Merge remote-tracking branch 'lammps/develop' into electrode

This commit is contained in:
Ludwig Ahrens
2023-12-21 14:13:16 +01:00
1834 changed files with 129854 additions and 53112 deletions

8
.github/CODEOWNERS vendored
View File

@ -61,6 +61,7 @@ src/GPU/pair_vashishta_gpu.* @andeplane
src/KOKKOS/pair_vashishta_kokkos.* @andeplane
src/MANYBODY/pair_vashishta_table.* @andeplane
src/MANYBODY/pair_atm.* @sergeylishchuk
src/MANYBODY/pair_nb3b_screened.* @flodesani
src/REPLICA/*_grem.* @dstelter92
src/EXTRA-COMPUTE/compute_stress_mop*.* @RomainVermorel
src/EXTRA-COMPUTE/compute_born_matrix.* @Bibobu @athomps
@ -135,6 +136,7 @@ src/timer.* @akohlmey
src/utils.* @akohlmey @rbberger
src/verlet.* @sjplimp @stanmoore1
src/math_eigen_impl.h @jewettaij
src/fix_press_langevin.* @Bibobu
# tools
tools/coding_standard/* @akohlmey @rbberger
@ -151,12 +153,12 @@ tools/vim/* @hammondkd
unittest/* @akohlmey
# cmake
cmake/* @rbberger
cmake/* @akohlmey
cmake/Modules/LAMMPSInterfacePlugin.cmake @akohlmey
cmake/Modules/MPI4WIN.cmake @akohlmey
cmake/Modules/OpenCLLoader.cmake @akohlmey
cmake/Modules/Packages/COLVARS.cmake @rbberger @giacomofiorin
cmake/Modules/Packages/KIM.cmake @rbberger @ellio167
cmake/Modules/Packages/COLVARS.cmake @giacomofiorin
cmake/Modules/Packages/KIM.cmake @ellio167
cmake/presets/*.cmake @akohlmey
# python

View File

@ -5,9 +5,9 @@ Thank you for considering to contribute to the LAMMPS software project.
The following is a set of guidelines as well as explanations of policies and work flows for contributing to the LAMMPS molecular dynamics software project. These guidelines focus on submitting issues or pull requests on the LAMMPS GitHub project.
Thus please also have a look at:
* [The guide for submitting new features in the LAMMPS manual](https://www.lammps.org/doc/Modify_contribute.html)
* [The guide on programming style and requirement in the LAMMPS manual](https://www.lammps.org/doc/Modify_style.html)
* [The GitHub tutorial in the LAMMPS manual](http://lammps.sandia.gov/doc/Howto_github.html)
* [The guide for submitting new features in the LAMMPS manual](https://docs.lammps.org/Modify_contribute.html)
* [The guide on programming style and requirement in the LAMMPS manual](https://docs.lammps.org/Modify_requirements.html)
* [The GitHub tutorial in the LAMMPS manual](http://docs.lammps.org/Howto_github.html)
## Table of Contents
@ -27,17 +27,17 @@ __
## I don't want to read this whole thing I just have a question!
> **Note:** Please do not file an issue to ask a general question about LAMMPS, its features, how to use specific commands, or how perform simulations or analysis in LAMMPS. Instead post your question to either the ['lammps-users' mailing list](https://lammps.sandia.gov/mail.html) or the [LAMMPS Material Science Discourse forum](https://matsci.org/lammps). You do not need to be subscribed to post to the list (but a mailing list subscription avoids having your post delayed until it is approved by a mailing list moderator). Most posts to the mailing list receive a response within less than 24 hours. Before posting to the mailing list, please read the [mailing list guidelines](https://lammps.sandia.gov/guidelines.html). Following those guidelines will help greatly to get a helpful response. Always mention which LAMMPS version you are using. The LAMMPS forum was recently created as part of a larger effort to build a materials science community and have discussions not just about using LAMMPS. Thus the forum may be also used for discussions that would be off-topic for the mailing list. Those will just have to be posted to a more general category.
> **Note:** Please do not file an issue to ask a general question about LAMMPS, its features, how to use specific commands, or how perform simulations or analysis in LAMMPS. Instead post your question to the [LAMMPS Material Science Discourse forum](https://matsci.org/lammps). Before posting to the forum, please read the general [guidelines](https://www.lammps.org/guidelines.html) and the forum specific [suggestions](https://matsci.org/t/please-read-this-first-guidelines-and-suggestions-for-posting-lammps-questions/49913). Following those guidelines and suggestions will help greatly to get a helpful response. *Always* mention which LAMMPS version you are using. The MatSci website may be also used for discussions that would be off-topic for the LAMMPS categories. Those will just have to be posted to a different category.
## How Can I Contribute?
There are several ways how you can actively contribute to the LAMMPS project: you can discuss compiling and using LAMMPS, and solving LAMMPS related problems with other LAMMPS users on the lammps-users mailing list or the forum, you can report bugs or suggest enhancements by creating issues on GitHub (or posting them to the lammps-users mailing list or posting in the LAMMPS Materials Science Discourse forum), and you can contribute by submitting pull requests on GitHub or e-mail your code
to one of the [LAMMPS core developers](https://lammps.sandia.gov/authors.html). As you may see from the aforementioned developer page, the LAMMPS software package includes the efforts of a very large number of contributors beyond the principal authors and maintainers.
to one of the [LAMMPS core developers](https://www.lammps.org/authors.html). As you may see from the aforementioned developer page, the LAMMPS software package includes the efforts of a very large number of contributors beyond the principal authors and maintainers.
### Discussing How To Use LAMMPS
The LAMMPS mailing list is hosted at SourceForge. The mailing list began in 2005, and now includes tens of thousands of messages in thousands of threads. LAMMPS developers try to respond to posted questions in a timely manner, but there are no guarantees. Please consider that people live in different timezone and may not have time to answer e-mails outside of their work hours.
You can post to list by sending your email to lammps-users at lists.sourceforge.net (no subscription required), but before posting, please read the [mailing list guidelines](https://lammps.sandia.gov/guidelines.html) to maximize your chances to receive a helpful response.
You can post to list by sending your email to lammps-users at lists.sourceforge.net (no subscription required), but before posting, please read the [mailing list guidelines](https://www.lammps.org/guidelines.html) to maximize your chances to receive a helpful response.
Anyone can browse/search previous questions/answers in the archives. You do not have to subscribe to the list to post questions, receive answers (to your questions), or browse/search the archives. You **do** need to subscribe to the list if you want emails for **all** the posts (as individual messages or in digest form), or to answer questions yourself. Feel free to sign up and help us out! Answering questions from fellow LAMMPS users is a great way to pay back the community for providing you a useful tool for free, and to pass on the advice you have received yourself to others. It improves your karma and helps you understand your own research better.
@ -47,7 +47,7 @@ The LAMMPS Materials Science Discourse forum was created recently to facilitate
### Reporting Bugs
While developers writing code for LAMMPS are careful to test their code, LAMMPS is such a large and complex software, that it is impossible to test for all combinations of features under all normal and not so normal circumstances. Thus bugs do happen, and if you suspect, that you have encountered one, please try to document it and report it as an [Issue](https://github.com/lammps/lammps/issues) on the LAMMPS GitHub project web page. However, before reporting a bug, you need to check whether this is something that may have already been corrected. The [Latest Features and Bug Fixes in LAMMPS](https://lammps.sandia.gov/bug.html) web page lists all significant changes to LAMMPS over the years. It also tells you what the current latest development version of LAMMPS is, and you should test whether your issue still applies to that version.
While developers writing code for LAMMPS are careful to test their code, LAMMPS is such a large and complex software, that it is impossible to test for all combinations of features under all normal and not so normal circumstances. Thus bugs do happen, and if you suspect, that you have encountered one, please try to document it and report it as an [Issue](https://github.com/lammps/lammps/issues) on the LAMMPS GitHub project web page. However, before reporting a bug, you need to check whether this is something that may have already been corrected. The [Latest Features and Bug Fixes in LAMMPS](https://www.lammps.org/bug.html) web page lists all significant changes to LAMMPS over the years. It also tells you what the current latest development version of LAMMPS is, and you should test whether your issue still applies to that version.
When you click on the green "New Issue" button, you will be provided with a text field, where you can enter your message. That text field with contain a template with several headlines and some descriptions. Keep the headlines that are relevant to your reported potential bug and replace the descriptions with the information as suggested by the descriptions.
You can also attach small text files (please add the file name extension `.txt` or it will be rejected), images, or small compressed text files (using gzip, do not use RAR or 7-ZIP or similar tools that are uncommon outside of Windows machines). In many cases, bugs are best illustrated by providing a small input deck (do **not** attach your entire production input, but remove everything that is not required to reproduce the issue, and scale down your system size, that the resulting calculation runs fast and can be run on small desktop quickly).
@ -65,9 +65,9 @@ To be able to submit an issue on GitHub, you have to register for an account (fo
We encourage users to submit new features or modifications for LAMMPS. Instructions, guidelines, requirements,
and recommendations are in the following sections of the LAMMPS manual:
* [The guide for submitting new features in the LAMMPS manual](https://lammps.sandia.gov/doc/Modify_contribute.html)
* [The guide on programming style and requirement in the LAMMPS manual](https://lammps.sandia.gov/doc/Modify_contribute.html)
* [The GitHub tutorial in the LAMMPS manual](http://lammps.sandia.gov/doc/Howto_github.html)
* [The guide for submitting new features in the LAMMPS manual](https://docs.lammps.org/Modify_contribute.html)
* [The guide on programming style and requirement in the LAMMPS manual](https://docs.lammps.org/Modify_requirements.html)
* [The GitHub tutorial in the LAMMPS manual](http://docs.lammps.org/Howto_github.html)
## GitHub Workflows
@ -85,7 +85,7 @@ For bug reports, the next step is that one of the core LAMMPS developers will se
### Pull Requests
Pull requests are the **only** way that changes get made to the LAMMPS distribution. So also the LAMMPS core developers will submit pull requests for their own changes and discuss them on GitHub. Thus if you submit a pull request it will be treated in a similar fashion. When you submit a pull request you may opt to submit a "Draft" pull request. That means your changes are visible and will be subject to testing, but reviewers will not be (auto-)assigned and comments will take into account that this is not complete. On the other hand, this is a perfect way to ask the LAMMPS developers for comments on non-obvious changes and get feedback and possible suggestions for improvements or recommendations about what to avoid.
Immediately after the submission, the LAMMPS continuing integration server at ci.lammps.org will download your submitted branch and perform a number of tests: it will tests whether it compiles cleanly under various conditions, it will also do a check on whether your included documentation translates cleanly and run some unit tests and other checks. Whether these tests are successful or fail will be recorded. If a test fails, please inspect the corresponding output on the CI server and take the necessary steps, if needed, so that the code can compile cleanly again. The test will be re-run each time the pull request is updated with a push to the remote branch on GitHub. If you are unsure about what you need to change, ask a question in the discussion area of the pull request.
Immediately after the submission, the LAMMPS continuing integration server at https://ci.lammps.org will download your submitted branch and perform a number of tests: it will tests whether it compiles cleanly under various conditions, it will also do a check on whether your included documentation translates cleanly and run some unit tests and other checks. Whether these tests are successful or fail will be recorded. If a test fails, please inspect the corresponding output on the CI server and take the necessary steps, if needed, so that the code can compile cleanly again. The test will be re-run each time the pull request is updated with a push to the remote branch on GitHub. If you are unsure about what you need to change, ask a question in the discussion area of the pull request.
Next a LAMMPS core developer will self-assign and do an overall technical assessment of the submission. If you submitted a draft pull request, this will not happen unless you mark it "ready for review". If you are not yet invited as a LAMMPS collaborator, and your contribution seems significant, you may also receive an invitation for collaboration on the LAMMPS repository. As part of the assessment, the pull request will be categorized with labels. There are two special labels: `needs_work` (indicates that work from the submitter of the pull request is needed) and `work_in_progress` (indicates, that the assigned LAMMPS developer will make changes, if not done by the contributor who made the submit).
You may also receive comments and suggestions on the overall submission or specific details and on occasion specific requests for changes as part of the review. If permitted, also additional changes may be pushed into your pull request branch or a pull request may be filed in your LAMMPS fork on GitHub to include those changes.
The LAMMPS developer may then decide to assign the pull request to another developer (e.g. when that developer is more knowledgeable about the submitted feature or enhancement or has written the modified code). It may also happen, that additional developers are requested to provide a review and approve the changes. For submissions, that may change the general behavior of LAMMPS, or where a possibility of unwanted side effects exists, additional tests may be requested by the assigned developer.

View File

@ -25,12 +25,12 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Setup Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: '3.x'

View File

@ -19,12 +19,12 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Select Python version
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: '3.11'

View File

@ -16,7 +16,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2
@ -59,16 +59,13 @@ jobs:
-D BUILD_SHARED_LIBS=on \
-D LAMMPS_SIZES=SMALLBIG \
-D LAMMPS_EXCEPTIONS=off \
-D PKG_MESSAGE=on \
-D PKG_MPIIO=on \
-D PKG_ATC=on \
-D PKG_AWPMD=on \
-D PKG_BOCS=on \
-D PKG_EFF=on \
-D PKG_H5MD=on \
-D PKG_INTEL=on \
-D PKG_LATBOLTZ=on \
-D PKG_MANIFOLD=on \
-D PKG_MDI=on \
-D PKG_MGPT=on \
-D PKG_ML-PACE=on \
-D PKG_ML-RANN=on \
@ -77,7 +74,6 @@ jobs:
-D PKG_PTM=on \
-D PKG_QTB=on \
-D PKG_SMTBQ=on \
-D PKG_TALLY=on \
../cmake
- name: Run Coverity Scan

