
1.37637530912263e+43,
5.23022617466601e+44,
2.03978820811974e+46,
8.15915283247898e+47,
3.34525266131638e+49,
1.40500611775288e+51,
6.04152630633738e+52,
2.65827157478845e+54,
1.1962222086548e+56,
5.50262215981209e+57,
2.58623241511168e+59,
1.24139155925361e+61,
6.08281864034268e+62,
3.04140932017134e+64,
1.55111875328738e+66,
8.06581751709439e+67,
4.27488328406003e+69,
2.30843697339241e+71,
1.26964033536583e+73,
7.10998587804863e+74,
4.05269195048772e+76,
2.35056133128288e+78,
1.3868311854569e+80,
8.32098711274139e+81,
5.07580213877225e+83,
3.14699732603879e+85,
1.98260831540444e+87,
1.26886932185884e+89,
8.24765059208247e+90,
5.44344939077443e+92,
3.64711109181887e+94,
2.48003554243683e+96,
1.71122452428141e+98,
1.19785716699699e+100,
8.50478588567862e+101,
6.12344583768861e+103,
4.47011546151268e+105,
3.30788544151939e+107,
2.48091408113954e+109,
1.88549470166605e+111,
1.45183092028286e+113,
1.13242811782063e+115,
8.94618213078297e+116,
7.15694570462638e+118,
5.79712602074737e+120,
4.75364333701284e+122,
3.94552396972066e+124,
3.31424013456535e+126,
2.81710411438055e+128,
2.42270953836727e+130,
2.10775729837953e+132,
1.85482642257398e+134,
1.65079551609085e+136,
1.48571596448176e+138,
1.3520015276784e+140,
1.24384140546413e+142,
1.15677250708164e+144,
1.08736615665674e+146,
1.03299784882391e+148,
9.91677934870949e+149,
9.61927596824821e+151,
9.42689044888324e+153,
9.33262154439441e+155,
9.33262154439441e+157,
9.42594775983835e+159,
9.61446671503512e+161,
9.90290071648618e+163,
1.02990167451456e+166,
1.08139675824029e+168,
1.14628056373471e+170,
1.22652020319614e+172,
1.32464181945183e+174,
1.44385958320249e+176,
1.58824554152274e+178,
1.76295255109024e+180,
1.97450685722107e+182,
2.23119274865981e+184,
2.54355973347219e+186,
2.92509369349301e+188,
3.3931086844519e+190,
3.96993716080872e+192,
4.68452584975429e+194,
5.5745857612076e+196,
6.68950291344912e+198,
8.09429852527344e+200,
9.8750442008336e+202,
1.21463043670253e+205,
1.50614174151114e+207,
1.88267717688893e+209,
2.37217324288005e+211,
3.01266001845766e+213,
3.8562048236258e+215,
4.97450422247729e+217,
6.46685548922047e+219,
8.47158069087882e+221,
1.118248651196e+224,
1.48727070609069e+226,
1.99294274616152e+228,
2.69047270731805e+230,
3.65904288195255e+232,
5.01288874827499e+234,
6.91778647261949e+236,
9.61572319694109e+238,
1.34620124757175e+241,
1.89814375907617e+243,
2.69536413788816e+245,
3.85437071718007e+247,
5.5502938327393e+249,
8.04792605747199e+251,
1.17499720439091e+254,
1.72724589045464e+256,
2.55632391787286e+258,
3.80892263763057e+260,
5.71338395644585e+262,
8.62720977423323e+264,
1.31133588568345e+267,
2.00634390509568e+269,
3.08976961384735e+271,
4.78914290146339e+273,
7.47106292628289e+275,
1.17295687942641e+278,
1.85327186949373e+280,
2.94670227249504e+282,
4.71472363599206e+284,
7.59070505394721e+286,
1.22969421873945e+289,
2.0044015765453e+291,
3.28721858553429e+293,
5.42391066613159e+295,
9.00369170577843e+297,
1.503616514865e+300, // nmaxfactorial = 167
};

View File

@ -33,7 +33,7 @@ class ComputeOrientOrderAtom : public Compute {
void compute_peratom();
double memory_usage();
double cutsq;
int iqlcomp, qlcomp, qlcompflag;
int iqlcomp, qlcomp, qlcompflag, wlflag, wlhatflag;
int *qlist;
int nqlist;
@ -55,6 +55,13 @@ class ComputeOrientOrderAtom : public Compute {
double polar_prefactor(int, int, double);
double associated_legendre(int, int, double);
static const int nmaxfactorial = 167;
static const double nfac_table[];
double factorial(int);
void init_clebsch_gordan();
double *cglist; // Clebsch-Gordan coeffs
int idxcg_max;
};
}