Merge pull request #1469 from julient31/pppm_spin

Adding PPPM and Ewald solvers for electric dipoles and magnetic spins
This commit is contained in:
Axel Kohlmeyer
2019-06-12 14:50:18 -04:00
committed by GitHub
49 changed files with 7573 additions and 35 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -0,0 +1,42 @@
\documentclass[preview]{standalone}
\usepackage{varwidth}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amssymb,graphics,bm,setspace}
\begin{document}
\begin{varwidth}{50in}
\begin{equation}
\mathcal{H}_{\rm long}=
-\frac{\mu_{0} \left( \mu_B\right)^2}{4\pi}
\sum_{i,j,i\neq j}^{N}
\frac{g_i g_j}{r_{ij}^3}
\Big(3
\left(\bm{e}_{ij}\cdot \bm{s}_{i}\right)
\left(\bm{e}_{ij}\cdot \bm{s}_{j}\right)
-\bm{s}_i\cdot\bm{s}_j \Big)
\nonumber
\end{equation}
\begin{equation}
\bm{\omega}_i =
\frac{\mu_0 (\mu_B)^2}{4\pi\hbar}\sum_{j}
\frac{g_i g_j}{r_{ij}^3}
\, \Big(
3\,(\bm{e}_{ij}\cdot\bm{s}_{j})\bm{e}_{ij}
-\bm{s}_{j} \Big) \nonumber
\end{equation}
\begin{equation}
\bm{F}_i =
\frac{3\, \mu_0 (\mu_B)^2}{4\pi} \sum_j
\frac{g_i g_j}{r_{ij}^4}
\Big[\big( (\bm{s}_i\cdot\bm{s}_j)
-5(\bm{e}_{ij}\cdot\bm{s}_i)
(\bm{e}_{ij}\cdot\bm{s}_j)\big) \bm{e}_{ij}+
\big(
(\bm{e}_{ij}\cdot\bm{s}_i)\bm{s}_j+
(\bm{e}_{ij}\cdot\bm{s}_j)\bm{s}_i
\big)
\Big]
\nonumber
\end{equation}
\end{varwidth}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View File

@ -0,0 +1,20 @@
\documentclass[preview]{standalone}
\usepackage{varwidth}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amssymb,graphics,bm,setspace}
\begin{document}
\begin{varwidth}{50in}
\begin{equation}
\mathcal{H}_{\rm long}=
-\frac{\mu_{0} \left( \mu_B\right)^2}{4\pi}
\sum_{i,j,i\neq j}^{N}
\frac{g_i g_j}{r_{ij}^3}
\Big(3
\left(\bm{e}_{ij}\cdot \bm{s}_{i}\right)
\left(\bm{e}_{ij}\cdot \bm{s}_{j}\right)
-\bm{s}_i\cdot\bm{s}_j \Big)
\nonumber
\end{equation}
\end{varwidth}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -0,0 +1,23 @@
\documentclass[preview]{standalone}
\usepackage{varwidth}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amssymb,graphics,bm,setspace}
\begin{document}
\begin{varwidth}{50in}
\begin{equation}
\bm{F}_i =
\frac{\mu_0 (\mu_B)^2}{4\pi} \sum_j
\frac{g_i g_j}{r_{ij}^4}
\Big[\big( (\bm{s}_i\cdot\bm{s}_j)
-5(\bm{e}_{ij}\cdot\bm{s}_i)
(\bm{e}_{ij}\cdot\bm{s}_j)\big) \bm{e}_{ij}+
\big(
(\bm{e}_{ij}\cdot\bm{s}_i)\bm{s}_j+
(\bm{e}_{ij}\cdot\bm{s}_j)\bm{s}_i
\big)
\Big]
\nonumber
\end{equation}
\end{varwidth}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.2 KiB

View File

@ -0,0 +1,17 @@
\documentclass[preview]{standalone}
\usepackage{varwidth}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amssymb,graphics,bm,setspace}
\begin{document}
\begin{varwidth}{50in}
\begin{equation}
\bm{\omega}_i =
\frac{\mu_0 (\mu_B)^2}{4\pi\hbar}\sum_{j}
\frac{g_i g_j}{r_{ij}^3}
\, \Big(
3\,(\bm{e}_{ij}\cdot\bm{s}_{j})\bm{e}_{ij}
-\bm{s}_{j} \Big) \nonumber
\end{equation}
\end{varwidth}
\end{document}

View File

@ -392,7 +392,8 @@ boundaries can be set using "boundary"_boundary.html (the slab
approximation in not needed). The {slab} keyword is not currently
supported by Ewald or PPPM when using a triclinic simulation cell. The
slab correction has also been extended to point dipole interactions
"(Klapp)"_#Klapp in "kspace_style"_kspace_style.html {ewald/disp}.
"(Klapp)"_#Klapp in "kspace_style"_kspace_style.html {ewald/disp},
{ewald/dipole}, and {pppm/dipole}.
NOTE: If you wish to apply an electric field in the Z-direction, in
conjunction with the {slab} keyword, you should do it by adding