View File

@ -21,7 +21,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2

View File

@ -1,8 +1,8 @@
# -*- CMake -*- master configuration file for building LAMMPS
########################################
# CMake build system
# This file is part of LAMMPS
# Created by Christoph Junghans and Richard Berger
cmake_minimum_required(VERSION 3.10)
cmake_minimum_required(VERSION 3.16)
########################################
# set policy to silence warnings about ignoring <PackageName>_ROOT but use it
if(POLICY CMP0074)
@ -12,22 +12,11 @@ endif()
if(POLICY CMP0075)
cmake_policy(SET CMP0075 NEW)
endif()
# set policy to silence warnings about missing executable permissions in
# pythonx.y-config when cross-compiling. review occasionally if it may be set to NEW
if(POLICY CMP0109)
cmake_policy(SET CMP0109 OLD)
endif()
# set policy to silence warnings about timestamps of downloaded files. review occasionally if it may be set to NEW
if(POLICY CMP0135)
cmake_policy(SET CMP0135 OLD)
endif()
########################################
# Use CONFIGURE_DEPENDS as option for file(GLOB...) when available
if(CMAKE_VERSION VERSION_LESS 3.12)
unset(CONFIGURE_DEPENDS)
else()
set(CONFIGURE_DEPENDS CONFIGURE_DEPENDS)
endif()
########################################
project(lammps CXX)
@ -116,7 +105,7 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_TUNE_DEFAULT "-xCOMMON-AVX512")
else()
set(CMAKE_TUNE_DEFAULT "-xHost -fp-model fast=2 -no-prec-div -qoverride-limits -diag-disable=10441 -diag-disable=2196")
set(CMAKE_TUNE_DEFAULT "-xHost -fp-model fast=2 -no-prec-div -qoverride-limits -diag-disable=10441 -diag-disable=11074 -diag-disable=11076 -diag-disable=2196")
endif()
endif()
endif()
@ -155,6 +144,7 @@ if(MSVC)
add_compile_options(/Zc:__cplusplus)
add_compile_options(/wd4244)
add_compile_options(/wd4267)
add_compile_options(/wd4250)
add_compile_options(/EHsc)
endif()
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
@ -168,17 +158,20 @@ endif()
########################################################################
# User input options #
########################################################################
# set path to python interpreter and thus enforcing python version when
# in a virtual environment and PYTHON_EXECUTABLE is not set on command line
if(DEFINED ENV{VIRTUAL_ENV} AND NOT PYTHON_EXECUTABLE)
if(CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows")
set(PYTHON_EXECUTABLE "$ENV{VIRTUAL_ENV}/Scripts/python.exe")
else()
set(PYTHON_EXECUTABLE "$ENV{VIRTUAL_ENV}/bin/python")
endif()
# backward compatibility with CMake before 3.12 and older LAMMPS documentation
if (PYTHON_EXECUTABLE)
set(Python_EXECUTABLE "${PYTHON_EXECUTABLE}")
endif()
# set path to python interpreter and thus enforcing python version when
# in a virtual environment and Python_EXECUTABLE is not set on command line
if(DEFINED ENV{VIRTUAL_ENV} AND NOT Python_EXECUTABLE)
if(CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows")
set(Python_EXECUTABLE "$ENV{VIRTUAL_ENV}/Scripts/python.exe")
else()
set(Python_EXECUTABLE "$ENV{VIRTUAL_ENV}/bin/python")
endif()
message(STATUS "Running in virtual environment: $ENV{VIRTUAL_ENV}\n"
" Setting Python interpreter to: ${PYTHON_EXECUTABLE}")
" Setting Python interpreter to: ${Python_EXECUTABLE}")
endif()
set(LAMMPS_MACHINE "" CACHE STRING "Suffix to append to lmp binary (WON'T enable any features automatically")
@ -203,8 +196,8 @@ else()
endif()
include(GNUInstallDirs)
file(GLOB ALL_SOURCES ${CONFIGURE_DEPENDS} ${LAMMPS_SOURCE_DIR}/[^.]*.cpp)
file(GLOB MAIN_SOURCES ${CONFIGURE_DEPENDS} ${LAMMPS_SOURCE_DIR}/main.cpp)
file(GLOB ALL_SOURCES CONFIGURE_DEPENDS ${LAMMPS_SOURCE_DIR}/[^.]*.cpp)
file(GLOB MAIN_SOURCES CONFIGURE_DEPENDS ${LAMMPS_SOURCE_DIR}/main.cpp)
list(REMOVE_ITEM ALL_SOURCES ${MAIN_SOURCES})
add_library(lammps ${ALL_SOURCES})
@ -278,7 +271,6 @@ set(STANDARD_PACKAGES
MOFFF
MOLECULE
MOLFILE
MPIIO
NETCDF
ORIENT
PERI
@ -387,7 +379,6 @@ endif()
# "hard" dependencies between packages resulting
# in an error instead of skipping over files
pkg_depends(ML-IAP ML-SNAP)
pkg_depends(MPIIO MPI)
pkg_depends(ATC MANYBODY)
pkg_depends(LATBOLTZ MPI)
pkg_depends(SCAFACOS MPI)
@ -398,6 +389,7 @@ pkg_depends(CG-DNA MOLECULE)
pkg_depends(CG-DNA ASPHERE)
pkg_depends(ELECTRODE KSPACE)
pkg_depends(EXTRA-MOLECULE MOLECULE)
pkg_depends(MESONT MOLECULE)
# detect if we may enable OpenMP support by default
set(BUILD_OMP_DEFAULT OFF)
@ -435,6 +427,18 @@ if(BUILD_OMP)
target_link_libraries(lmp PRIVATE OpenMP::OpenMP_CXX)
endif()
# lower C++ standard for fmtlib sources when using Intel classic compiler
if((CMAKE_CXX_COMPILER_ID STREQUAL "Intel") AND (CMAKE_CXX_STANDARD GREATER_EQUAL 17)
AND (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 2021.10))
message(STATUS "Lowering C++ standard for compiling fmtlib sources with Intel Classic compiler")
get_filename_component(LMP_UTILS_SRC "${LAMMPS_SOURCE_DIR}/utils.cpp" ABSOLUTE)
get_filename_component(LMP_VARIABLE_SRC "${LAMMPS_SOURCE_DIR}/variable.cpp" ABSOLUTE)
get_filename_component(FMT_FORMAT_SRC "${LAMMPS_SOURCE_DIR}/fmtlib_format.cpp" ABSOLUTE)
get_filename_component(FMT_OS_SRC "${LAMMPS_SOURCE_DIR}/fmtlib_os.cpp" ABSOLUTE)
set_source_files_properties("${FMT_FORMAT_SRC}" "${FMT_OS_SRC}" "${LMP_VARIABLE_SRC}" "${LMP_UTILS_SRC}"
PROPERTIES COMPILE_OPTIONS "-std=c++14")
endif()
if(PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_ML-POD OR PKG_ELECTRODE OR BUILD_TOOLS)
enable_language(C)
if (NOT USE_INTERNAL_LINALG)
@ -442,7 +446,7 @@ if(PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_ML-POD OR PKG_ELECTRODE OR BUILD_T
find_package(BLAS)
endif()
if(NOT LAPACK_FOUND OR NOT BLAS_FOUND OR USE_INTERNAL_LINALG)
file(GLOB LINALG_SOURCES ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/linalg/[^.]*.cpp)
file(GLOB LINALG_SOURCES CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/linalg/[^.]*.cpp)
add_library(linalg STATIC ${LINALG_SOURCES})
set_target_properties(linalg PROPERTIES OUTPUT_NAME lammps_linalg${LAMMPS_MACHINE})
set(BLAS_LIBRARIES "$<TARGET_FILE:linalg>")
@ -460,12 +464,7 @@ option(WITH_JPEG "Enable JPEG support" ${JPEG_FOUND})
if(WITH_JPEG)
find_package(JPEG REQUIRED)
target_compile_definitions(lammps PRIVATE -DLAMMPS_JPEG)
if(CMAKE_VERSION VERSION_LESS 3.12)
target_include_directories(lammps PRIVATE ${JPEG_INCLUDE_DIRS})
target_link_libraries(lammps PRIVATE ${JPEG_LIBRARIES})
else()
target_link_libraries(lammps PRIVATE JPEG::JPEG)
endif()
target_link_libraries(lammps PRIVATE JPEG::JPEG)
endif()
find_package(PNG QUIET)
@ -577,8 +576,8 @@ endforeach()
foreach(PKG ${STANDARD_PACKAGES})
set(${PKG}_SOURCES_DIR ${LAMMPS_SOURCE_DIR}/${PKG})
file(GLOB ${PKG}_SOURCES ${CONFIGURE_DEPENDS} ${${PKG}_SOURCES_DIR}/[^.]*.cpp)
file(GLOB ${PKG}_HEADERS ${CONFIGURE_DEPENDS} ${${PKG}_SOURCES_DIR}/[^.]*.h)
file(GLOB ${PKG}_SOURCES CONFIGURE_DEPENDS ${${PKG}_SOURCES_DIR}/[^.]*.cpp)
file(GLOB ${PKG}_HEADERS CONFIGURE_DEPENDS ${${PKG}_SOURCES_DIR}/[^.]*.h)
# check for package files in src directory due to old make system
DetectBuildSystemConflict(${LAMMPS_SOURCE_DIR} ${${PKG}_SOURCES} ${${PKG}_HEADERS})
@ -594,19 +593,12 @@ foreach(PKG ${STANDARD_PACKAGES})
RegisterPackages(${${PKG}_SOURCES_DIR})
endforeach()
# packages that need defines set
foreach(PKG MPIIO)
if(PKG_${PKG})
target_compile_definitions(lammps PRIVATE -DLMP_${PKG})
endif()
endforeach()
# dedicated check for entire contents of accelerator packages
foreach(PKG ${SUFFIX_PACKAGES})
set(${PKG}_SOURCES_DIR ${LAMMPS_SOURCE_DIR}/${PKG})
file(GLOB ${PKG}_SOURCES ${CONFIGURE_DEPENDS} ${${PKG}_SOURCES_DIR}/[^.]*.cpp)
file(GLOB ${PKG}_HEADERS ${CONFIGURE_DEPENDS} ${${PKG}_SOURCES_DIR}/[^.]*.h)
file(GLOB ${PKG}_SOURCES CONFIGURE_DEPENDS ${${PKG}_SOURCES_DIR}/[^.]*.cpp)
file(GLOB ${PKG}_HEADERS CONFIGURE_DEPENDS ${${PKG}_SOURCES_DIR}/[^.]*.h)
# check for package files in src directory due to old make system
DetectBuildSystemConflict(${LAMMPS_SOURCE_DIR} ${${PKG}_SOURCES} ${${PKG}_HEADERS})
@ -620,7 +612,7 @@ endforeach()
foreach(PKG_LIB POEMS ATC AWPMD H5MD)
if(PKG_${PKG_LIB})
string(TOLOWER "${PKG_LIB}" PKG_LIB)
file(GLOB_RECURSE ${PKG_LIB}_SOURCES ${CONFIGURE_DEPENDS}
file(GLOB_RECURSE ${PKG_LIB}_SOURCES CONFIGURE_DEPENDS
${LAMMPS_LIB_SOURCE_DIR}/${PKG_LIB}/[^.]*.c ${LAMMPS_LIB_SOURCE_DIR}/${PKG_LIB}/[^.]*.cpp)
add_library(${PKG_LIB} STATIC ${${PKG_LIB}_SOURCES})
set_target_properties(${PKG_LIB} PROPERTIES OUTPUT_NAME lammps_${PKG_LIB}${LAMMPS_MACHINE})
@ -815,20 +807,8 @@ install(
# This is primarily for people that only want to use the Python wrapper.
###############################################################################
if(BUILD_SHARED_LIBS)
if(CMAKE_VERSION VERSION_LESS 3.12)
# adjust so we find Python 3 versions before Python 2 on old systems with old CMake
set(Python_ADDITIONAL_VERSIONS 3.12 3.11 3.10 3.9 3.8 3.7 3.6)
find_package(PythonInterp) # Deprecated since version 3.12
if(PYTHONINTERP_FOUND)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
else()
# backward compatibility
if(PYTHON_EXECUTABLE)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
find_package(Python COMPONENTS Interpreter)
endif()
# backward compatibility
find_package(Python COMPONENTS Interpreter)
if(BUILD_IS_MULTI_CONFIG)
set(MY_BUILD_DIR ${CMAKE_BINARY_DIR}/$<CONFIG>)
else()
@ -887,13 +867,23 @@ else()
endif()
include(FeatureSummary)
feature_summary(DESCRIPTION "The following tools and libraries have been found and configured:" WHAT PACKAGES_FOUND)
if(GIT_FOUND AND EXISTS ${LAMMPS_DIR}/.git)
execute_process(COMMAND ${GIT_EXECUTABLE} describe --dirty=-modified --always
OUTPUT_VARIABLE GIT_DESCRIBE
ERROR_QUIET
WORKING_DIRECTORY ${LAMMPS_DIR}
OUTPUT_STRIP_TRAILING_WHITESPACE)
endif()
message(STATUS "<<< Build configuration >>>
LAMMPS Version: ${PROJECT_VERSION}
LAMMPS Version: ${PROJECT_VERSION} ${GIT_DESCRIBE}
Operating System: ${CMAKE_SYSTEM_NAME} ${CMAKE_LINUX_DISTRO} ${CMAKE_DISTRO_VERSION}
CMake Version: ${CMAKE_VERSION}
Build type: ${LAMMPS_BUILD_TYPE}
Install path: ${CMAKE_INSTALL_PREFIX}
Generator: ${CMAKE_GENERATOR} using ${CMAKE_MAKE_PROGRAM}")
if(CMAKE_CROSSCOMPILING)
message(STATUS "Cross compiling on ${CMAKE_HOST_SYSTEM}")
endif()
###############################################################################
# Print package summary
###############################################################################
@ -937,11 +927,9 @@ if(_index GREATER -1)
endif()
message(STATUS "<<< Linker flags: >>>")
message(STATUS "Executable name: ${LAMMPS_BINARY}")
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.13)
get_target_property(OPTIONS lammps LINK_OPTIONS)
if(OPTIONS)
message(STATUS "Linker options: ${OPTIONS}")
endif()
get_target_property(OPTIONS lammps LINK_OPTIONS)
if(OPTIONS)
message(STATUS "Linker options: ${OPTIONS}")
endif()
if(CMAKE_EXE_LINKER_FLAGS)
message(STATUS "Executable linker flags: ${CMAKE_EXE_LINKER_FLAGS}")
@ -983,33 +971,53 @@ if(PKG_KOKKOS)
endif()
endif()
if(PKG_KSPACE)
message(STATUS "<<< FFT settings >>>
-- Primary FFT lib: ${FFT}")
if(FFT_SINGLE)
message(STATUS "Using single precision FFTs")
else()
message(STATUS "Using double precision FFTs")
endif()
if(FFT_FFTW_THREADS OR FFT_MKL_THREADS)
message(STATUS "Using threaded FFTs")
else()
message(STATUS "Using non-threaded FFTs")
endif()
if(PKG_KOKKOS)
if(Kokkos_ENABLE_CUDA)
if(FFT STREQUAL "KISS")
message(STATUS "Kokkos FFT: KISS")
else()
message(STATUS "Kokkos FFT: cuFFT")
endif()
elseif(Kokkos_ENABLE_HIP)
if(FFT STREQUAL "KISS")
message(STATUS "Kokkos FFT: KISS")
else()
message(STATUS "Kokkos FFT: hipFFT")
endif()
if (LMP_HEFFTE)
message(STATUS "<<< FFT settings >>>
-- Primary FFT lib: heFFTe")
if (HEFFTE_BACKEND)
message(STATUS "heFFTe backend: ${HEFFTE_BACKEND}")
else()
message(STATUS "Kokkos FFT: ${FFT}")
message(STATUS "heFFTe backend: stock (builtin FFT implementation, tested for corrected but not optimized for production)")
endif()
if(FFT_SINGLE)
message(STATUS "Using single precision FFTs")
else()
message(STATUS "Using double precision FFTs")
endif()
else()
message(STATUS "<<< FFT settings >>>
-- Primary FFT lib: ${FFT}")
if(FFT_SINGLE)
message(STATUS "Using single precision FFTs")
else()
message(STATUS "Using double precision FFTs")
endif()
if(FFT_FFTW_THREADS OR FFT_MKL_THREADS)
message(STATUS "Using threaded FFTs")
else()
message(STATUS "Using non-threaded FFTs")
endif()
if (FFT_HEFFTE)
message(STATUS "Using distributed algorithms from heFTTe")
else()
message(STATUS "Using builtin distributed algorithms")
endif()
if(PKG_KOKKOS)
if(Kokkos_ENABLE_CUDA)
if(FFT STREQUAL "KISS")
message(STATUS "Kokkos FFT: KISS")
else()
message(STATUS "Kokkos FFT: cuFFT")
endif()
elseif(Kokkos_ENABLE_HIP)
if(FFT STREQUAL "KISS")
message(STATUS "Kokkos FFT: KISS")
else()
message(STATUS "Kokkos FFT: hipFFT")
endif()
else()
message(STATUS "Kokkos FFT: ${FFT}")
endif()
endif()
endif()
endif()
@ -1022,6 +1030,14 @@ endif()
if(BUILD_LAMMPS_SHELL)
message(STATUS "<<< Building LAMMPS Shell >>>")
endif()
if(BUILD_LAMMPS_GUI)
message(STATUS "<<< Building LAMMPS GUI >>>")
if(LAMMPS_GUI_USE_PLUGIN)
message(STATUS "Loading LAMMPS library as plugin at run time")
else()
message(STATUS "Linking LAMMPS library at compile time")
endif()
endif()
if(ENABLE_TESTING)
message(STATUS "<<< Building Unit Tests >>>")
if(ENABLE_COVERAGE)

View File

@ -1,19 +1,11 @@
if(CMAKE_VERSION VERSION_LESS 3.12)
find_package(PythonInterp 3.5 QUIET) # Deprecated since version 3.12
if(PYTHONINTERP_FOUND)
set(Python3_EXECUTABLE ${PYTHON_EXECUTABLE})
set(Python3_VERSION ${PYTHON_VERSION_STRING})
endif()
else()
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.5)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 COMPONENTS Interpreter QUIET)
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.6)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 COMPONENTS Interpreter)
if(Python3_EXECUTABLE)
if(Python3_VERSION VERSION_GREATER_EQUAL 3.5)
if(Python3_VERSION VERSION_GREATER_EQUAL 3.6)
add_custom_target(
check-whitespace
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/whitespace.py .

View File

@ -5,24 +5,18 @@ option(BUILD_DOC "Build LAMMPS HTML documentation" OFF)
if(BUILD_DOC)
# Current Sphinx versions require at least Python 3.8
if(CMAKE_VERSION VERSION_LESS 3.12)
find_package(PythonInterp 3.8 REQUIRED)
set(VIRTUALENV ${PYTHON_EXECUTABLE} -m venv)
else()
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.8)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 REQUIRED COMPONENTS Interpreter)
if(Python3_VERSION VERSION_LESS 3.8)
message(FATAL_ERROR "Python 3.8 and up is required to build the HTML documentation")
endif()
set(VIRTUALENV ${Python3_EXECUTABLE} -m venv)
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.8)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 REQUIRED COMPONENTS Interpreter)
if(Python3_VERSION VERSION_LESS 3.8)
message(FATAL_ERROR "Python 3.8 and up is required to build the HTML documentation")
endif()
set(VIRTUALENV ${Python3_EXECUTABLE} -m venv)
find_package(Doxygen 1.8.10 REQUIRED)
file(GLOB DOC_SOURCES ${CONFIGURE_DEPENDS} ${LAMMPS_DOC_DIR}/src/[^.]*.rst)
file(GLOB DOC_SOURCES CONFIGURE_DEPENDS ${LAMMPS_DOC_DIR}/src/[^.]*.rst)
add_custom_command(
OUTPUT docenv
@ -80,7 +74,7 @@ if(BUILD_DOC)
message(STATUS "Using already downloaded archive ${CMAKE_BINARY_DIR}/libpace.tar.gz")
endif()
execute_process(COMMAND ${CMAKE_COMMAND} -E tar xzf mathjax.tar.gz WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
file(GLOB MATHJAX_VERSION_DIR ${CONFIGURE_DEPENDS} ${CMAKE_CURRENT_BINARY_DIR}/MathJax-*)
file(GLOB MATHJAX_VERSION_DIR CONFIGURE_DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/MathJax-*)
execute_process(COMMAND ${CMAKE_COMMAND} -E rename ${MATHJAX_VERSION_DIR} ${DOC_BUILD_STATIC_DIR}/mathjax)
endif()

View File

@ -1,5 +1,7 @@
# Find clang-format
find_program(ClangFormat_EXECUTABLE NAMES clang-format
clang-format-17.0
clang-format-16.0
clang-format-15.0
clang-format-14.0
clang-format-13.0
@ -19,7 +21,7 @@ if(ClangFormat_EXECUTABLE)
OUTPUT_VARIABLE clang_format_version
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(clang_format_version MATCHES "^(Ubuntu |)clang-format version .*")
if(clang_format_version MATCHES "^(Ubuntu |Debian |)clang-format version .*")
# Arch Linux output:
# clang-format version 10.0.0
#
@ -32,9 +34,15 @@ if(ClangFormat_EXECUTABLE)
# Ubuntu 22.04 LTS output:
# Ubuntu clang-format version 14.0.0-1ubuntu1
#
# Debian 11 output:
# Debian clang-format version 11.0.1-2
#
# Debian 12 output:
# Debian clang-format version 14.0.6
#
# Fedora 36 output:
# clang-format version 14.0.5 (Fedora 14.0.5-1.fc36)
string(REGEX REPLACE "^(Ubuntu |)clang-format version ([0-9.]+).*"
string(REGEX REPLACE "^(Ubuntu |Debian |)clang-format version ([0-9.]+).*"
"\\2"
ClangFormat_VERSION
"${clang_format_version}")

View File

@ -7,15 +7,7 @@
# adapted from https://github.com/cmarshall108/cython-cmake-example/blob/master/cmake/FindCython.cmake
#=============================================================================
if(CMAKE_VERSION VERSION_LESS 3.12)
set(Python_ADDITIONAL_VERSIONS 3.12 3.11 3.10 3.9 3.8 3.7 3.6)
find_package(PythonInterp 3.6 QUIET) # Deprecated since version 3.12
if(PYTHONINTERP_FOUND)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
else()
find_package(Python 3.6 COMPONENTS Interpreter QUIET)
endif()
find_package(Python 3.6 COMPONENTS Interpreter QUIET)
# Use the Cython executable that lives next to the Python executable
# if it is a local installation.

