compatibility with new lammps-user-pace library and cleanup

This commit is contained in:
James Michael Goff
2023-09-19 17:24:15 -06:00
parent f9cc60cfd5
commit db4f55b76f
11 changed files with 46 additions and 117 deletions

View File

@ -0,0 +1,9 @@
# This folder contains examples for pace in LAMMPS
## Compute pace usage
compute/latte_cell_0.data # lammps data file with C-H-O structure
compute/latte_cell_0.xyz # xyz file with C-H-O structure
compute/coupling_coefficients.yace # .yace file containing coupling coefficients (or ACE potential parameters)
compute/in.lammps # input file for calling `compute pace`

View File

View File

@ -0,0 +1,22 @@
#info all out log
units metal
atom_style atomic
boundary p p p
atom_modify map hash
boundary p p p
read_data latte_cell_0.data
mass 1 1.00
mass 2 14.00
mass 3 15.999
# potential settings
pair_style zero 5.7
pair_coeff * *
compute pace all pace coupling_coefficients.yace 1 0
thermo 1
thermo_style custom step temp c_pace[1][183]
run 0

View File

@ -1,5 +0,0 @@
Check that seg fault doesn't occur by doing:
./loop.sh
which will loop through many runs of `python test_en.py`.

View File

@ -1,8 +0,0 @@
for (( ; ; ))
do
python test_en.py
# terminate loop if seg fault
if [[ $? -eq 139 ]]; then
break
fi
done

View File

@ -1,86 +0,0 @@
from __future__ import print_function
import sys, os
import ctypes
import numpy as np
from ase.io import read,write
from lammps import lammps, LMP_TYPE_ARRAY, LMP_STYLE_GLOBAL
# get MPI settings from LAMMPS
def run_struct(f):
file_prefix = f.split('.')[0]
atoms = read(f)
lmp = lammps()
me = lmp.extract_setting("world_rank")
nprocs = lmp.extract_setting("world_size")
write('%s.data' % file_prefix,atoms,format='lammps-data')
cmds = ["-screen", "none", "-log", "none"]
lmp = lammps(cmdargs = cmds)
print("Made LAMMPS instance")
def run_lammps(dgradflag):
# simulation settings
fname = file_prefix
lmp.command("clear")
lmp.command("info all out log")
lmp.command('units metal')
lmp.command('atom_style atomic')
lmp.command("boundary p p p")
lmp.command("atom_modify map hash")
lmp.command('neighbor 2.3 bin')
# boundary
lmp.command('boundary p p p')
# read atoms
lmp.command('read_data %s.data' % fname )
lmp.command('mass 1 1.00')
lmp.command('mass 2 14.00')
lmp.command('mass 3 15.999')
# potential settings
lmp.command(f"pair_style zero 5.7")
lmp.command(f"pair_coeff * *")
if dgradflag:
lmp.command(f"compute pace all pace coupling_coefficients.yace 1 1")
else:
lmp.command(f"compute pace all pace coupling_coefficients.yace 1 0 ")
# run
lmp.command(f"thermo 100")
lmp.command(f"run {nsteps}")
# declare simulation/structure variables
nsteps = 0
ntypes = 3
# declare compute pace variables
bikflag = 1
# NUMBER of descriptors
nd = 91
dgradflag = 0
run_lammps(dgradflag)
lmp_pace = lmp.numpy.extract_compute("pace", LMP_STYLE_GLOBAL, LMP_TYPE_ARRAY)
print ('global shape',np.shape(lmp_pace))
np.save('%s_chi_i.npy' % file_prefix,lmp_pace)
lmp.close()
del lmp
return None
import glob
for f in sorted(glob.glob('*.xyz')):
print ('running %s' % f)
run_struct(f)