View File

@ -20,6 +20,10 @@ style = {none} or {ewald} or {ewald/disp} or {ewald/omp} or {pppm} or {pppm/cg}
accuracy = desired relative error in forces
{ewald/omp} value = accuracy
accuracy = desired relative error in forces
{ewald/dipole} value = accuracy
accuracy = desired relative error in forces
{ewald/dipole/spin} value = accuracy
accuracy = desired relative error in forces
{pppm} value = accuracy
accuracy = desired relative error in forces
{pppm/cg} values = accuracy (smallq)
@ -47,6 +51,10 @@ style = {none} or {ewald} or {ewald/disp} or {ewald/omp} or {pppm} or {pppm/cg}
accuracy = desired relative error in forces
{pppm/stagger} value = accuracy
accuracy = desired relative error in forces
{pppm/dipole} value = accuracy
accuracy = desired relative error in forces
{pppm/dipole/spin} value = accuracy
accuracy = desired relative error in forces
{msm} value = accuracy
accuracy = desired relative error in forces
{msm/cg} value = accuracy (smallq)
@ -105,9 +113,15 @@ The {ewald/disp} style adds a long-range dispersion sum option for
but in a more efficient manner than the {ewald} style. The 1/r^6
capability means that Lennard-Jones or Buckingham potentials can be
used without a cutoff, i.e. they become full long-range potentials.
The {ewald/disp} style can also be used with point-dipoles
"(Toukmaji)"_#Toukmaji and is currently the only kspace solver in
LAMMPS with this capability.
The {ewald/disp} style can also be used with point-dipoles, see
"(Toukmaji)"_#Toukmaji.
The {ewald/dipole} style adds long-range standard Ewald summations
for dipole-dipole interactions, see "(Toukmaji)"_#Toukmaji.
The {ewald/dipole/spin} style adds long-range standard Ewald
summations for magnetic dipole-dipole interactions between
magnetic spins.
:line
@ -128,6 +142,12 @@ The optional {smallq} argument defines the cutoff for the absolute
charge value which determines whether a particle is considered charged
or not. Its default value is 1.0e-5.
The {pppm/dipole} style invokes a particle-particle particle-mesh solver
for dipole-dipole interactions, following the method of "(Cerda)"_#Cerda2008.
The {pppm/dipole/spin} style invokes a particle-particle particle-mesh solver
for magnetic dipole-dipole interactions between magnetic spins.
The {pppm/tip4p} style is identical to the {pppm} style except that it
adds a charge at the massless 4th site in each TIP4P water molecule.
It should be used with "pair styles"_pair_style.html with a
@ -317,7 +337,10 @@ using ideas from chapter 3 of "(Hardy)"_#Hardy2006, with equation 3.197
of particular note. When using {msm} with non-periodic boundary
conditions, it is expected that the error estimation will be too
pessimistic. RMS force errors for dipoles when using {ewald/disp}
are estimated using equations 33 and 46 of "(Wang)"_#Wang.
or {ewald/dipole} are estimated using equations 33 and 46 of
"(Wang)"_#Wang. The RMS force errors for {pppm/dipole} are estimated
using the equations in "(Cerda)"_#Cerda2008.
See the "kspace_modify"_kspace_modify.html command for additional
options of the K-space solvers that can be set, including a {force}
@ -464,6 +487,9 @@ Illinois at Urbana-Champaign, (2006).
:link(Sutmann2013)
[(Sutmann)] Sutmann, Arnold, Fahrenberger, et. al., Physical review / E 88(6), 063308 (2013)
:link(Cerda2008)
[(Cerda)] Cerda, Ballenegger, Lenz, Holm, J Chem Phys 129, 234104 (2008)
:link(Who2012)
[(Who)] Who, Author2, Author3, J of Long Range Solvers, 35, 164-177
(2012).

View File

@ -0,0 +1,89 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
pair_style spin/dipole/cut command :h3
pair_style spin/dipole/long command :h3
[Syntax:]
pair_style spin/dipole/cut cutoff
pair_style spin/dipole/long cutoff :pre
cutoff = global cutoff for magnetic dipole energy and forces
(optional) (distance units) :ulb,l
:ule
[Examples:]
pair_style spin/dipole/cut 10.0
pair_coeff * * 10.0
pair_coeff 2 3 8.0 :pre
pair_style spin/dipole/long 9.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0 scale 0.5
pair_coeff 2 3 1.0 1.0 2.5 4.0 :pre
[Description:]
Style {spin/dipole/cut} computes a short-range dipole-dipole
interaction between pairs of magnetic particles that each
have a magnetic spin.
The magnetic dipole-dipole interactions are computed by the
following formulas for the magnetic energy, magnetic precession
vector omega and mechanical force between particles I and J.
:c,image(Eqs/pair_spin_dipole.jpg)
where si and sj are the spin on two magnetic particles,
r is their separation distance, and the vector e = (Ri - Rj)/|Ri - Rj|
is the direction vector between the two particles.
Style {spin/dipole/long} computes long-range magnetic dipole-dipole
interaction.
A "kspace_style"_kspace_style.html must be defined to
use this pair style. Currently, "kspace_style
ewald/dipole/spin"_kspace_style.html and "kspace_style
pppm/dipole/spin"_kspace_style.html support long-range magnetic
dipole-dipole interactions.
:line
The "pair_modify"_pair_modify.html table option is not relevant
for this pair style.
This pair style does not support the "pair_modify"_pair_modify.html
tail option for adding long-range tail corrections to energy and
pressure.
This pair style writes its information to "binary restart
files"_restart.html, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.
[Restrictions:]
The {spin/dipole/cut} and {spin/dipole/long} styles are part of
the SPIN package. They are only enabled if LAMMPS was built with that
package. See the "Build package"_Build_package.html doc page for more
info.
Using dipole/spin pair styles with {electron} "units"_units.html is not
currently supported.
[Related commands:]
"pair_coeff"_pair_coeff.html, "kspace_style"_kspace_style.html
"fix nve/spin"_fix_nve_spin.html
[Default:] none
:line
:link(Allen2)
[(Allen)] Allen and Tildesley, Computer Simulation of Liquids,
Clarendon Press, Oxford, 1987.