View File

@ -28,6 +28,7 @@ if(MSVC)
add_compile_options(/Zc:__cplusplus)
add_compile_options(/wd4244)
add_compile_options(/wd4267)
add_compile_options(/wd4250)
add_compile_options(/EHsc)
endif()
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
@ -63,7 +64,7 @@ endfunction(validate_option)
# helper function for getting the most recently modified file or folder from a glob pattern
function(get_newest_file path variable)
file(GLOB _dirs ${CONFIGURE_DEPENDS} ${path})
file(GLOB _dirs CONFIGURE_DEPENDS ${path})
set(_besttime 2000-01-01T00:00:00)
set(_bestfile "<unknown>")
foreach(_dir ${_dirs})

View File

@ -41,7 +41,7 @@ endfunction()
# helper function for getting the most recently modified file or folder from a glob pattern
function(get_newest_file path variable)
file(GLOB _dirs ${CONFIGURE_DEPENDS} ${path})
file(GLOB _dirs CONFIGURE_DEPENDS ${path})
set(_besttime 2000-01-01T00:00:00)
set(_bestfile "<unknown>")
foreach(_dir ${_dirs})
@ -80,20 +80,20 @@ endfunction()
function(check_for_autogen_files source_dir)
message(STATUS "Running check for auto-generated files from make-based build system")
file(GLOB SRC_AUTOGEN_FILES ${CONFIGURE_DEPENDS} ${source_dir}/style_*.h)
file(GLOB SRC_AUTOGEN_PACKAGES ${CONFIGURE_DEPENDS} ${source_dir}/packages_*.h)
file(GLOB SRC_AUTOGEN_FILES CONFIGURE_DEPENDS ${source_dir}/style_*.h)
file(GLOB SRC_AUTOGEN_PACKAGES CONFIGURE_DEPENDS ${source_dir}/packages_*.h)
list(APPEND SRC_AUTOGEN_FILES ${SRC_AUTOGEN_PACKAGES} ${source_dir}/lmpinstalledpkgs.h ${source_dir}/lmpgitversion.h)
list(APPEND SRC_AUTOGEN_FILES ${SRC_AUTOGEN_PACKAGES} ${source_dir}/mliap_model_python_couple.h ${source_dir}/mliap_model_python_couple.cpp)
list(APPEND SRC_AUTOGEN_FILES ${source_dir}/mliap_model_python_couple.h ${source_dir}/mliap_model_python_couple.cpp)
foreach(_SRC ${SRC_AUTOGEN_FILES})
get_filename_component(FILENAME "${_SRC}" NAME)
if(EXISTS ${source_dir}/${FILENAME})
message(FATAL_ERROR "\n########################################################################\n"
"Found header file(s) generated by the make-based build system\n"
"\n"
"Please run\n"
"make -C ${source_dir} purge\n"
"to remove\n"
"########################################################################")
"Found header file ${source_dir}/${FILENAME} generated by the make-based build system\n"
"\n"
"Please run\n"
"make -C ${source_dir} purge\n"
"to remove\n"
"########################################################################")
endif()
endforeach()
endfunction()

View File

@ -1,6 +1,6 @@
set(COLVARS_SOURCE_DIR ${LAMMPS_LIB_SOURCE_DIR}/colvars)
file(GLOB COLVARS_SOURCES ${CONFIGURE_DEPENDS} ${COLVARS_SOURCE_DIR}/[^.]*.cpp)
file(GLOB COLVARS_SOURCES CONFIGURE_DEPENDS ${COLVARS_SOURCE_DIR}/[^.]*.cpp)
option(COLVARS_DEBUG "Enable debugging messages for Colvars (quite verbose)" OFF)

View File

@ -39,7 +39,7 @@ if (PKG_AMOEBA)
${GPU_SOURCES_DIR}/amoeba_convolution_gpu.cpp)
endif()
file(GLOB GPU_LIB_SOURCES ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cpp)
file(GLOB GPU_LIB_SOURCES CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cpp)
file(MAKE_DIRECTORY ${LAMMPS_LIB_BINARY_DIR}/gpu)
if(GPU_API STREQUAL "CUDA")
@ -70,7 +70,7 @@ if(GPU_API STREQUAL "CUDA")
set(GPU_ARCH "sm_50" CACHE STRING "LAMMPS GPU CUDA SM primary architecture (e.g. sm_60)")
# ensure that no *cubin.h files exist from a compile in the lib/gpu folder
file(GLOB GPU_LIB_OLD_CUBIN_HEADERS ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/*_cubin.h)
file(GLOB GPU_LIB_OLD_CUBIN_HEADERS CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/*_cubin.h)
if(GPU_LIB_OLD_CUBIN_HEADERS)
message(FATAL_ERROR "########################################################################\n"
"Found file(s) generated by the make-based build system in lib/gpu\n"
@ -80,15 +80,15 @@ if(GPU_API STREQUAL "CUDA")
"########################################################################")
endif()
file(GLOB GPU_LIB_CU ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu ${CMAKE_CURRENT_SOURCE_DIR}/gpu/[^.]*.cu)
file(GLOB GPU_LIB_CU CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu ${CMAKE_CURRENT_SOURCE_DIR}/gpu/[^.]*.cu)
list(REMOVE_ITEM GPU_LIB_CU ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_pppm.cu)
cuda_include_directories(${LAMMPS_LIB_SOURCE_DIR}/gpu ${LAMMPS_LIB_BINARY_DIR}/gpu)
if(CUDPP_OPT)
cuda_include_directories(${LAMMPS_LIB_SOURCE_DIR}/gpu/cudpp_mini)
file(GLOB GPU_LIB_CUDPP_SOURCES ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/cudpp_mini/[^.]*.cpp)
file(GLOB GPU_LIB_CUDPP_CU ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/cudpp_mini/[^.]*.cu)
file(GLOB GPU_LIB_CUDPP_SOURCES CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/cudpp_mini/[^.]*.cpp)
file(GLOB GPU_LIB_CUDPP_CU CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/cudpp_mini/[^.]*.cu)
endif()
# build arch/gencode commands for nvcc based on CUDA toolkit version and use choice
@ -151,10 +151,10 @@ if(GPU_API STREQUAL "CUDA")
endif()
cuda_compile_fatbin(GPU_GEN_OBJS ${GPU_LIB_CU} OPTIONS ${CUDA_REQUEST_PIC}
-DUNIX -O3 --use_fast_math -Wno-deprecated-gpu-targets -DNV_KERNEL -DUCL_CUDADR ${GPU_CUDA_GENCODE} -D_${GPU_PREC_SETTING} -DLAMMPS_${LAMMPS_SIZES})
-DUNIX -O3 --use_fast_math -Wno-deprecated-gpu-targets -allow-unsupported-compiler -DNV_KERNEL -DUCL_CUDADR ${GPU_CUDA_GENCODE} -D_${GPU_PREC_SETTING} -DLAMMPS_${LAMMPS_SIZES})
cuda_compile(GPU_OBJS ${GPU_LIB_CUDPP_CU} OPTIONS ${CUDA_REQUEST_PIC}
-DUNIX -O3 --use_fast_math -Wno-deprecated-gpu-targets -DUCL_CUDADR ${GPU_CUDA_GENCODE} -D_${GPU_PREC_SETTING} -DLAMMPS_${LAMMPS_SIZES})
-DUNIX -O3 --use_fast_math -Wno-deprecated-gpu-targets -allow-unsupported-compiler -DUCL_CUDADR ${GPU_CUDA_GENCODE} -D_${GPU_PREC_SETTING} -DLAMMPS_${LAMMPS_SIZES})
foreach(CU_OBJ ${GPU_GEN_OBJS})
get_filename_component(CU_NAME ${CU_OBJ} NAME_WE)
@ -205,7 +205,7 @@ elseif(GPU_API STREQUAL "OPENCL")
include(OpenCLUtils)
set(OCL_COMMON_HEADERS ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_preprocessor.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_aux_fun1.h)
file(GLOB GPU_LIB_CU ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu)
file(GLOB GPU_LIB_CU CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu)
list(REMOVE_ITEM GPU_LIB_CU
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne.cu
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne_lj.cu
@ -335,7 +335,7 @@ elseif(GPU_API STREQUAL "HIP")
endif()
endif()
file(GLOB GPU_LIB_CU ${CONFIGURE_DEPENDS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu ${CMAKE_CURRENT_SOURCE_DIR}/gpu/[^.]*.cu)
file(GLOB GPU_LIB_CU CONFIGURE_DEPENDS ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu ${CMAKE_CURRENT_SOURCE_DIR}/gpu/[^.]*.cu)
list(REMOVE_ITEM GPU_LIB_CU ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_pppm.cu)
set(GPU_LIB_CU_HIP "")

View File

@ -1,12 +1,7 @@
set(KIM-API_MIN_VERSION 2.1.3)
find_package(CURL)
if(CURL_FOUND)
if(CMAKE_VERSION VERSION_LESS 3.12)
target_include_directories(lammps PRIVATE ${CURL_INCLUDE_DIRS})
target_link_libraries(lammps PRIVATE ${CURL_LIBRARIES})
else()
target_link_libraries(lammps PRIVATE CURL::libcurl)
endif()
target_link_libraries(lammps PRIVATE CURL::libcurl)
target_compile_definitions(lammps PRIVATE -DLMP_KIM_CURL)
set(LMP_DEBUG_CURL OFF CACHE STRING "Set libcurl verbose mode on/off. If on, it displays a lot of verbose information about its operations.")
mark_as_advanced(LMP_DEBUG_CURL)

View File

@ -50,8 +50,8 @@ if(DOWNLOAD_KOKKOS)
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_CXX_EXTENSIONS=${CMAKE_CXX_EXTENSIONS}")
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}")
include(ExternalProject)
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/4.1.00.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "a5f096bd8ad01b97fdc7a32583b17a33" CACHE STRING "MD5 checksum of KOKKOS tarball")
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/4.2.00.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "731647b61a4233f568d583702e9cd6d1" CACHE STRING "MD5 checksum of KOKKOS tarball")
mark_as_advanced(KOKKOS_URL)
mark_as_advanced(KOKKOS_MD5)
GetFallbackURL(KOKKOS_URL KOKKOS_FALLBACK)
@ -76,7 +76,7 @@ if(DOWNLOAD_KOKKOS)
add_dependencies(LAMMPS::KOKKOSCORE kokkos_build)
add_dependencies(LAMMPS::KOKKOSCONTAINERS kokkos_build)
elseif(EXTERNAL_KOKKOS)
find_package(Kokkos 4.1.00 REQUIRED CONFIG)
find_package(Kokkos 4.2.00 REQUIRED CONFIG)
target_link_libraries(lammps PRIVATE Kokkos::kokkos)
else()
set(LAMMPS_LIB_KOKKOS_SRC_DIR ${LAMMPS_LIB_SOURCE_DIR}/kokkos)
@ -156,7 +156,7 @@ if(PKG_ML-IAP)
# Add KOKKOS version of ML-IAP Python coupling if non-KOKKOS version is included
if(MLIAP_ENABLE_PYTHON AND Cythonize_EXECUTABLE)
file(GLOB MLIAP_KOKKOS_CYTHON_SRC ${CONFIGURE_DEPENDS} ${LAMMPS_SOURCE_DIR}/KOKKOS/*.pyx)
file(GLOB MLIAP_KOKKOS_CYTHON_SRC CONFIGURE_DEPENDS ${LAMMPS_SOURCE_DIR}/KOKKOS/*.pyx)
foreach(MLIAP_CYTHON_FILE ${MLIAP_KOKKOS_CYTHON_SRC})
get_filename_component(MLIAP_CYTHON_BASE ${MLIAP_CYTHON_FILE} NAME_WE)
add_custom_command(OUTPUT ${MLIAP_BINARY_DIR}/${MLIAP_CYTHON_BASE}.cpp ${MLIAP_BINARY_DIR}/${MLIAP_CYTHON_BASE}.h

View File

@ -46,6 +46,42 @@ else()
target_compile_definitions(lammps PRIVATE -DFFT_KISS)
endif()
option(FFT_USE_HEFFTE "Use heFFTe as the distributed FFT engine, overrides the FFT option." OFF)
if(FFT_USE_HEFFTE)
# if FFT_HEFFTE is enabled, switch the builtin FFT engine with Heffte
set(FFT_HEFFTE_BACKEND_VALUES FFTW MKL)
set(FFT_HEFFTE_BACKEND "" CACHE STRING "Select heFFTe backend, e.g., FFTW or MKL")
set_property(CACHE FFT_HEFFTE_BACKEND PROPERTY STRINGS ${FFT_HEFFTE_BACKEND_VALUES})
if(FFT_HEFFTE_BACKEND STREQUAL "FFTW") # respect the backend choice, FFTW or MKL
set(HEFFTE_COMPONENTS "FFTW")
set(Heffte_ENABLE_FFTW "ON" CACHE BOOL "Enables FFTW backend for heFFTe")
elseif(FFT_HEFFTE_BACKEND STREQUAL "MKL")
set(HEFFTE_COMPONENTS "MKL")
set(Heffte_ENABLE_MKL "ON" CACHE BOOL "Enables MKL backend for heFFTe")
else()
message(WARNING "FFT_HEFFTE_BACKEND not selected, defaulting to the builtin 'stock' backend, which is intended for testing and is not optimized for production runs")
endif()
find_package(Heffte 2.4.0 QUIET COMPONENTS ${HEFFTE_COMPONENTS})
if (NOT Heffte_FOUND) # download and build
include(FetchContent)
FetchContent_Declare(HEFFTE_PROJECT # using v2.4.0
URL "https://github.com/icl-utk-edu/heffte/archive/refs/tags/v2.4.0.tar.gz"
URL_HASH SHA256=02310fb4f9688df02f7181667e61c3adb7e38baf79611d80919d47452ff7881d
)
FetchContent_Populate(HEFFTE_PROJECT)
add_subdirectory(${heffte_project_SOURCE_DIR} ${heffte_project_BINARY_DIR})
set_target_properties(lmp PROPERTIES INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
set_target_properties(lammps PROPERTIES INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
add_library(Heffte::Heffte INTERFACE IMPORTED GLOBAL)
target_link_libraries(Heffte::Heffte INTERFACE Heffte)
endif()
target_compile_definitions(lammps PRIVATE -DFFT_HEFFTE "-DFFT_HEFFTE_${FFT_HEFFTE_BACKEND}")
target_link_libraries(lammps PRIVATE Heffte::Heffte)
endif()
set(FFT_PACK "array" CACHE STRING "Optimization for FFT")
set(FFT_PACK_VALUES array pointer memcpy)
set_property(CACHE FFT_PACK PROPERTY STRINGS ${FFT_PACK_VALUES})

View File

@ -4,7 +4,7 @@ if(LEPTON_SOURCE_DIR)
endif()
set(LEPTON_SOURCE_DIR ${LAMMPS_LIB_SOURCE_DIR}/lepton)
file(GLOB LEPTON_SOURCES ${CONFIGURE_DEPENDS} ${LEPTON_SOURCE_DIR}/src/[^.]*.cpp)
file(GLOB LEPTON_SOURCES CONFIGURE_DEPENDS ${LEPTON_SOURCE_DIR}/src/[^.]*.cpp)
if((CMAKE_HOST_SYSTEM_PROCESSOR STREQUAL "amd64") OR
(CMAKE_HOST_SYSTEM_PROCESSOR STREQUAL "AMD64") OR
@ -15,7 +15,7 @@ else()
endif()
if(LEPTON_ENABLE_JIT)
file(GLOB ASMJIT_SOURCES ${CONFIGURE_DEPENDS} ${LEPTON_SOURCE_DIR}/asmjit/*/[^.]*.cpp)
file(GLOB ASMJIT_SOURCES CONFIGURE_DEPENDS ${LEPTON_SOURCE_DIR}/asmjit/*/[^.]*.cpp)
endif()
add_library(lepton STATIC ${LEPTON_SOURCES} ${ASMJIT_SOURCES})

View File

@ -26,29 +26,9 @@ if(DOWNLOAD_MDI)
# detect if we have python development support and thus can enable python plugins
set(MDI_USE_PYTHON_PLUGINS OFF)
if(CMAKE_VERSION VERSION_LESS 3.12)
if(NOT PYTHON_VERSION_STRING)
set(Python_ADDITIONAL_VERSIONS 3.12 3.11 3.10 3.9 3.8 3.7 3.6)
# search for interpreter first, so we have a consistent library
find_package(PythonInterp) # Deprecated since version 3.12
if(PYTHONINTERP_FOUND)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
endif()
# search for the library matching the selected interpreter
set(Python_ADDITIONAL_VERSIONS ${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR})
find_package(PythonLibs QUIET) # Deprecated since version 3.12
if(PYTHONLIBS_FOUND)
if(NOT (PYTHON_VERSION_STRING STREQUAL PYTHONLIBS_VERSION_STRING))
message(FATAL_ERROR "Python Library version ${PYTHONLIBS_VERSION_STRING} does not match Interpreter version ${PYTHON_VERSION_STRING}")
endif()
set(MDI_USE_PYTHON_PLUGINS ON)
endif()
else()
find_package(Python QUIET COMPONENTS Development)
if(Python_Development_FOUND)
set(MDI_USE_PYTHON_PLUGINS ON)
endif()
find_package(Python QUIET COMPONENTS Development)
if(Python_Development_FOUND)
set(MDI_USE_PYTHON_PLUGINS ON)
endif()
# python plugins are not supported and thus must be always off on Windows
if(CMAKE_SYSTEM_NAME STREQUAL "Windows")
@ -102,13 +82,9 @@ if(DOWNLOAD_MDI)
# if compiling with python plugins we need
# to add python libraries as dependency.
if(MDI_USE_PYTHON_PLUGINS)
if(CMAKE_VERSION VERSION_LESS 3.12)
list(APPEND MDI_DEP_LIBS ${PYTHON_LIBRARIES})
else()
list(APPEND MDI_DEP_LIBS Python::Python)
endif()
list(APPEND MDI_DEP_LIBS Python::Python)
endif()
# need to add support for dlopen/dlsym, except when compiling for Windows.
if(NOT (CMAKE_SYSTEM_NAME STREQUAL "Windows"))
list(APPEND MDI_DEP_LIBS "${CMAKE_DL_LIBS}")