View File

@ -77,6 +77,7 @@ ComputePACE::ComputePACE(LAMMPS *lmp, int narg, char **arg) :
//read in file with CG coefficients or c_tilde coefficients //read in file with CG coefficients or c_tilde coefficients
auto potential_file_name = utils::get_potential_file_path(arg[3]); auto potential_file_name = utils::get_potential_file_path(arg[3]);
delete acecimpl -> basis_set;
acecimpl -> basis_set = new ACECTildeBasisSet(potential_file_name); acecimpl -> basis_set = new ACECTildeBasisSet(potential_file_name);
double cut = acecimpl -> basis_set->cutoffmax; double cut = acecimpl -> basis_set->cutoffmax;
cutmax = acecimpl -> basis_set->cutoffmax; cutmax = acecimpl -> basis_set->cutoffmax;
@ -138,6 +139,7 @@ ComputePACE::ComputePACE(LAMMPS *lmp, int narg, char **arg) :
ComputePACE::~ComputePACE() ComputePACE::~ComputePACE()
{ {
delete acecimpl;
memory->destroy(pace); memory->destroy(pace);
memory->destroy(paceall); memory->destroy(paceall);
memory->destroy(cutsq); memory->destroy(cutsq);
@ -244,10 +246,6 @@ void ComputePACE::compute_array()
NS_TYPE *ns; NS_TYPE *ns;
LS_TYPE *ls; LS_TYPE *ls;
int n_r1, n_rp = 0;
n_r1 = acecimpl -> basis_set->total_basis_size_rank1[0];
n_rp = acecimpl -> basis_set->total_basis_size[0];
const int inum = list->inum; const int inum = list->inum;
const int* const ilist = list->ilist; const int* const ilist = list->ilist;
const int* const numneigh = list->numneigh; const int* const numneigh = list->numneigh;
@ -285,15 +283,18 @@ void ComputePACE::compute_array()
const int typeoffset_local = ndims_peratom*nvalues*(itype-1); const int typeoffset_local = ndims_peratom*nvalues*(itype-1);
const int typeoffset_global = nvalues*(itype-1); const int typeoffset_global = nvalues*(itype-1);
delete acecimpl -> ace;
acecimpl -> ace = new ACECTildeEvaluator(*acecimpl -> basis_set); acecimpl -> ace = new ACECTildeEvaluator(*acecimpl -> basis_set);
acecimpl -> ace->compute_projections = 1;
acecimpl -> ace->compute_b_grad = 1;
int n_r1, n_rp = 0; int n_r1, n_rp = 0;
n_r1 = basis_set->total_basis_size_rank1[0]; n_r1 = acecimpl -> basis_set->total_basis_size_rank1[0];
n_rp = basis_set->total_basis_size[0]; n_rp = acecimpl -> basis_set->total_basis_size[0];
int ncoeff = n_r1 + n_rp; int ncoeff = n_r1 + n_rp;
acecimpl -> ace->element_type_mapping.init(ntypes+1); acecimpl -> ace->element_type_mapping.init(ntypes+1);
for (int ik = 1; ik <= ntypes; ik++) { for (int ik = 1; ik <= ntypes; ik++) {
for(int mu = 0; mu < basis_set->nelements; mu++){ for(int mu = 0; mu < acecimpl -> basis_set ->nelements; mu++){
if (mu != -1) { if (mu != -1) {
if (mu == ik - 1) { if (mu == ik - 1) {
map[ik] = mu; map[ik] = mu;
@ -336,7 +337,7 @@ void ComputePACE::compute_array()
// resize the neighbor cache after setting the basis // resize the neighbor cache after setting the basis
acecimpl -> ace->resize_neighbours_cache(max_jnum); acecimpl -> ace->resize_neighbours_cache(max_jnum);
acecimpl -> ace->compute_atom(i, atom->x, atom->type, list->numneigh[i], list->firstneigh[i]); acecimpl -> ace->compute_atom(i, atom->x, atom->type, list->numneigh[i], list->firstneigh[i]);
Array1D<DOUBLE_TYPE> Bs =ace->B_all; Array1D<DOUBLE_TYPE> Bs = acecimpl -> ace -> projections;