View File

@ -2,12 +2,7 @@
set(MLIAP_ENABLE_PYTHON_DEFAULT OFF)
if(PKG_PYTHON)
find_package(Cythonize QUIET)
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.14)
find_package(Python COMPONENTS NumPy QUIET)
else()
# assume we have NumPy
set(Python_NumPy_FOUND ON)
endif()
find_package(Python COMPONENTS NumPy QUIET)
if(Cythonize_FOUND AND Python_NumPy_FOUND)
set(MLIAP_ENABLE_PYTHON_DEFAULT ON)
endif()
@ -17,24 +12,16 @@ option(MLIAP_ENABLE_PYTHON "Build ML-IAP package with Python support" ${MLIAP_EN
if(MLIAP_ENABLE_PYTHON)
find_package(Cythonize REQUIRED)
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.14)
find_package(Python COMPONENTS NumPy REQUIRED)
endif()
find_package(Python COMPONENTS NumPy REQUIRED)
if(NOT PKG_PYTHON)
message(FATAL_ERROR "Must enable PYTHON package for including Python support in ML-IAP")
endif()
if(CMAKE_VERSION VERSION_LESS 3.12)
if(PYTHONLIBS_VERSION_STRING VERSION_LESS 3.6)
message(FATAL_ERROR "Python support in ML-IAP requires Python 3.6 or later")
endif()
else()
if(Python_VERSION VERSION_LESS 3.6)
message(FATAL_ERROR "Python support in ML-IAP requires Python 3.6 or later")
endif()
if(Python_VERSION VERSION_LESS 3.6)
message(FATAL_ERROR "Python support in ML-IAP requires Python 3.6 or later")
endif()
set(MLIAP_BINARY_DIR ${CMAKE_BINARY_DIR}/cython)
file(GLOB MLIAP_CYTHON_SRC ${CONFIGURE_DEPENDS} ${LAMMPS_SOURCE_DIR}/ML-IAP/*.pyx)
file(GLOB MLIAP_CYTHON_SRC CONFIGURE_DEPENDS ${LAMMPS_SOURCE_DIR}/ML-IAP/*.pyx)
file(MAKE_DIRECTORY ${MLIAP_BINARY_DIR})
foreach(MLIAP_CYTHON_FILE ${MLIAP_CYTHON_SRC})
get_filename_component(MLIAP_CYTHON_BASE ${MLIAP_CYTHON_FILE} NAME_WE)

View File

@ -1,33 +1,40 @@
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2023.01.3.fix.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2023.11.25.fix.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_MD5 "4f0b3b5b14456fe9a73b447de3765caa" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
set(PACELIB_MD5 "b45de9a633f42ed65422567e3ce56f9f" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
mark_as_advanced(PACELIB_URL)
mark_as_advanced(PACELIB_MD5)
GetFallbackURL(PACELIB_URL PACELIB_FALLBACK)
# download library sources to build folder
if(EXISTS ${CMAKE_BINARY_DIR}/libpace.tar.gz)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
endif()
if(NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}")
message(STATUS "Downloading ${PACELIB_URL}")
file(DOWNLOAD ${PACELIB_URL} ${CMAKE_BINARY_DIR}/libpace.tar.gz STATUS DL_STATUS SHOW_PROGRESS)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
if((NOT DL_STATUS EQUAL 0) OR (NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}"))
message(WARNING "Download from primary URL ${PACELIB_URL} failed\nTrying fallback URL ${PACELIB_FALLBACK}")
file(DOWNLOAD ${PACELIB_FALLBACK} ${CMAKE_BINARY_DIR}/libpace.tar.gz EXPECTED_HASH MD5=${PACELIB_MD5} SHOW_PROGRESS)
endif()
# LOCAL_ML-PACE points to top-level dir with local lammps-user-pace repo,
# to make it easier to check local build without going through the public github releases
if(LOCAL_ML-PACE)
set(lib-pace "${LOCAL_ML-PACE}")
else()
message(STATUS "Using already downloaded archive ${CMAKE_BINARY_DIR}/libpace.tar.gz")
endif()
# download library sources to build folder
if(EXISTS ${CMAKE_BINARY_DIR}/libpace.tar.gz)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
endif()
if(NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}")
message(STATUS "Downloading ${PACELIB_URL}")
file(DOWNLOAD ${PACELIB_URL} ${CMAKE_BINARY_DIR}/libpace.tar.gz STATUS DL_STATUS SHOW_PROGRESS)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
if((NOT DL_STATUS EQUAL 0) OR (NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}"))
message(WARNING "Download from primary URL ${PACELIB_URL} failed\nTrying fallback URL ${PACELIB_FALLBACK}")
file(DOWNLOAD ${PACELIB_FALLBACK} ${CMAKE_BINARY_DIR}/libpace.tar.gz EXPECTED_HASH MD5=${PACELIB_MD5} SHOW_PROGRESS)
endif()
else()
message(STATUS "Using already downloaded archive ${CMAKE_BINARY_DIR}/libpace.tar.gz")
endif()
# uncompress downloaded sources
execute_process(
COMMAND ${CMAKE_COMMAND} -E remove_directory lammps-user-pace*
COMMAND ${CMAKE_COMMAND} -E tar xzf libpace.tar.gz
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
get_newest_file(${CMAKE_BINARY_DIR}/lammps-user-pace-* lib-pace)
# uncompress downloaded sources
execute_process(
COMMAND ${CMAKE_COMMAND} -E remove_directory lammps-user-pace*
COMMAND ${CMAKE_COMMAND} -E tar xzf libpace.tar.gz
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
get_newest_file(${CMAKE_BINARY_DIR}/lammps-user-pace-* lib-pace)
endif()
add_subdirectory(${lib-pace} build-pace)
set_target_properties(pace PROPERTIES CXX_EXTENSIONS ON OUTPUT_NAME lammps_pace${LAMMPS_MACHINE})

View File

@ -1,29 +1,11 @@
if(CMAKE_VERSION VERSION_LESS 3.12)
if(NOT PYTHON_VERSION_STRING)
set(Python_ADDITIONAL_VERSIONS 3.12 3.11 3.10 3.9 3.8 3.7 3.6)
# search for interpreter first, so we have a consistent library
find_package(PythonInterp) # Deprecated since version 3.12
if(PYTHONINTERP_FOUND)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
if(NOT Python_INTERPRETER)
# backward compatibility with CMake before 3.12 and older LAMMPS documentation
if(PYTHON_EXECUTABLE)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
# search for the library matching the selected interpreter
set(Python_ADDITIONAL_VERSIONS ${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR})
find_package(PythonLibs REQUIRED) # Deprecated since version 3.12
if(NOT (PYTHON_VERSION_STRING STREQUAL PYTHONLIBS_VERSION_STRING))
message(FATAL_ERROR "Python Library version ${PYTHONLIBS_VERSION_STRING} does not match Interpreter version ${PYTHON_VERSION_STRING}")
endif()
target_include_directories(lammps PRIVATE ${PYTHON_INCLUDE_DIRS})
target_link_libraries(lammps PRIVATE ${PYTHON_LIBRARIES})
else()
if(NOT Python_INTERPRETER)
# backward compatibility
if(PYTHON_EXECUTABLE)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()
find_package(Python COMPONENTS Interpreter)
endif()
find_package(Python REQUIRED COMPONENTS Interpreter Development)
target_link_libraries(lammps PRIVATE Python::Python)
find_package(Python COMPONENTS Interpreter)
endif()
find_package(Python REQUIRED COMPONENTS Interpreter Development)
target_link_libraries(lammps PRIVATE Python::Python)
target_compile_definitions(lammps PRIVATE -DLMP_PYTHON)

View File

@ -1,5 +1,5 @@
function(FindStyleHeaders path style_class file_pattern headers)
file(GLOB files ${CONFIGURE_DEPENDS} "${path}/${file_pattern}*.h")
file(GLOB files CONFIGURE_DEPENDS "${path}/${file_pattern}*.h")
get_property(hlist GLOBAL PROPERTY ${headers})
foreach(file_name ${files})
@ -187,7 +187,7 @@ endfunction(DetectBuildSystemConflict)
function(FindPackagesHeaders path style_class file_pattern headers)
file(GLOB files ${CONFIGURE_DEPENDS} "${path}/${file_pattern}*.h")
file(GLOB files CONFIGURE_DEPENDS "${path}/${file_pattern}*.h")
get_property(plist GLOBAL PROPERTY ${headers})
foreach(file_name ${files})

View File

@ -6,7 +6,7 @@ if(ENABLE_TESTING)
find_program(VALGRIND_BINARY NAMES valgrind)
# generate custom suppression file
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/lammps.supp "\n")
file(GLOB VALGRIND_SUPPRESSION_FILES ${CONFIGURE_DEPENDS} ${LAMMPS_TOOLS_DIR}/valgrind/[^.]*.supp)
file(GLOB VALGRIND_SUPPRESSION_FILES CONFIGURE_DEPENDS ${LAMMPS_TOOLS_DIR}/valgrind/[^.]*.supp)
foreach(SUPP ${VALGRIND_SUPPRESSION_FILES})
file(READ ${SUPP} SUPPRESSIONS)
file(APPEND ${CMAKE_CURRENT_BINARY_DIR}/lammps.supp "${SUPPRESSIONS}")
@ -19,7 +19,7 @@ if(ENABLE_TESTING)
# we need to build and link a LOT of tester executables, so it is worth checking if
# a faster linker is available. requires GNU or Clang compiler, newer CMake.
# also only verified with Fedora Linux > 30 and Ubuntu 18.04 or 22.04+(Ubuntu 20.04 fails)
if((CMAKE_SYSTEM_NAME STREQUAL "Linux") AND (CMAKE_VERSION VERSION_GREATER_EQUAL 3.13)
if((CMAKE_SYSTEM_NAME STREQUAL "Linux")
AND ((CMAKE_CXX_COMPILER_ID STREQUAL "GNU") OR (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")))
if(((CMAKE_LINUX_DISTRO STREQUAL "Ubuntu") AND
((CMAKE_DISTRO_VERSION VERSION_LESS_EQUAL 18.04) OR (CMAKE_DISTRO_VERSION VERSION_GREATER_EQUAL 22.04)))
@ -66,16 +66,8 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
option(ENABLE_COVERAGE "Enable collecting code coverage data" OFF)
mark_as_advanced(ENABLE_COVERAGE)
if(ENABLE_COVERAGE)
if(CMAKE_VERSION VERSION_LESS 3.13)
if(CMAKE_CXX_FLAGS)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} --coverage")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_${CMAKE_BUILD_TYPE}_FLAGS} --coverage")
endif()
else()
target_compile_options(lammps PUBLIC --coverage)
target_link_options(lammps PUBLIC --coverage)
endif()
target_compile_options(lammps PUBLIC --coverage)
target_link_options(lammps PUBLIC --coverage)
endif()
endif()
@ -118,16 +110,8 @@ validate_option(ENABLE_SANITIZER ENABLE_SANITIZER_VALUES)
string(TOLOWER ${ENABLE_SANITIZER} ENABLE_SANITIZER)
if(NOT ENABLE_SANITIZER STREQUAL "none")
if((${CMAKE_CXX_COMPILER_ID} STREQUAL "GNU") OR (${CMAKE_CXX_COMPILER_ID} STREQUAL "Clang"))
if(CMAKE_VERSION VERSION_LESS 3.13)
if(CMAKE_CXX_FLAGS)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=${ENABLE_SANITIZER}")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_${CMAKE_BUILD_TYPE}_FLAGS} -fsanitize=${ENABLE_SANITIZER}")
endif()
else()
target_compile_options(lammps PUBLIC -fsanitize=${ENABLE_SANITIZER})
target_link_options(lammps PUBLIC -fsanitize=${ENABLE_SANITIZER})
endif()
target_compile_options(lammps PUBLIC -fsanitize=${ENABLE_SANITIZER})
target_link_options(lammps PUBLIC -fsanitize=${ENABLE_SANITIZER})
else()
message(WARNING "ENABLE_SANITIZER option not supported by ${CMAKE_CXX_COMPILER_ID} compilers. Ignoring.")
set(ENABLE_SANITIZER "none")

View File

@ -26,7 +26,7 @@ if(BUILD_TOOLS)
enable_language(C)
get_filename_component(MSI2LMP_SOURCE_DIR ${LAMMPS_TOOLS_DIR}/msi2lmp/src ABSOLUTE)
file(GLOB MSI2LMP_SOURCES ${CONFIGURE_DEPENDS} ${MSI2LMP_SOURCE_DIR}/[^.]*.c)
file(GLOB MSI2LMP_SOURCES CONFIGURE_DEPENDS ${MSI2LMP_SOURCE_DIR}/[^.]*.c)
add_executable(msi2lmp ${MSI2LMP_SOURCES})
if(STANDARD_MATH_LIB)
target_link_libraries(msi2lmp PRIVATE ${STANDARD_MATH_LIB})

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

After

Width:  |  Height:  |  Size: 86 KiB

View File

@ -17,7 +17,7 @@
<key>CFBundleLongVersionString</key>
<string>${MACOSX_BUNDLE_LONG_VERSION_STRING}</string>
<key>CFBundleName</key>
<string>LAMMPS</string>
<string>LAMMPS_GUI</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleShortVersionString</key>

View File

@ -9,7 +9,7 @@ of the available packages.
The following individual commands are included:
binary2txt lammps-gui lmp msi2lmp phana stl_bin2txt
After copying the lammps-gui folder into your Applications folder, please follow
After copying the LAMMPS_GUI folder into your Applications folder, please follow
these steps:
1. Open the Terminal app
@ -23,7 +23,7 @@ these steps:
3. Add the following lines to the end of the file, save it, and close the editor
LAMMPS_INSTALL_DIR=/Applications/LAMMPS.app/Contents
LAMMPS_INSTALL_DIR=/Applications/LAMMPS_GUI.app/Contents
LAMMPS_POTENTIALS=${LAMMPS_INSTALL_DIR}/share/lammps/potentials
LAMMPS_BENCH_DIR=${LAMMPS_INSTALL_DIR}/share/lammps/bench
MSI2LMP_LIBRARY=${LAMMPS_INSTALL_DIR}/share/lammps/frc_files
@ -38,9 +38,9 @@ these steps:
the changes from .zprofile automatically.
Note: the above assumes you use the default shell (zsh) that comes with
MacOS. If you customized MacOS to use a different shell, you'll need to modify
that shell's init file (.cshrc, .bashrc, etc.) instead with appropiate commands
to modify the same environment variables.
MacOS. If you customized MacOS to use a different shell, you'll need to
modify that shell's init file (.cshrc, .bashrc, etc.) instead with
appropiate commands to modify the same environment variables.
5. Try running LAMMPS (which might fail, see step 7)
@ -50,10 +50,10 @@ these steps:
lammps-gui ${LAMMPS_BENCH_DIR}/in.rhodo
Depending on the size and resolution of your screen, the fonts may
be too small to read. This can be adjusted by setting the environment
variable QT_FONT_DPI. The default value would be 72, so to increase
the fonts by a third one can add to the .zprofile file the line
Depending on the size and resolution of your screen, the fonts may be too
small to read. This can be adjusted by setting the environment variable
QT_FONT_DPI. The default value would be 72, so to increase the fonts by a
third, one can add to the .zprofile file the line
export QT_FONT_DPI=96
@ -61,9 +61,9 @@ these steps:
7. Give permission to execute the commands (lmp, lammps-gui, msi2lmp, binary2txt, phana, stl_bin2txt)
MacOS will likely block the initial run of the executables, since they
were downloaded from the internet and are missing a known signature from an
identified developer. Go to "Settings" and search for "Security settings". It
should display a message that an executable like "lmp" was blocked. Press
MacOS will likely block the initial run of the executables, since they were
downloaded from the internet and are missing a known signature from an
identified developer. Go to "Settings" and search for "Security settings".
It should display a message that an executable like "lmp" was blocked. Press
"Open anyway", which might prompt you for your admin credentials. Afterwards
"lmp" and the other executables should work as expected.

View File

@ -4,7 +4,7 @@ APP_NAME=lammps-gui
DESTDIR=${PWD}/../LAMMPS_GUI
echo "Delete old files, if they exist"
rm -rf ${DESTDIR} ../LAMMPS-Linux-amd64.tar.gz
rm -rf ${DESTDIR} ../LAMMPS_GUI-Linux-amd64.tar.gz
echo "Create staging area for deployment and populate"
DESTDIR=${DESTDIR} cmake --install . --prefix "/"
@ -69,7 +69,7 @@ do \
done
pushd ..
tar -czvvf LAMMPS-Linux-amd64.tar.gz LAMMPS_GUI
tar -czvvf LAMMPS_GUI-Linux-amd64.tar.gz LAMMPS_GUI
popd
echo "Cleanup dir"

View File

@ -3,7 +3,7 @@
APP_NAME=lammps-gui
echo "Delete old files, if they exist"
rm -f ${APP_NAME}.dmg ${APP_NAME}-rw.dmg LAMMPS-macOS-multiarch.dmg
rm -f ${APP_NAME}.dmg ${APP_NAME}-rw.dmg LAMMPS_GUI-macOS-multiarch.dmg
echo "Create initial dmg file with macdeployqt"
macdeployqt lammps-gui.app -dmg
@ -22,8 +22,8 @@ ln -s /Applications .
mv ${APP_NAME}.app/Contents/Resources/README.txt .
mkdir .background
mv ${APP_NAME}.app/Contents/Resources/LAMMPS_DMG_Background.png .background/background.png
mv ${APP_NAME}.app LAMMPS.app
cd LAMMPS.app/Contents
mv ${APP_NAME}.app LAMMPS_GUI.app
cd LAMMPS_GUI.app/Contents
echo "Attach icons to LAMMPS console and GUI executables"
echo "read 'icns' (-16455) \"Resources/lammps.icns\";" > icon.rsrc
@ -75,7 +75,7 @@ echo '
set statusbar visible to false
set toolbar visible to false
set the bounds to { 100, 40, 868, 640 }
set position of item "'LAMMPS'.app" to { 190, 216 }
set position of item "'LAMMPS_GUI'.app" to { 190, 216 }
set position of item "Applications" to { 576, 216 }
set position of item "README.txt" to { 190, 400 }
end tell
@ -96,12 +96,12 @@ sync
echo "Unmount modified disk image and convert to compressed read-only image"
hdiutil detach "${DEVICE}"
hdiutil convert "${APP_NAME}-rw.dmg" -format UDZO -o "LAMMPS-macOS-multiarch.dmg"
hdiutil convert "${APP_NAME}-rw.dmg" -format UDZO -o "LAMMPS_GUI-macOS-multiarch.dmg"
echo "Attach icon to .dmg file"
echo "read 'icns' (-16455) \"lammps-gui.app/Contents/Resources/lammps.icns\";" > icon.rsrc
Rez -a icon.rsrc -o LAMMPS-macOS-multiarch.dmg
SetFile -a C LAMMPS-macOS-multiarch.dmg
Rez -a icon.rsrc -o LAMMPS_GUI-macOS-multiarch.dmg
SetFile -a C LAMMPS_GUI-macOS-multiarch.dmg
rm icon.rsrc
echo "Delete temporary disk images"

View File

@ -1,26 +1,64 @@
#!/bin/bash -vx
#!/bin/bash
APP_NAME=lammps-gui
DESTDIR=${PWD}/../LAMMPS_GUI
DESTDIR=${PWD}/LAMMPS_GUI
SYSROOT="$1"
echo "Delete old files, if they exist"
rm -rvf ${DESTDIR} LAMMPS-Win10-amd64.zip
rm -rvf ${DESTDIR}/LAMMPS_GUI ${DESTDIR}/LAMMPS-Win10-amd64.zip
echo "Create staging area for deployment and populate"
DESTDIR=${DESTDIR} cmake --install . --prefix "/"
echo "Add required dependencies for Qt"
for dll in Qt5Core.dll Qt5Gui.dll Qt5Widgets.dll
# no static libs needed
rm -rvf ${DESTDIR}/lib
# but the LAMMPS lib
echo "Copying required DLL files"
for dll in $(objdump -p *.exe *.dll | sed -n -e '/DLL Name:/s/^.*DLL Name: *//p' | sort | uniq)
do \
cp /usr/x86_64-w64-mingw32/sys-root/mingw/bin/${dll} ${DESTDIR}/bin/
done
for dir in styles platforms imageformats
do \
mkdir -p ${DESTDIR}/${dir}
cp -r /usr/x86_64-w64-mingw32/sys-root/mingw/lib/qt5/plugins/${dir}/*.dll ${DESTDIR}/${dir}
doskip=0
for skip in ADVAPI32 CFGMGR32 GDI32 KERNEL32 MPR NETAPI32 PSAPI SHELL32 USER32 USERENV UxTheme VERSION WS2_32 WSOCK32 d3d11 dwmapi liblammps msvcrt_ole32
do \
test ${dll} = ${skip}.dll && doskip=1
done
test ${doskip} -eq 1 && continue
test -f ${DESTDIR}/bin/${dll} || cp -v ${SYSROOT}/bin/${dll} ${DESTDIR}/bin
done
pushd ..
zip -9rv LAMMPS-Win10-amd64.zip LAMMPS_GUI
popd
exit 0
echo "Copy required Qt plugins"
mkdir -p ${DESTDIR}/qt5plugins
for plugin in imageformats platforms styles
do \
cp -r ${SYSROOT}/lib/qt5/plugins/${plugin} ${DESTDIR}/qt5plugins/
done
echo "Check dependencies of DLL files"
for dll in $(objdump -p ${DESTDIR}/bin/*.dll ${DESTDIR}/qt5plugins/*/*.dll | sed -n -e '/DLL Name:/s/^.*DLL Name: *//p' | sort | uniq)
do \
doskip=0
for skip in ADVAPI32 CFGMGR32 GDI32 KERNEL32 MPR NETAPI32 PSAPI SHELL32 USER32 USERENV UxTheme VERSION WS2_32 WSOCK32 d3d11 dwmapi liblammps msvcrt_ole32
do \
test ${dll} = ${skip}.dll && doskip=1
done
test ${doskip} -eq 1 && continue
test -f ${DESTDIR}/bin/${dll} || cp -v ${SYSROOT}/bin/${dll} ${DESTDIR}/bin
done
for dll in $(objdump -p ${DESTDIR}/bin/*.dll ${DESTDIR}/qt5plugins/*/*.dll | sed -n -e '/DLL Name:/s/^.*DLL Name: *//p' | sort | uniq)
do \
doskip=0
for skip in ADVAPI32 CFGMGR32 GDI32 KERNEL32 MPR NETAPI32 PSAPI SHELL32 USER32 USERENV UxTheme VERSION WS2_32 WSOCK32 d3d11 dwmapi liblammps msvcrt_ole32
do \
test ${dll} = ${skip}.dll && doskip=1
done
test ${doskip} -eq 1 && continue
test -f ${DESTDIR}/bin/${dll} || cp -v ${SYSROOT}/bin/${dll} ${DESTDIR}/bin
done
cat > ${DESTDIR}/bin/qt.conf <<EOF
[Paths]
Plugins = ../qt5plugins
EOF
zip -9rvD LAMMPS-Win10-amd64.zip LAMMPS_GUI

View File

@ -1,7 +1,7 @@
# CMake script to be run post installation to build zipped package
# clean up old zipfile and deployment tree
file(REMOVE LAMMPS-Win10-amd64.zip)
file(REMOVE LAMMPS_GUI-Win10-amd64.zip)
file(REMOVE_RECURSE LAMMPS_GUI)
file(RENAME ${INSTNAME} LAMMPS_GUI)
@ -21,8 +21,15 @@ file(WRITE qtdeploy.bat "@ECHO OFF\r\nset VSCMD_DEBUG=0\r\nCALL ${VC_INIT} x64\r
execute_process(COMMAND cmd.exe /c qtdeploy.bat COMMAND_ECHO STDERR)
file(REMOVE qtdeploy.bat)
# download and uncompress static FFMpeg and gzip binaries
file(DOWNLOAD "https://download.lammps.org/thirdparty/ffmpeg-gzip.zip" ffmpeg-gzip.zip)
file(WRITE unpackzip.ps1 "Expand-Archive -Path ffmpeg-gzip.zip -DestinationPath LAMMPS_GUI")
execute_process(COMMAND powershell -ExecutionPolicy Bypass -File unpackzip.ps1)
file(REMOVE unpackzip.ps1)
file(REMOVE ffmpeg-gzip.zip)
# create zip archive
file(WRITE makearchive.ps1 "Compress-Archive -Path LAMMPS_GUI -CompressionLevel Optimal -DestinationPath LAMMPS-Win10-amd64.zip")
file(WRITE makearchive.ps1 "Compress-Archive -Path LAMMPS_GUI -CompressionLevel Optimal -DestinationPath LAMMPS_GUI-Win10-amd64.zip")
execute_process(COMMAND powershell -ExecutionPolicy Bypass -File makearchive.ps1)
file(REMOVE makearchive.ps1)
file(REMOVE_RECURSE LAMMPS_GUI)

View File

@ -1,6 +1,9 @@
#!/bin/sh
# wrapper for bundled executables
# reset locale to avoid problems with decimal numbers
export LC_ALL=C
BASEDIR=$(dirname "$0")
EXENAME=$(basename "$0")

View File

@ -63,7 +63,6 @@ set(ALL_PACKAGES
MOFFF
MOLECULE
MOLFILE
MPIIO
NETCDF
OPENMP
OPT

View File

@ -65,7 +65,6 @@ set(ALL_PACKAGES
MOFFF
MOLECULE
MOLFILE
MPIIO
NETCDF
OPENMP
OPT

View File

@ -0,0 +1,11 @@
# preset that enables GPU and selects CUDA API
set(PKG_GPU ON CACHE BOOL "Build GPU package" FORCE)
set(GPU_API "cuda" CACHE STRING "APU used by GPU package" FORCE)
set(GPU_PREC "mixed" CACHE STRING "" FORCE)
set(CUDA_NVCC_FLAGS "-allow-unsupported-compiler" CACHE STRING "" FORCE)
set(CUDA_NVCC_FLAGS_DEBUG "-allow-unsupported-compiler" CACHE STRING "" FORCE)
set(CUDA_NVCC_FLAGS_MINSIZEREL "-allow-unsupported-compiler" CACHE STRING "" FORCE)
set(CUDA_NVCC_FLAGS_RELWITHDEBINFO "-allow-unsupported-compiler" CACHE STRING "" FORCE)
set(CUDA_NVCC_FLAGS_RELEASE "-allow-unsupported-compiler" CACHE STRING "" FORCE)

View File

@ -6,6 +6,8 @@ set(Kokkos_ENABLE_SERIAL ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_CUDA ON CACHE BOOL "" FORCE)
set(Kokkos_ARCH_PASCAL60 ON CACHE BOOL "" FORCE)
set(BUILD_OMP ON CACHE BOOL "" FORCE)
get_filename_component(NVCC_WRAPPER_CMD ${CMAKE_CURRENT_SOURCE_DIR}/../lib/kokkos/bin/nvcc_wrapper ABSOLUTE)
set(CMAKE_CXX_COMPILER ${NVCC_WRAPPER_CMD} CACHE FILEPATH "" FORCE)
# hide deprecation warnings temporarily for stable release
set(Kokkos_ENABLE_DEPRECATION_WARNINGS OFF CACHE BOOL "" FORCE)

View File

@ -10,5 +10,3 @@ set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
set(CMAKE_C_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
set(BUILD_MPI FALSE CACHE BOOL "" FORCE)
set(BUILD_SHARED_LIBS FALSE CACHE BOOL "" FORCE)
set(LAMMPS_EXCEPTIONS TRUE CACHE BOOL "" FORCE)

View File

@ -83,7 +83,6 @@ endforeach()
# these two packages require a full MPI implementation
if(BUILD_MPI)
set(PKG_MPIIO ON CACHE BOOL "" FORCE)
set(PKG_LATBOLTZ ON CACHE BOOL "" FORCE)
endif()

View File

@ -24,8 +24,8 @@ set(ALL_PACKAGES
DPD-REACT
DPD-SMOOTH
DRUDE
ELECTRODE
EFF
ELECTRODE
EXTRA-COMPUTE
EXTRA-DUMP
EXTRA-FIX

View File

@ -19,7 +19,6 @@ set(PACKAGES_WITH_LIB
ML-PACE
ML-QUIP
MOLFILE
MPIIO
NETCDF
PLUMED
PYTHON

View File

@ -32,6 +32,7 @@ set(WIN_PACKAGES
INTERLAYER
KSPACE
LEPTON
MACHDYN
MANIFOLD
MANYBODY
MC
@ -45,6 +46,7 @@ set(WIN_PACKAGES
MOLECULE
MOLFILE
OPENMP
OPT
ORIENT
PERI
PHONON

View File

@ -63,6 +63,7 @@ help:
@echo " anchor_check scan for duplicate anchor labels"
@echo " style_check check for complete and consistent style lists"
@echo " package_check check for complete and consistent package lists"
@echo " role_check check for misformatted role keywords"
@echo " spelling spell-check the manual"
# ------------------------------------------
@ -98,6 +99,7 @@ html: xmlgen $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK) $(MATHJAX)
env LC_ALL=C grep -n '[^ -~]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' :[a-z]\+`' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst ;\
$(PYTHON) $(BUILDDIR)/utils/check-styles.py -s ../src -d src ;\
echo "############################################" ;\
deactivate ;\
@ -179,6 +181,7 @@ pdf: xmlgen $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK)
env LC_ALL=C grep -n '[^ -~]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' :[a-z]\+`' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst ;\
$(PYTHON) utils/check-styles.py -s ../src -d src ;\
echo "############################################" ;\
deactivate ;\
@ -227,6 +230,7 @@ char_check :
role_check :
@( env LC_ALL=C grep -n ' :[a-z]\+`' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst && exit 1 || : )
link_check : $(VENV) html
@(\

View File

@ -1,7 +1,7 @@
.TH LAMMPS "1" "2 August 2023" "2023-08-2"
.TH LAMMPS "1" "21 November 2023" "2023-11-21"
.SH NAME
.B LAMMPS
\- Molecular Dynamics Simulator. Version 2 August 2023
\- Molecular Dynamics Simulator. Version 21 November 2023
.SH SYNOPSIS
.B lmp

View File

@ -562,6 +562,9 @@ Bibliography
**(Kumar)**
Kumar and Skinner, J. Phys. Chem. B, 112, 8311 (2008)
**(Lafourcade)**
Lafourcade, Maillet, Denoual, Duval, Allera, Goryaeva, and Marinica, `Comp. Mat. Science, 230, 112534 (2023) <https://doi.org/10.1016/j.commatsci.2023.112534>`_
**(Lamoureux and Roux)**
G.\ Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)

View File

@ -90,7 +90,7 @@ standard. A more detailed discussion of that is below.
directory, or ``make`` from the ``src/STUBS`` dir. If the build
fails, you may need to edit the ``STUBS/Makefile`` for your
platform. The stubs library does not provide MPI/IO functions
required by some LAMMPS packages, e.g. ``MPIIO`` or ``LATBOLTZ``,
required by some LAMMPS packages, e.g. ``LATBOLTZ``,
and thus is not compatible with those packages.
.. note::
@ -128,14 +128,13 @@ and adds vectorization support when compiled with compatible compilers,
in particular the Intel compilers on top of OpenMP. Also, the ``KOKKOS``
package can be compiled to include OpenMP threading.
In addition, there are a few commands in LAMMPS that have native
OpenMP support included as well. These are commands in the ``MPIIO``,
``ML-SNAP``, ``DIFFRACTION``, and ``DPD-REACT`` packages.
Furthermore, some packages support OpenMP threading indirectly through
the libraries they interface to: e.g. ``KSPACE``, and ``COLVARS``.
See the :doc:`Packages details <Packages_details>` page for more info
on these packages, and the pages for their respective commands for
OpenMP threading info.
In addition, there are a few commands in LAMMPS that have native OpenMP
support included as well. These are commands in the ``ML-SNAP``,
``DIFFRACTION``, and ``DPD-REACT`` packages. Furthermore, some packages
support OpenMP threading indirectly through the libraries they interface
to: e.g. ``KSPACE``, and ``COLVARS``. See the :doc:`Packages details
<Packages_details>` page for more info on these packages, and the pages
for their respective commands for OpenMP threading info.
For CMake, if you use ``BUILD_OMP=yes``, you can use these packages
and turn on their native OpenMP support and turn on their native OpenMP
@ -489,8 +488,9 @@ using CMake or Make.
.. code-block:: bash
-D BUILD_TOOLS=value # yes or no (default)
-D BUILD_LAMMPS_SHELL=value # yes or no (default)
-D BUILD_TOOLS=value # yes or no (default). Build binary2txt, chain.x, micelle2d.x, msi2lmp, phana, stl_bin2txt
-D BUILD_LAMMPS_SHELL=value # yes or no (default). Build lammps-shell
-D BUILD_LAMMPS_GUI=value # yes or no (default). Build lammps-gui
The generated binaries will also become part of the LAMMPS installation
(see below).
@ -504,7 +504,6 @@ using CMake or Make.
make binary2txt # build only binary2txt tool
make chain # build only chain tool
make micelle2d # build only micelle2d tool
make thermo_extract # build only thermo_extract tool
cd lammps/tools/lammps-shell
make # build LAMMPS shell

View File

@ -16,8 +16,7 @@ environments is on a :doc:`separate page <Howto_cmake>`.
.. note::
LAMMPS currently requires that CMake version 3.10 or later is available;
version 3.12 or later is preferred.
LAMMPS currently requires that CMake version 3.16 or later is available.
.. warning::
@ -34,19 +33,18 @@ Advantages of using CMake
^^^^^^^^^^^^^^^^^^^^^^^^^
CMake is an alternative to compiling LAMMPS in the traditional way
through :doc:`(manually customized) makefiles <Build_make>` and a recent
addition to LAMMPS thanks to the efforts of Christoph Junghans (LANL)
and Richard Berger (Temple U). Using CMake has multiple advantages that
are specifically helpful for people with limited experience in compiling
software or for people that want to modify or extend LAMMPS.
through :doc:`(manually customized) makefiles <Build_make>`. Using
CMake has multiple advantages that are specifically helpful for
people with limited experience in compiling software or for people
that want to modify or extend LAMMPS.
- CMake can detect available hardware, tools, features, and libraries
and adapt the LAMMPS default build configuration accordingly.
- CMake can generate files for different build tools and integrated
development environments (IDE).
- CMake supports customization of settings with a command line, text
mode, or graphical user interface. No knowledge of file formats or
complex command line syntax is required.
mode, or graphical user interface. No manual editing of files,
knowledge of file formats or complex command line syntax is required.
- All enabled components are compiled in a single build operation.
- Automated dependency tracking for all files and configuration options.
- Support for true out-of-source compilation. Multiple configurations
@ -179,13 +177,13 @@ configuration is selected with the *-C* flag:
ctest -C Debug
The CMake scripts in LAMMPS have basic support for being compiled using a
multi-config build system, but not all of it has been ported. This is in
particular applicable to compiling packages that require additional libraries
that would be downloaded and compiled by CMake. The "windows" preset file
tries to keep track of which packages can be compiled natively with the
MSVC compilers out-of-the box. Not all of those external libraries are
portable to Windows, either.
The CMake scripts in LAMMPS have basic support for being compiled using
a multi-config build system, but not all of it has been ported. This is
in particular applicable to compiling packages that require additional
libraries that would be downloaded and compiled by CMake. The
``windows.cmake`` preset file tries to keep track of which packages can
be compiled natively with the MSVC compilers out-of-the box. Not all of
the external libraries are portable to Windows, either.
Installing CMake

View File

@ -518,6 +518,8 @@ The following options are available.
make fix-errordocs # remove error docs in header files
make check-permissions # search for files with permissions issues
make fix-permissions # correct permissions issues in files
make check-docs # search for several issues in the manual
make check-version # list files with pending release version tags
make check # run all check targets from above
These should help to make source and documentation files conforming