for (int jj = 0; jj < jnum; jj++) { for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj]; const int j = jlist[jj];
@ -345,14 +346,13 @@ void ComputePACE::compute_array()
double *pacedi = pace_peratom[i]+typeoffset_local; double *pacedi = pace_peratom[i]+typeoffset_local;
double *pacedj = pace_peratom[j]+typeoffset_local; double *pacedj = pace_peratom[j]+typeoffset_local;
Array3D<DOUBLE_TYPE> fs = acecimpl -> ace->neighbours_dB;
//force array in (func_ind,neighbour_ind,xyz_ind) format //force array in (func_ind,neighbour_ind,xyz_ind) format
// dimension: (n_descriptors,max_jnum,3) // dimension: (n_descriptors,max_jnum,3)
//example to access entries for neighbour jj after running compute_atom for atom i: //example to access entries for neighbour jj after running compute_atom for atom i:
for (int func_ind =0; func_ind < n_r1 + n_rp; func_ind++){ for (int func_ind =0; func_ind < n_r1 + n_rp; func_ind++){
DOUBLE_TYPE fx_dB = fs(func_ind,jj,0); DOUBLE_TYPE fx_dB = acecimpl -> ace -> neighbours_dB(func_ind,jj,0);
DOUBLE_TYPE fy_dB = fs(func_ind,jj,1); DOUBLE_TYPE fy_dB = acecimpl -> ace -> neighbours_dB(func_ind,jj,1);
DOUBLE_TYPE fz_dB = fs(func_ind,jj,2); DOUBLE_TYPE fz_dB = acecimpl -> ace -> neighbours_dB(func_ind,jj,2);
pacedi[func_ind] += fx_dB; pacedi[func_ind] += fx_dB;
pacedi[func_ind+yoffset] += fy_dB; pacedi[func_ind+yoffset] += fy_dB;
pacedi[func_ind+zoffset] += fz_dB; pacedi[func_ind+zoffset] += fz_dB;
@ -362,15 +362,14 @@ void ComputePACE::compute_array()
} }
} else { } else {
//printf("inside dBi/dRj logical : ncoeff = %d \n", ncoeff); //printf("inside dBi/dRj logical : ncoeff = %d \n", ncoeff);
Array3D<DOUBLE_TYPE> fs = acecimpl -> ace->neighbours_dB;
for (int iicoeff = 0; iicoeff < ncoeff; iicoeff++) { for (int iicoeff = 0; iicoeff < ncoeff; iicoeff++) {
// add to pace array for this proc // add to pace array for this proc
//printf("inside dBi/dRj loop\n"); //printf("inside dBi/dRj loop\n");
// dBi/dRj // dBi/dRj
DOUBLE_TYPE fx_dB = fs(iicoeff,jj,0); DOUBLE_TYPE fx_dB = acecimpl -> ace -> neighbours_dB(iicoeff,jj,0);
DOUBLE_TYPE fy_dB = fs(iicoeff,jj,1); DOUBLE_TYPE fy_dB = acecimpl -> ace -> neighbours_dB(iicoeff,jj,1);
DOUBLE_TYPE fz_dB = fs(iicoeff,jj,2); DOUBLE_TYPE fz_dB = acecimpl -> ace -> neighbours_dB(iicoeff,jj,2);
pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][iicoeff+3] -= fx_dB; pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][iicoeff+3] -= fx_dB;
pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][iicoeff+3] -= fy_dB; pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][iicoeff+3] -= fy_dB;
pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][iicoeff+3] -= fz_dB; pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][iicoeff+3] -= fz_dB;
@ -395,10 +394,8 @@ void ComputePACE::compute_array()
pace[irow][k++] += Bs(icoeff); pace[irow][k++] += Bs(icoeff);
} }
} }
delete acecimpl -> ace;
} //group bit } //group bit
} // for ii loop } // for ii loop
delete acecimpl -> basis_set;
// accumulate force contributions to global array // accumulate force contributions to global array
if (!dgradflag){ if (!dgradflag){
for (int itype = 0; itype < atom->ntypes; itype++) { for (int itype = 0; itype < atom->ntypes; itype++) {