View File

@ -626,22 +626,22 @@ They must be specified in uppercase.
* - HOPPER90
- GPU
- NVIDIA Hopper generation CC 9.0 GPU
* - VEGA900
* - AMD_GFX906
- GPU
- AMD GPU MI25 GFX900
* - VEGA906
- AMD GPU MI50/MI60
* - AMD_GFX908
- GPU
- AMD GPU MI50/MI60 GFX906
* - VEGA908
- AMD GPU MI100
* - AMD_GFX90A
- GPU
- AMD GPU MI100 GFX908
* - VEGA90A
- AMD GPU MI200
* - AMD_GFX942
- GPU
- AMD GPU MI200 GFX90A
* - NAVI1030
- AMD GPU MI300
* - AMD_GFX1030
- GPU
- AMD GPU V620/W6800
* - NAVI1100
* - AMD_GFX1100
- GPU
- AMD GPU RX7900XTX
* - INTEL_GEN
@ -666,7 +666,7 @@ They must be specified in uppercase.
- GPU
- Intel GPU Ponte Vecchio
This list was last updated for version 4.0.1 of the Kokkos library.
This list was last updated for version 4.2 of the Kokkos library.
.. tabs::
@ -722,9 +722,10 @@ This list was last updated for version 4.0.1 of the Kokkos library.
``cmake/presets`` folder, ``kokkos-serial.cmake``,
``kokkos-openmp.cmake``, ``kokkos-cuda.cmake``,
``kokkos-hip.cmake``, and ``kokkos-sycl.cmake``. They will enable
the KOKKOS package and enable some hardware choice. So to compile
with CUDA device parallelization (for GPUs with CC 5.0 and up)
with some common packages enabled, you can do the following:
the KOKKOS package and enable some hardware choices. For GPU
support those preset files must be customized to match the
hardware used. So to compile with CUDA device parallelization with
some common packages enabled, you can do the following:
.. code-block:: bash
@ -886,6 +887,50 @@ included in the LAMMPS source distribution in the ``lib/lepton`` folder.
----------
.. _machdyn:
MACHDYN package
-------------------------------
To build with this package, you must download the Eigen3 library.
Eigen3 is a template library, so you do not need to build it.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_EIGEN3 # download Eigen3, value = no (default) or yes
-D EIGEN3_INCLUDE_DIR=path # path to Eigen library (only needed if a custom location)
If ``DOWNLOAD_EIGEN3`` is set, the Eigen3 library will be
downloaded and inside the CMake build directory. If the Eigen3
library is already on your system (in a location where CMake
cannot find it), set ``EIGEN3_INCLUDE_DIR`` to the directory the
``Eigen3`` include file is in.
.. tab:: Traditional make
You can download the Eigen3 library manually if you prefer; follow
the instructions in ``lib/machdyn/README``. You can also do it in one
step from the ``lammps/src`` dir, using a command like these,
which simply invokes the ``lib/machdyn/Install.py`` script with the
specified args:
.. code-block:: bash
make lib-machdyn # print help message
make lib-machdyn args="-b" # download to lib/machdyn/eigen3
make lib-machdyn args="-p /usr/include/eigen3" # use existing Eigen installation in /usr/include/eigen3
Note that a symbolic (soft) link named ``includelink`` is created
in ``lib/machdyn`` to point to the Eigen dir. When LAMMPS builds it
will use this link. You should not need to edit the
``lib/machdyn/Makefile.lammps`` file.
----------
.. _mliap:
ML-IAP package
@ -1011,12 +1056,12 @@ additional details.
.. code-block:: bash
-D PYTHON_EXECUTABLE=path # path to Python executable to use
-D Python_EXECUTABLE=path # path to Python executable to use
Without this setting, CMake will guess the default Python version
on your system. To use a different Python version, you can either
create a virtualenv, activate it and then run cmake. Or you can
set the PYTHON_EXECUTABLE variable to specify which Python
set the Python_EXECUTABLE variable to specify which Python
interpreter should be used. Note note that you will also need to
have the development headers installed for this version,
e.g. python2-devel.
@ -1431,6 +1476,55 @@ ML-POD package
----------
.. _ml-quip:
ML-QUIP package
---------------------------------
To build with this package, you must download and build the QUIP
library. It can be obtained from GitHub. For support of GAP
potentials, additional files with specific licensing conditions need
to be downloaded and configured. The automatic download will from
within CMake will download the non-commercial use version.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_QUIP=value # download QUIP library for build, value = no (default) or yes
-D QUIP_LIBRARY=path # path to libquip.a (only needed if a custom location)
-D USE_INTERNAL_LINALG=value # Use the internal linear algebra library instead of LAPACK
# value = no (default) or yes
CMake will try to download and build the QUIP library from GitHub,
if it is not found on the local machine. This requires to have git
installed. It will use the same compilers and flags as used for
compiling LAMMPS. Currently this is only supported for the GNU
and the Intel compilers. Set the ``QUIP_LIBRARY`` variable if you
want to use a previously compiled and installed QUIP library and
CMake cannot find it.
The QUIP library requires LAPACK (and BLAS) and CMake can identify
their locations and pass that info to the QUIP build script. But
on some systems this triggers a (current) limitation of CMake and
the configuration will fail. Try enabling ``USE_INTERNAL_LINALG`` in
those cases to use the bundled linear algebra library and work around
the limitation.
.. tab:: Traditional make
The download/build procedure for the QUIP library, described in
``lib/quip/README`` file requires setting two environment
variables, ``QUIP_ROOT`` and ``QUIP_ARCH``. These are accessed by
the ``lib/quip/Makefile.lammps`` file which is used when you
compile and link LAMMPS with this package. You should only need
to edit ``Makefile.lammps`` if the LAMMPS build can not use its
settings to successfully build on your system.
----------
.. _plumed:
PLUMED package
@ -1952,55 +2046,6 @@ verified to work in February 2020 with Quantum Espresso versions 6.3 to
----------
.. _ml-quip:
ML-QUIP package
---------------------------------
To build with this package, you must download and build the QUIP
library. It can be obtained from GitHub. For support of GAP
potentials, additional files with specific licensing conditions need
to be downloaded and configured. The automatic download will from
within CMake will download the non-commercial use version.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_QUIP=value # download QUIP library for build, value = no (default) or yes
-D QUIP_LIBRARY=path # path to libquip.a (only needed if a custom location)
-D USE_INTERNAL_LINALG=value # Use the internal linear algebra library instead of LAPACK
# value = no (default) or yes
CMake will try to download and build the QUIP library from GitHub,
if it is not found on the local machine. This requires to have git
installed. It will use the same compilers and flags as used for
compiling LAMMPS. Currently this is only supported for the GNU
and the Intel compilers. Set the ``QUIP_LIBRARY`` variable if you
want to use a previously compiled and installed QUIP library and
CMake cannot find it.
The QUIP library requires LAPACK (and BLAS) and CMake can identify
their locations and pass that info to the QUIP build script. But
on some systems this triggers a (current) limitation of CMake and
the configuration will fail. Try enabling ``USE_INTERNAL_LINALG`` in
those cases to use the bundled linear algebra library and work around
the limitation.
.. tab:: Traditional make
The download/build procedure for the QUIP library, described in
``lib/quip/README`` file requires setting two environment
variables, ``QUIP_ROOT`` and ``QUIP_ARCH``. These are accessed by
the ``lib/quip/Makefile.lammps`` file which is used when you
compile and link LAMMPS with this package. You should only need
to edit ``Makefile.lammps`` if the LAMMPS build can not use its
settings to successfully build on your system.
----------
.. _scafacos:
SCAFACOS package
@ -2048,50 +2093,6 @@ To build with this package, you must download and build the
----------
.. _machdyn:
MACHDYN package
-------------------------------
To build with this package, you must download the Eigen3 library.
Eigen3 is a template library, so you do not need to build it.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_EIGEN3 # download Eigen3, value = no (default) or yes
-D EIGEN3_INCLUDE_DIR=path # path to Eigen library (only needed if a custom location)
If ``DOWNLOAD_EIGEN3`` is set, the Eigen3 library will be
downloaded and inside the CMake build directory. If the Eigen3
library is already on your system (in a location where CMake
cannot find it), set ``EIGEN3_INCLUDE_DIR`` to the directory the
``Eigen3`` include file is in.
.. tab:: Traditional make
You can download the Eigen3 library manually if you prefer; follow
the instructions in ``lib/smd/README``. You can also do it in one
step from the ``lammps/src`` dir, using a command like these,
which simply invokes the ``lib/smd/Install.py`` script with the
specified args:
.. code-block:: bash
make lib-smd # print help message
make lib-smd args="-b" # download to lib/smd/eigen3
make lib-smd args="-p /usr/include/eigen3" # use existing Eigen installation in /usr/include/eigen3
Note that a symbolic (soft) link named ``includelink`` is created
in ``lib/smd`` to point to the Eigen dir. When LAMMPS builds it
will use this link. You should not need to edit the
``lib/smd/Makefile.lammps`` file.
----------
.. _vtk:
VTK package

View File

@ -182,6 +182,7 @@ make a copy of one of them and modify it to suit your needs.
cmake -C ../cmake/presets/all_on.cmake [OPTIONS] ../cmake # enable all packages
cmake -C ../cmake/presets/all_off.cmake [OPTIONS] ../cmake # disable all packages
mingw64-cmake -C ../cmake/presets/mingw-cross.cmake [OPTIONS] ../cmake # compile with MinGW cross-compilers
cmake -C ../cmake/presets/macos-multiarch.cmake [OPTIONS] ../cmake # compile serial multi-arch binaries on macOS
Presets that have names starting with "windows" are specifically for
compiling LAMMPS :doc:`natively on Windows <Build_windows>` and

View File

@ -44,6 +44,14 @@ require use of an FFT library to compute 1d FFTs. The KISS FFT
library is included with LAMMPS, but other libraries can be faster.
LAMMPS can use them if they are available on your system.
.. versionadded:: TBD
Alternatively, LAMMPS can use the `heFFTe
<https://icl-utk-edu.github.io/heffte/>`_ library for the MPI
communication algorithms, which comes with many optimizations for
special cases, e.g. leveraging available 2D and 3D FFTs in the back end
libraries and better pipelining for packing and communication.
.. tabs::
.. tab:: CMake build
@ -53,6 +61,7 @@ LAMMPS can use them if they are available on your system.
-D FFT=value # FFTW3 or MKL or KISS, default is FFTW3 if found, else KISS
-D FFT_SINGLE=value # yes or no (default), no = double precision
-D FFT_PACK=value # array (default) or pointer or memcpy
-D FFT_USE_HEFFTE=value # yes or no (default), yes links to heFFTe
.. note::
@ -76,6 +85,16 @@ LAMMPS can use them if they are available on your system.
-D MKL_INCLUDE_DIR=path # ditto for Intel MKL library
-D FFT_MKL_THREADS=on # enable using threaded FFTs with MKL libraries
-D MKL_LIBRARY=path # path to MKL libraries
-D FFT_HEFFTE_BACKEND=value # FFTW or MKL or empty/undefined for the stock heFFTe back end
-D Heffte_ROOT=path # path to an existing heFFTe installation
.. note::
heFFTe comes with a builtin (= stock) back end for FFTs, i.e. a
default internal FFT implementation; however, this stock back
end is intended for testing purposes only and is not optimized
for production runs.
.. tab:: Traditional make
@ -111,6 +130,24 @@ LAMMPS can use them if they are available on your system.
files in its default search path. You must specify ``FFT_LIB``
with the appropriate FFT libraries to include in the link.
Traditional make can also link to heFFTe using an existing installation
.. code-block:: make
include <path-to-heffte-installation>/share/heffte/HeffteMakefile.in
FFT_INC = -DFFT_HEFFTE -DFFT_HEFFTE_FFTW $(heffte_include)
FFT_PATH =
FFT_LIB = $(heffte_link) $(heffte_libs)
The heFFTe install path will contain `HeffteMakefile.in`.
which will define the `heffte_` include variables needed to link to heFFTe from
an external project using traditional make.
The `-DFFT_HEFFTE` is required to switch to using heFFTe, while the optional `-DFFT_HEFFTE_FFTW`
selects the desired heFFTe back end, e.g., `-DFFT_HEFFTE_FFTW` or `-DFFT_HEFFTE_MKL`,
omitting the variable will default to the `stock` back end.
The heFFTe `stock` back end is intended to be used for testing and debugging,
but is not performance optimized for large scale production runs.
The `KISS FFT library <https://github.com/mborgerding/kissfft>`_ is
included in the LAMMPS distribution. It is portable across all
platforms. Depending on the size of the FFTs and the number of
@ -170,6 +207,16 @@ Depending on the machine, the size of the FFT grid, the number of
processors used, one option may be slightly faster. The default is
ARRAY mode.
When using ``-DFFT_HEFFTE`` CMake will first look for an existing
install with hints provided by ``-DHeffte_ROOT``, as recommended by the
CMake standard and note that the name is case sensitive. If CMake cannot
find a heFFTe installation with the correct back end (e.g., FFTW or
MKL), it will attempt to download and build the library automatically.
In this case, LAMMPS CMake will also accept all heFFTe specific
variables listed in the `heFFTe documentation
<https://mkstoyanov.bitbucket.io/heffte/md_doxygen_installation.html>`_
and those variables will be passed into the heFFTe build.
----------
.. _size:
@ -463,8 +510,8 @@ Exception handling when using LAMMPS as a library
LAMMPS errors do not kill the calling code, but throw an exception. In
the C-library interface, the call stack is unwound and control returns
to the caller, e.g. to Python or a code that is coupled to LAMMPS and
the error status can be queried. When using C++ directly, the calling
to the caller, e.g. to Python or a code that is coupled to LAMMPS. The
error status can then be queried. When using C++ directly, the calling
code has to be set up to *catch* exceptions thrown from within LAMMPS.
.. note::

View File

@ -91,6 +91,7 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`ke/atom/eff <compute_ke_atom_eff>`
* :doc:`ke/eff <compute_ke_eff>`
* :doc:`ke/rigid <compute_ke_rigid>`
* :doc:`composition/atom (k) <compute_composition_atom>`
* :doc:`mliap <compute_mliap>`
* :doc:`momentum <compute_momentum>`
* :doc:`msd <compute_msd>`
@ -99,6 +100,7 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`nbond/atom <compute_nbond_atom>`
* :doc:`omega/chunk <compute_omega_chunk>`
* :doc:`orientorder/atom (k) <compute_orientorder_atom>`
* :doc:`pace <compute_pace>`
* :doc:`pair <compute_pair>`
* :doc:`pair/local <compute_pair_local>`
* :doc:`pe <compute_pe>`
@ -114,12 +116,15 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`property/grid <compute_property_grid>`
* :doc:`property/local <compute_property_local>`
* :doc:`ptm/atom <compute_ptm_atom>`
* :doc:`rattlers/atom <compute_rattlers_atom>`
* :doc:`rdf <compute_rdf>`
* :doc:`reaxff/atom (k) <compute_reaxff_atom>`
* :doc:`reduce <compute_reduce>`
* :doc:`reduce/chunk <compute_reduce_chunk>`
* :doc:`reduce/region <compute_reduce>`
* :doc:`rigid/local <compute_rigid_local>`
* :doc:`saed <compute_saed>`
* :doc:`slcsa/atom <compute_slcsa_atom>`
* :doc:`slice <compute_slice>`
* :doc:`smd/contact/radius <compute_smd_contact_radius>`
* :doc:`smd/damage <compute_smd_damage>`

View File

@ -23,17 +23,14 @@ An alphabetic list of all LAMMPS :doc:`dump <dump>` commands.
* :doc:`atom <dump>`
* :doc:`atom/adios <dump_adios>`
* :doc:`atom/gz <dump>`
* :doc:`atom/mpiio <dump>`
* :doc:`atom/zstd <dump>`
* :doc:`cfg <dump>`
* :doc:`cfg/gz <dump>`
* :doc:`cfg/mpiio <dump>`
* :doc:`cfg/uef <dump_cfg_uef>`
* :doc:`cfg/zstd <dump>`
* :doc:`custom <dump>`
* :doc:`custom/adios <dump_adios>`
* :doc:`custom/gz <dump>`
* :doc:`custom/mpiio <dump>`
* :doc:`custom/zstd <dump>`
* :doc:`dcd <dump>`
* :doc:`grid <dump>`
@ -51,7 +48,6 @@ An alphabetic list of all LAMMPS :doc:`dump <dump>` commands.
* :doc:`xtc <dump>`
* :doc:`xyz <dump>`
* :doc:`xyz/gz <dump>`
* :doc:`xyz/mpiio <dump>`
* :doc:`xyz/zstd <dump>`
* :doc:`yaml <dump>`

View File

@ -69,7 +69,7 @@ OPT.
* :doc:`drude/transform/inverse <fix_drude_transform>`
* :doc:`dt/reset (k) <fix_dt_reset>`
* :doc:`edpd/source <fix_dpd_source>`
* :doc:`efield <fix_efield>`
* :doc:`efield (k) <fix_efield>`
* :doc:`efield/tip4p <fix_efield>`
* :doc:`ehex <fix_ehex>`
* :doc:`electrode/conp (i) <fix_electrode>`
@ -122,6 +122,7 @@ OPT.
* :doc:`mvv/tdpd <fix_mvv_dpd>`
* :doc:`neb <fix_neb>`
* :doc:`neb/spin <fix_neb_spin>`
* :doc:`nonaffine/displacement <fix_nonaffine_displacement>`
* :doc:`nph (ko) <fix_nh>`
* :doc:`nph/asphere (o) <fix_nph_asphere>`
* :doc:`nph/body <fix_nph_body>`
@ -181,6 +182,7 @@ OPT.
* :doc:`pour <fix_pour>`
* :doc:`precession/spin <fix_precession_spin>`
* :doc:`press/berendsen <fix_press_berendsen>`
* :doc:`press/langevin <fix_press_langevin>`
* :doc:`print <fix_print>`
* :doc:`propel/self <fix_propel_self>`
* :doc:`property/atom (k) <fix_property_atom>`
@ -232,15 +234,15 @@ OPT.
* :doc:`spring <fix_spring>`
* :doc:`spring/chunk <fix_spring_chunk>`
* :doc:`spring/rg <fix_spring_rg>`
* :doc:`spring/self <fix_spring_self>`
* :doc:`spring/self (k) <fix_spring_self>`
* :doc:`srd <fix_srd>`
* :doc:`store/force <fix_store_force>`
* :doc:`store/state <fix_store_state>`
* :doc:`tdpd/source <fix_dpd_source>`
* :doc:`temp/berendsen <fix_temp_berendsen>`
* :doc:`temp/berendsen (k) <fix_temp_berendsen>`
* :doc:`temp/csld <fix_temp_csvr>`
* :doc:`temp/csvr <fix_temp_csvr>`
* :doc:`temp/rescale <fix_temp_rescale>`
* :doc:`temp/rescale (k) <fix_temp_rescale>`
* :doc:`temp/rescale/eff <fix_temp_rescale_eff>`
* :doc:`tfmc <fix_tfmc>`
* :doc:`tgnpt/drude <fix_tgnh_drude>`

View File

@ -87,7 +87,7 @@ OPT.
* :doc:`coul/long/soft (o) <pair_fep_soft>`
* :doc:`coul/msm (o) <pair_coul>`
* :doc:`coul/slater/cut <pair_coul_slater>`
* :doc:`coul/slater/long <pair_coul_slater>`
* :doc:`coul/slater/long (g) <pair_coul_slater>`
* :doc:`coul/shield <pair_coul_shield>`
* :doc:`coul/streitz <pair_coul>`
* :doc:`coul/tt <pair_coul_tt>`
@ -110,7 +110,7 @@ OPT.
* :doc:`eam/he <pair_eam>`
* :doc:`edip (o) <pair_edip>`
* :doc:`edip/multi <pair_edip>`
* :doc:`edpd <pair_mesodpd>`
* :doc:`edpd (g) <pair_mesodpd>`
* :doc:`eff/cut <pair_eff>`
* :doc:`eim (o) <pair_eim>`
* :doc:`exp6/rx (k) <pair_exp6_rx>`
@ -158,14 +158,14 @@ OPT.
* :doc:`lj/cut (gikot) <pair_lj>`
* :doc:`lj/cut/coul/cut (gko) <pair_lj_cut_coul>`
* :doc:`lj/cut/coul/cut/dielectric (o) <pair_dielectric>`
* :doc:`lj/cut/coul/cut/soft (o) <pair_fep_soft>`
* :doc:`lj/cut/coul/cut/soft (go) <pair_fep_soft>`
* :doc:`lj/cut/coul/debye (gko) <pair_lj_cut_coul>`
* :doc:`lj/cut/coul/debye/dielectric (o) <pair_dielectric>`
* :doc:`lj/cut/coul/dsf (gko) <pair_lj_cut_coul>`
* :doc:`lj/cut/coul/long (gikot) <pair_lj_cut_coul>`
* :doc:`lj/cut/coul/long/cs <pair_cs>`
* :doc:`lj/cut/coul/long/dielectric (o) <pair_dielectric>`
* :doc:`lj/cut/coul/long/soft (o) <pair_fep_soft>`
* :doc:`lj/cut/coul/long/soft (go) <pair_fep_soft>`
* :doc:`lj/cut/coul/msm (go) <pair_lj_cut_coul>`
* :doc:`lj/cut/coul/msm/dielectric <pair_dielectric>`
* :doc:`lj/cut/coul/wolf (o) <pair_lj_cut_coul>`
@ -202,7 +202,7 @@ OPT.
* :doc:`lubricate/poly (o) <pair_lubricate>`
* :doc:`lubricateU <pair_lubricateU>`
* :doc:`lubricateU/poly <pair_lubricateU>`
* :doc:`mdpd <pair_mesodpd>`
* :doc:`mdpd (g) <pair_mesodpd>`
* :doc:`mdpd/rhosum <pair_mesodpd>`
* :doc:`meam (k) <pair_meam>`
* :doc:`meam/ms (k) <pair_meam>`
@ -220,7 +220,8 @@ OPT.
* :doc:`morse/soft <pair_fep_soft>`
* :doc:`multi/lucy <pair_multi_lucy>`
* :doc:`multi/lucy/rx (k) <pair_multi_lucy_rx>`
* :doc:`nb3b/harmonic <pair_nb3b_harmonic>`
* :doc:`nb3b/harmonic <pair_nb3b>`
* :doc:`nb3b/screened <pair_nb3b>`
* :doc:`nm/cut (o) <pair_nm>`
* :doc:`nm/cut/coul/cut (o) <pair_nm>`
* :doc:`nm/cut/coul/long (o) <pair_nm>`
@ -265,13 +266,13 @@ OPT.
* :doc:`smd/tri_surface <pair_smd_triangulated_surface>`
* :doc:`smd/ulsph <pair_smd_ulsph>`
* :doc:`smtbq <pair_smtbq>`
* :doc:`snap (k) <pair_snap>`
* :doc:`snap (ik) <pair_snap>`
* :doc:`soft (go) <pair_soft>`
* :doc:`sph/heatconduction <pair_sph_heatconduction>`
* :doc:`sph/heatconduction (g) <pair_sph_heatconduction>`
* :doc:`sph/idealgas <pair_sph_idealgas>`
* :doc:`sph/lj <pair_sph_lj>`
* :doc:`sph/lj (g) <pair_sph_lj>`
* :doc:`sph/rhosum <pair_sph_rhosum>`
* :doc:`sph/taitwater <pair_sph_taitwater>`
* :doc:`sph/taitwater (g) <pair_sph_taitwater>`
* :doc:`sph/taitwater/morris <pair_sph_taitwater_morris>`
* :doc:`spin/dipole/cut <pair_spin_dipole>`
* :doc:`spin/dipole/long <pair_spin_dipole>`
@ -305,5 +306,5 @@ OPT.
* :doc:`wf/cut <pair_wf_cut>`
* :doc:`ylz <pair_ylz>`
* :doc:`yukawa (gko) <pair_yukawa>`
* :doc:`yukawa/colloid (go) <pair_yukawa_colloid>`
* :doc:`yukawa/colloid (gko) <pair_yukawa_colloid>`
* :doc:`zbl (gko) <pair_zbl>`

View File

@ -85,10 +85,29 @@ The same functionality is available through
:doc:`bond style mesocnt <bond_mesocnt>` and
:doc:`angle style mesocnt <angle_mesocnt>`.
MPIIO package
-------------
.. deprecated:: 21Nov2023
The MPIIO package has been removed from LAMMPS since it was unmaintained
for many years and thus not updated to incorporate required changes that
had been applied to the corresponding non-MPIIO commands. As a
consequence the MPIIO commands had become unreliable and sometimes
crashing LAMMPS or corrupting data. Similar functionality is available
through the :ref:`ADIOS package <PKG-ADIOS>` and the :ref:`NETCDF
package <PKG-NETCDF>`. Also, the :doc:`dump_modify nfile or dump_modify
fileper <dump_modify>` keywords may be used for an efficient way of
writing out dump files when running on large numbers of processors.
Similarly, the "nfile" and "fileper" keywords exist for restarts:
see :doc:`restart <restart>`, :doc:`read_restart <read_restart>`,
:doc:`write_restart <write_restart>`.
MSCG package
------------
.. deprecated:: TBD
.. deprecated:: 21Nov2023
The MSCG package has been removed from LAMMPS since it was unmaintained
for many years and instead superseded by the `OpenMSCG software
@ -107,6 +126,17 @@ syntax compatible with the removed reax pair style, so input files will
have to be adapted. The REAXFF package was originally called
USER-REAXC.
USER-REAXC package
------------------
.. deprecated:: TBD
The USER-REAXC package has been renamed to :ref:`REAXFF <PKG-REAXFF>`.
In the process also the pair style and related fixes were renamed to use
the "reaxff" string instead of "reax/c". For a while LAMMPS was maintaining
backward compatibility by providing aliases for the styles. These have
been removed, so using "reaxff" is now *required*.
USER-CUDA package
-----------------

View File

@ -180,19 +180,11 @@ discarded but by setting the verbose flag (via setting the ``TEST_ARGS``
environment variable, ``TEST_ARGS=-v``) it can be printed and used to
understand why tests fail unexpectedly.
Another complexity of these tests stems from the need to capture
situations where LAMMPS will stop with an error, i.e. handle so-called
"death tests". Here the LAMMPS code will operate differently depending
on whether it was configured to throw C++ exceptions on errors or call
either ``exit()`` or ``MPI_Abort()``. In the latter case, the test code
also needs to detect whether LAMMPS was compiled with the OpenMPI
library, as OpenMPI is **only** compatible the death test options of the
GoogleTest library when C++ exceptions are enabled; otherwise those
"death tests" must be skipped to avoid reporting bogus failures. The
specifics of this step are implemented in the ``TEST_FAILURE()``
macro. These tests operate by capturing the screen output when executing
the failing command and then comparing that with a provided regular
expression string pattern. Example:
The specifics of so-called "death tests", i.e. conditions where LAMMPS
should fail and throw an exception, are implemented in the
``TEST_FAILURE()`` macro. These tests operate by capturing the screen
output when executing the failing command and then comparing that with a
provided regular expression string pattern. Example:
.. code-block:: c++
@ -282,9 +274,7 @@ Tests for using the Fortran module are in the ``unittest/fortran``
folder. Since they are also using the GoogleTest library, they require
to also implement test wrappers in C++ that will call fortran functions
which provide a C function interface through ISO_C_BINDINGS that will in
turn call the functions in the LAMMPS Fortran module. This part of the
unit tests is incomplete since the Fortran module it is based on is
incomplete as well.
turn call the functions in the LAMMPS Fortran module.
Tests for the C++-style library interface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -405,10 +395,10 @@ compare with the reference and also start from the data file. A final
check will use multi-cutoff r-RESPA (if supported by the pair style) at
a 1:1 split and compare to the Verlet results. These sets of tests are
run with multiple test fixtures for accelerated styles (OPT, OPENMP,
INTEL) and for the latter two with 4 OpenMP threads enabled. For
these tests the relative error (epsilon) is lowered by a common factor
due to the additional numerical noise, but the tests are still comparing
to the same reference data.
INTEL, KOKKOS (OpenMP only)) and for the latter three with 4 OpenMP
threads enabled. For these tests the relative error (epsilon) is lowered
by a common factor due to the additional numerical noise, but the tests
are still comparing to the same reference data.
Additional tests will check whether all listed extract keywords are
supported and have the correct dimensionality and the final set of tests
@ -442,17 +432,19 @@ The ``test_pair_style`` tester is used with 4 categories of test inputs:
pair style is defined, but the computation of the pair style contributions
is disabled.
The ``test_bond_style`` and ``test_angle_style`` are set up in a similar
fashion and share support functions with the pair style tester. The final
group of tests in this section is for fix styles that add/manipulate forces
and velocities, e.g. for time integration, thermostats and more.
The ``test_bond_style``, ``test_angle_style``, ``test_dihedral_style``, and
``test_improper_style`` tester programs are set up in a similar fashion and
share support functions with the pair style tester. The final group of
tests in this section is for fix styles that add/manipulate forces and
velocities, e.g. for time integration, thermostats and more.
Adding a new test is easiest done by copying and modifying an existing test
for a style that is similar to one to be tested. The file name should follow
the naming conventions described above and after copying the file, the first
step is to replace the style names where needed. The coefficient values
do not have to be meaningful, just in a reasonable range for the given system.
It does not matter if some forces are large, for as long as they do not diverge.
Adding a new test is easiest done by copying and modifying an existing YAML
file for a style that is similar to one to be tested. The file name should
follow the naming conventions described above and after copying the file,
the first step is to replace the style names where needed. The coefficient
values do not have to be meaningful, just in a reasonable range for the
given system. It does not matter if some forces are large, for as long as
they do not diverge.
The template input files define a large number of index variables at the top
that can be modified inside the YAML file to control the behavior. For example,
@ -480,7 +472,7 @@ Note that this disables computing the kspace contribution, but still will run
the setup. The "gewald" parameter should be set explicitly to speed up the run.
For styles with long-range electrostatics, typically two tests are added one using
the (slower) analytic approximation of the erfc() function and the other using
the tabulated coulomb, to test both code paths. The reference results in the YAML
the tabulated coulomb, to test both code paths. The reference results in the YAML
files then should be compared manually, if they agree well enough within the limits
of those two approximations.

View File

@ -7148,9 +7148,6 @@ keyword to allow for additional bonds to be formed
*Read_dump xyz fields do not have consistent scaling/wrapping*
Self-explanatory.
*Reading from MPI-IO filename when MPIIO package is not installed*
Self-explanatory.
*Reax_defs.h setting for NATDEF is too small*
Edit the setting in the ReaxFF library and re-compile the
library and re-build LAMMPS.
@ -8489,9 +8486,6 @@ keyword to allow for additional bonds to be formed
The write_restart command cannot be used before a read_data,
read_restart, or create_box command.
*Writing to MPI-IO filename when MPIIO package is not installed*
Self-explanatory.
*Zero length rotation vector with displace_atoms*
Self-explanatory.

View File

@ -3038,14 +3038,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
This function can be used to query if an error inside of LAMMPS
has thrown a :ref:`C++ exception <exceptions>`.
.. note::
This function will always report "no error" when the LAMMPS library
has been compiled without ``-DLAMMPS_EXCEPTIONS``, which turns fatal
errors aborting LAMMPS into C++ exceptions. You can use the library
function :cpp:func:`lammps_config_has_exceptions` to check if this is
the case.
:to: :cpp:func:`lammps_has_error`
:r has_error: ``.TRUE.`` if there is an error.
:rtype has_error: logical
@ -3068,13 +3060,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
would happen only in a single MPI rank and thus may not be recoverable, as
other MPI ranks may be waiting on the failing MPI rank(s) to send messages.
.. note::
This function will do nothing when the LAMMPS library has been
compiled without ``-DLAMMPS_EXCEPTIONS``, which turns errors aborting
LAMMPS into C++ exceptions. You can use the function
:f:func:`config_has_exceptions` to check whether this is the case.
:p character(len=\*) buffer: string buffer to copy the error message into
:o integer(c_int) status [optional]: 1 when all ranks had the error,
2 on a single-rank error.

View File

@ -100,6 +100,8 @@ Tutorials howto
Howto_cmake
Howto_github
Howto_lammps_gui
Howto_moltemplate
Howto_pylammps
Howto_wsl

View File

@ -170,9 +170,9 @@ with this body style to compute body/body and body/non-body interactions.
The *rounded/polygon* body style represents body particles as a 2d
polygon with a variable number of N vertices. This style can only be
used for 2d models; see the :doc:`boundary <boundary>` command. See the
"pair_style body/rounded/polygon" page for a diagram of two
squares with rounded circles at the vertices. Special cases for N = 1
(circle) and N = 2 (rod with rounded ends) can also be specified.
:doc:`pair_style body/rounded/polygon <pair_body_rounded_polygon>` page for
a diagram of two squares with rounded circles at the vertices. Special cases
for N = 1 (circle) and N = 2 (rod with rounded ends) can also be specified.
One use of this body style is for 2d discrete element models, as
described in :ref:`Fraige <body-Fraige>`.
@ -335,7 +335,7 @@ faces are listed, so that M = 6 + 3\*N + 1.
The integer line has three values: number of vertices (N), number of
edges (E) and number of faces (F). The floating point line(s) list 6
moments of inertia followed by the coordinates of the N vertices (x1
to zN) as 3N values, followed by 2N vertex indices corresponding to
to zN) as 3N values, followed by 2E vertex indices corresponding to
the end points of the E edges, then 4\*F vertex indices defining F
faces. The last value is the diameter value = the rounded diameter of
the sphere that surrounds each vertex. The diameter value can be

View File

@ -1,11 +1,11 @@
Using CMake with LAMMPS tutorial
================================
Using CMake with LAMMPS
=======================
The support for building LAMMPS with CMake is a recent addition to
LAMMPS thanks to the efforts of Christoph Junghans (LANL) and Richard
Berger (Temple U). One of the key strengths of CMake is that it is not
tied to a specific platform or build system and thus generate the files
necessary to build and develop for different build systems and on
Berger (LANL). One of the key strengths of CMake is that it is not
tied to a specific platform or build system. Instead it generates the
files necessary to build and develop for different build systems and on
different platforms. Note, that this applies to the build system itself
not the LAMMPS code. In other words, without additional porting effort,
it is not possible - for example - to compile LAMMPS with Visual C++ on
@ -14,7 +14,7 @@ necessary to program LAMMPS as a project in integrated development
environments (IDE) like Eclipse, Visual Studio, QtCreator, Xcode,
CodeBlocks, Kate and others.
A second important feature of CMake is, that it can detect and validate
A second important feature of CMake is that it can detect and validate
available libraries, optimal settings, available support tools and so
on, so that by default LAMMPS will take advantage of available tools
without requiring to provide the details about how to enable/integrate
@ -32,8 +32,8 @@ program ``cmake`` (or ``cmake3``), a text mode interactive user
interface (TUI) program ``ccmake`` (or ``ccmake3``), or a graphical user
interface (GUI) program ``cmake-gui``. All of them are portable
software available on all supported platforms and can be used
interchangeably. The minimum supported CMake version is 3.10 (3.12 or
later is recommended).
interchangeably. As of LAMMPS version 2 August 2023, the minimum
required CMake version is 3.16.
All details about features and settings for CMake are in the `CMake
online documentation <https://cmake.org/documentation/>`_. We focus
@ -43,11 +43,20 @@ Prerequisites
-------------
This tutorial assumes that you are operating in a command-line environment
using a shell like Bash.
using a shell like Bash or Zsh.
- Linux: any Terminal window will work
- macOS: launch the Terminal application.
- Windows 10: install and run the :doc:`Windows Subsystem for Linux <Howto_wsl>`
- Linux: any Terminal window will work or text console
- macOS: launch the Terminal application
- Windows 10 or 11: install and run the :doc:`Windows Subsystem for Linux <Howto_wsl>`
- other Unix-like operating systems like FreeBSD
.. note::
It is also possible to use CMake on Windows 10 or 11 through either the Microsoft
Visual Studio IDE with the bundled CMake or from the Windows command prompt using
a separately installed CMake package, both using the native Microsoft Visual C++
compilers and (optionally) the Microsoft MPI SDK. This tutorial, however, only
covers unix-like command line interfaces.
We also assume that you have downloaded and unpacked a recent LAMMPS source code package
or used Git to create a clone of the LAMMPS sources on your compilation machine.

View File

@ -0,0 +1,700 @@
Using the LAMMPS GUI
====================
This document describes **LAMMPS GUI version 1.5**.
-----
LAMMPS GUI is a graphical text editor customized for editing LAMMPS
input files that is linked to the :ref:`LAMMPS library <lammps_c_api>`
and thus can run LAMMPS directly using the contents of the editor's text
buffer as input. It can retrieve and display information from LAMMPS
while it is running, display visualizations created with the :doc:`dump
image command <dump_image>`, and is adapted specifically for editing
LAMMPS input files through text completion and reformatting, and linking
to the online LAMMPS documentation for known LAMMPS commands and styles.
.. note::
Pre-compiled, ready-to-use LAMMPS GUI executables for Linux (Ubuntu
20.04LTS or later and compatible), macOS (version 11 aka Big Sur or
later), and Windows (version 10 or later) :ref:`are available
<lammps_gui_install>` for download. They may be linked to a
development version of LAMMPS in case they need features not yet
available in a released version. Serial LAMMPS executables of the
same LAMMPS version are included as well. The source code for the
LAMMPS GUI is included in the LAMMPS source code and can be found in
the ``tools/lammps-gui`` folder. It can be compiled alongside LAMMPS
when :doc:`compiling with CMake <Build_cmake>`.
LAMMPS GUI tries to provide an experience similar to what people
traditionally would do to run LAMMPS using a command line window:
- editing inputs with a text editor
- run LAMMPS on the input with selected command line flags
- and then use or extract data from the created files and visualize it
That procedure is quite effective for people proficient in using the
command line, as that allows them to use tools for the individual steps
which they are most comfortable with. It is often required when running
LAMMPS on high-performance computing facilities.
The main benefit of using the LAMMPS GUI application instead is that
many basic tasks can be done directly from the GUI without switching to
a text console window or using external programs, let alone writing
scripts to extract data from the generated output. It also integrates
well with graphical desktop environments.
LAMMPS GUI thus makes it easier for beginners to get started running
simple LAMMPS simulations. It is very suitable for tutorials on LAMMPS
since you only need to learn how to use a single program for most tasks
and thus time can be saved and people can focus on learning LAMMPS. It
is also designed to keep the barrier low when you decide to switch to a
full featured, standalone programming editor and more sophisticated
visualization and analysis tools and run LAMMPS from a command line.
The following text provides a detailed tour of the features and
functionality of the LAMMPS GUI.
Suggestions for new features and reports of bugs are always welcome.
You can use the :doc:`the same channels as for LAMMPS itself
<Errors_bugs>` for that purpose.
-----
Main window
-----------
When LAMMPS GUI starts, it will show a main window with either an
empty buffer or the contents of a loaded file. In the latter case it
may look like the following:
.. image:: JPG/lammps-gui-main.png
:align: center
:scale: 50%
There is the typical menu bar at the top, then the main editor buffer,
and a status bar at the bottom. The input file contents are shown
with line numbers on the left and the input is colored according to
the LAMMPS input file syntax. The status bar shows the status of
LAMMPS execution on the left (e.g. "Ready." when idle) and the current
working directory on the right. The name of the current file in the
buffer is shown in the window title; the word `*modified*` is added if
the buffer edits have not yet saved to a file. The size of the main
window will be stored when exiting and restored when starting again.
Opening Files
^^^^^^^^^^^^^
The LAMMPS GUI application will try to open the first command line
argument as a LAMMPS input script, further arguments are ignored.
When no argument is given, LAMMPS GUI will start with an empty buffer.
Files can also be opened via the ``File`` menu or by drag-and-drop of
a file from a graphical file manager into the editor window. Only one
file can be open at a time, so opening a new file with a filled buffer
will close the buffer. If the buffer has unsaved modifications, you
will be asked to either cancel the operation, discard the changes, or
save them.
Running LAMMPS
^^^^^^^^^^^^^^
From within the LAMMPS GUI main window LAMMPS can be started either from
the ``Run`` menu using the ``Run LAMMPS from Editor Buffer`` entry, by
the keyboard shortcut `Ctrl-Enter` (`Command-Enter` on macOS), or by
clicking on the green "Run" button in the status bar. All of these
operations will cause LAMMPS to process the entire input script, which
may contain multiple :doc:`run <run>` or :doc:`minimize <minimize>`
commands.
LAMMPS runs in a separate thread, so the GUI stays responsive and is
able to interact with the running calculation and access data it
produces. It is important to note that running LAMMPS this way is
using the contents of the input buffer for the run (via the
:cpp:func:`lammps_commands_string()` function of the LAMMPS C-library
interface), and **not** the original file it was read from. Thus, if
there are unsaved changes in the buffer, they *will* be used. As an
alternative, it is also possible to run LAMMPS by reading the contents
of a file from the ``Run LAMMPS from File`` menu entry or with
`Ctrl-Shift-Enter`. This option may be required in some rare cases
where the input uses some functionality that is not compatible with
running LAMMPS from a string buffer. For consistency, any unsaved
changes in the buffer must be either saved to the file or undone
before LAMMPS can be run from a file.
.. image:: JPG/lammps-gui-running.png
:align: center
:scale: 75%
While LAMMPS is running, the contents of the status bar change. On
the left side there is a text indicating that LAMMPS is running, which
will also show the number of active threads, if thread-parallel
acceleration was selected in the ``Preferences`` dialog. On the right
side, a progress bar is shown that displays the estimated progress for
the current :doc:`run command <run>`.
Also, the line number of the currently executed command will be
highlighted in green.
.. image:: JPG/lammps-gui-run-highlight.png
:align: center
:scale: 75%
If an error occurs (in the example below the command :doc:`label
<label>` was incorrectly capitalized as "Label"), an error message
dialog will be shown and the line of the input which triggered the
error will be highlighted. The state of LAMMPS in the status bar will
be set to "Failed." instead of "Ready."
.. image:: JPG/lammps-gui-run-error.png
:align: center
:scale: 75%
Up to three additional windows will open during a run:
- a log window with the captured screen output
- a chart window with a line graph created from the thermodynamic output of the run
- a slide show window with images created by a :doc:`dump image command <dump_image>`
More information on those windows and how to adjust their behavior and
contents is given below.
An active LAMMPS run can be stopped cleanly by using either the ``Stop
LAMMPS`` entry in the ``Run`` menu, the keyboard shortcut `Ctrl-/`
(`Command-/` on macOS), or by clicking on the red button in the status
bar. This will cause the running LAMMPS process to complete the current
timestep (or iteration for energy minimization) and then complete the
processing of the buffer while skipping all run or minimize commands.
This is equivalent to the input script command :doc:`timer timeout 0
<timer>` and is implemented by calling the
:cpp:func:`lammps_force_timeout()` function of the LAMMPS C-library
interface. Please see the corresponding documentation pages to
understand the implications of this operation.
Log Window
----------
By default, when starting a run, a "Log Window" will open that displays
the current screen output of the LAMMPS calculation, that would normally
be seen in the command line window, as shown below.
.. image:: JPG/lammps-gui-log.png
:align: center
:scale: 50%
LAMMPS GUI captures the screen output as it is generated and updates
the log window regularly during a run.
By default, the log window will be replaced each time a run is started.
The runs are counted and the run number for the current run is displayed
in the window title. It is possible to change the behavior of LAMMPS
GUI in the preferences dialog to create a *new* log window for every run
or to not show the current log window. It is also possible to show or
hide the *current* log window from the ``View`` menu.
The text in the log window is read-only and cannot be modified, but
keyboard shortcuts to select and copy all or parts of the text can be
used to transfer text to another program. Also, the keyboard shortcut
`Ctrl-S` (`Command-S` on macOS) is available to save the log buffer to a
file. The "Select All" and "Copy" functions, as well as a "Save Log to
File" option are also available from a context menu by clicking with the
right mouse button into the log window text area.
Chart Window
------------
By default, when starting a run, a "Chart Window" will open that
displays a plot of thermodynamic output of the LAMMPS calculation as
shown below.
.. image:: JPG/lammps-gui-chart.png
:align: center
:scale: 50%
The drop down menu on the top right allows selection of different
properties that are computed and written to thermo output. Only one
property can be shown at a time. The plots will be updated with new
data as the run progresses, so they can be used to visually monitor the
evolution of available properties. The window title will show the
current run number that this chart window corresponds to. Same as
explained for the log window above, by default, the chart window will
be replaced on each new run, but the behavior can be changed in the
preferences dialog.
From the ``File`` menu on the top left, it is possible to save an image
of the currently displayed plot or export the data in either plain text
columns (for use by plotting tools like `gnuplot
<http://www.gnuplot.info/>`_ or `grace
<https://plasma-gate.weizmann.ac.il/Grace/>`_), or as CSV data which can
be imported for further processing with Microsoft Excel or `pandas
<https://pandas.pydata.org/>`_
Thermo output data from successive run commands in the input script will
be combined into a single data set unless the format, number, or names
of output columns are changed with a :doc:`thermo_style <thermo_style>`
or a :doc:`thermo_modify <thermo_modify>` command, or the current time
step is reset with :doc:`reset_timestep <reset_timestep>`, or if a
:doc:`clear <clear>` command is issued.
Image Slide Show
----------------
By default, if the LAMMPS input contains a :doc:`dump image
<dump_image>` command, a "Slide Show" window will open which loads and
displays the images created by LAMMPS as they are written.
.. image:: JPG/lammps-gui-slideshow.png
:align: center
:scale: 50%
The various buttons at the bottom right of the window allow single
stepping through the sequence of images or playing an animation (as a
continuous loop or once from first to last). It is also possible to
zoom in or zoom out of the displayed images, and to export the slide
show animation to a movie file, if `ffmpeg <https://ffmpeg.org/>`_ is
installed.
Variable Info
-------------
During a run, it may be of interest to monitor the value of input script
variables, for example to monitor the progress of loops. This can be
done by enabling the "Variables Window" in the ``View`` menu or by using
the `Ctrl-Shift-W` keyboard shortcut. This will show info similar to
the :doc:`info variables <info>` command in a separate window as shown
below.
.. image:: JPG/lammps-gui-variable-info.png
:align: center
:scale: 75%
Like the log and chart windows, its content is continuously updated
during a run. It will show "(none)" if there are no variables
defined. Note that it is also possible to *set* :doc:`index style
variables <variable>`, that would normally be set via command line
flags, via the "Set Variables..." dialog from the ``Run`` menu.
LAMMPS GUI will automatically set the variable "gui_run" to the
current value of the run counter. That way it would be possible
to automatically record a log for each run attempt by using the
command
.. code-block:: LAMMPS
log logfile-${gui_run}.txt
at the beginning of an input file. That would record logs to files
``logfile-1.txt``, ``logfile-2.txt``, and so on for successive runs.
Viewing Snapshot Images
-----------------------
By selecting the ``Create Image`` entry in the ``Run`` menu, or by
hitting the `Ctrl-I` (`Command-I` on macOS) keyboard shortcut, or by
clicking on the "palette" button in the status bar, LAMMPS GUI will send
a custom :doc:`write_dump image <dump_image>` command to LAMMPS and read
the resulting snapshot image with the current state of the system into
an image viewer window. This functionality is not available *during* an
ongoing run. When LAMMPS is not yet initialized, LAMMPS GUI will try to
identify the line with the first run or minimize command and execute all
command up to that line from the input buffer and then add a "run 0"
command. This will initialize the system so an image of the initial
state of the system can be rendered. If there was an error, the
snapshot image viewer will not appear.
When possible, LAMMPS GUI will try to detect which elements the atoms
correspond to (via their mass) and then colorize them in the image
accordingly. Otherwise the default predefined sequence of colors is
assigned to the different atom types.
.. image:: JPG/lammps-gui-image.png
:align: center
:scale: 50%
The default image size, some default image quality settings, the view
style and some colors can be changed in the ``Preferences`` dialog
window. From the image viewer window further adjustments can be made:
actual image size, high-quality (SSAO) rendering, anti-aliasing, view
style, display of box or axes, zoom factor. The view of the system
can be rotated horizontally and vertically. It is also possible to
only display the atoms within a group defined in the input script
(default is "all"). After each change, the image is rendered again
and the display updated. The small palette icon on the top left will
be colored while LAMMPS is running to render the new image; it will be
grayed out when it is finished. When there are many atoms to render
and high quality images with anti-aliasing are requested, re-rendering
may take several seconds. From the ``File`` menu of the image window,
the current image can be saved to a file or copied into the
cut-n-paste buffer for pasting into another application.
Editor Functions
----------------
The editor has most of the usual functionality that similar programs
have: text selection via mouse or with cursor moves while holding the
Shift key, Cut (`Ctrl-X`), Copy (`Ctrl-C`), Paste (`Ctrl-V`), Undo
(`Ctrl-Z`), Redo (`Ctrl-Shift-Z`), Select All (`Ctrl-A`). When trying
to exit the editor with a modified buffer, a dialog will pop up asking
whether to cancel the exit operation, or to save or not save the buffer
contents to a file.
Context Specific Word Completion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By default, LAMMPS GUI will display a small pop-up frame with possible
choices for LAMMPS input script commands or styles after 2 characters of
a word have been typed.
.. image:: JPG/lammps-gui-complete.png
:align: center
:scale: 75%
The word can then be completed through selecting an entry by scrolling
up and down with the cursor keys and selecting with the 'Enter' key or
by clicking on the entry with the mouse. The automatic completion
pop-up can be disabled in the ``Preferences`` dialog, but the completion
can still be requested manually by either hitting the 'Shift-TAB' key or
by right-clicking with the mouse and selecting the option from the
context menu. Most of the completion information is taken from the
LAMMPS instance and thus it will be adjusted to only show available
options that have been enabled while compiling LAMMPS. That, however,
excludes accelerated styles and commands; for improved clarity, only the
non-suffix version of styles are shown.
Line Reformatting
^^^^^^^^^^^^^^^^^
The editor supports reformatting lines according to the syntax in order
to have consistently aligned lines. This primarily means adding
whitespace padding to commands, type specifiers, IDs and names. This
reformatting is performed by default when hitting the 'Enter' key to
start a new line. This feature can be turned on or off in the
``Preferences`` dialog, but it can still be manually performed by
hitting the 'TAB' key. The amount of padding can also be changed in the
``Preferences`` dialog.
Internally this functionality is achieved by splitting the line into
"words" and then putting it back together with padding added where the
context can be detected; otherwise a single space is used between words.
Context Specific Help
^^^^^^^^^^^^^^^^^^^^^
.. image:: JPG/lammps-gui-popup-help.png
:align: center
:scale: 50%
A unique feature of the LAMMPS GUI is the option to look up the
documentation for the command in the current line. This can be done by
either clicking the right mouse button or by using the `Ctrl-?` keyboard
shortcut. When clicking the mouse there are additional entries in the
context menu that will open the corresponding documentation page in the
online LAMMPS documentation. When using the keyboard, the first of
those entries will be chosen directly.
Menu
----
The menu bar has entries ``File``, ``Edit``, ``Run``, ``View``, and
``About``. Instead of using the mouse to click on them, the individual
menus can also be activated by hitting the `Alt` key together with the
corresponding underlined letter, that is `Alt-F` will activate the
``File`` menu. For the corresponding activated sub-menus, the key
corresponding the underlined letters can again be used to select entries
instead of using the mouse.
File
^^^^
The ``File`` menu offers the usual options:
- ``New`` will clear the current buffer and reset the file name to ``*unknown*``
- ``Open`` will open a dialog to select a new file
- ``Save`` will save the current file; if the file name is ``*unknown*``
a dialog will open to select a new file name
- ``Save As`` will open a dialog to select and new file name and save
the buffer to it
- ``Quit`` will exit LAMMPS GUI. If there are unsaved changes, a dialog
will appear to either cancel the operation, or to save or not save the
edited file.
In addition, up to 5 recent file names will be listed after the
``Open`` entry that allows re-opening recent files. This list is
stored when quitting and recovered when starting again.
Edit
^^^^
The ``Edit`` menu offers the usual editor functions like ``Undo``,
``Redo``, ``Cut``, ``Copy``, ``Paste``. It can also open a
``Preferences`` dialog (keyboard shortcut `Ctrl-P`) and allows deletion
of all stored preferences so they will be reset to default values.
Run
^^^
The ``Run`` menu has options to start and stop a LAMMPS process.
Rather than calling the LAMMPS executable as a separate executable,
the LAMMPS GUI is linked to the LAMMPS library and thus can run LAMMPS
internally through the :ref:`LAMMPS C-library interface
<lammps_c_api>`.
Specifically, a LAMMPS instance will be created by calling
:cpp:func:`lammps_open_no_mpi`. The buffer contents then executed by
calling :cpp:func:`lammps_commands_string`. Certain commands and
features are only available after a LAMMPS instance is created. Its
presence is indicated by a small LAMMPS ``L`` logo in the status bar
at the bottom left of the main window. As an alternative, it is also
possible to run LAMMPS using the contents of the edited file by
reading the file. This is mainly provided as a fallback option in
case the input uses some feature that is not available when running
from a string buffer.
The LAMMPS calculation will be run in a concurrent thread so that the
GUI can stay responsive and be updated during the run. This can be
used to tell the running LAMMPS instance to stop at the next timestep.
The ``Stop LAMMPS`` entry will do this by calling
:cpp:func:`lammps_force_timeout`, which is equivalent to a :doc:`timer
timeout 0 <timer>` command.
The ``Set Variables...`` entry will open a dialog box where
:doc:`index style variables <variable>` can be set. Those variables
will be passed to the LAMMPS instance when it is created and are thus
set *before* a run is started.
.. image:: JPG/lammps-gui-variables.png
:align: center
:scale: 75%
The ``Set Variables`` dialog will be pre-populated with entries that
are set as index variables in the input and any variables that are
used but not defined, if the built-in parser can detect them. New
rows for additional variables can be added through the ``Add Row``
button and existing rows can be deleted by clicking on the ``X`` icons
on the right.
The ``Create Image`` entry will send a :doc:`dump image <dump_image>`
command to the LAMMPS instance, read the resulting file, and show it
in an ``Image Viewer`` window.
The ``View in OVITO`` entry will launch `OVITO <https://ovito.org>`_
with a :doc:`data file <write_data>` containing the current state of
the system. This option is only available if the LAMMPS GUI can find
the OVITO executable in the system path.
The ``View in VMD`` entry will launch VMD with a :doc:`data file
<write_data>` containing the current state of the system. This option
is only available if the LAMMPS GUI can find the VMD executable in the
system path.
View
^^^^
The ``View`` menu offers to show or hide additional windows with log
output, charts, slide show, variables, or snapshot images. The
default settings for their visibility can be changed in the
``Preferences dialog``.
About
^^^^^
The ``About`` menu finally offers a couple of dialog windows and an
option to launch the LAMMPS online documentation in a web browser.
The ``About LAMMPS`` entry displays a dialog with a summary of the
configuration settings of the LAMMPS library in use and the version
number of LAMMPS GUI itself. The ``Quick Help`` displays a dialog
with a minimal description of LAMMPS GUI. The ``LAMMPS GUI Howto``
entry will open this documentation page from the online documentation
in a web browser window. The ``LAMMPS Manual`` entry will open the
main page of the LAMMPS documentation in the web browser.
-----
Preferences
-----------
The ``Preferences`` dialog allows customization of the behavior and
look of the LAMMPS GUI application. The settings are grouped and each
group is displayed within a tab.
.. |guiprefs1| image:: JPG/lammps-gui-prefs-general.png
:width: 24%
.. |guiprefs2| image:: JPG/lammps-gui-prefs-accel.png
:width: 24%
.. |guiprefs3| image:: JPG/lammps-gui-prefs-image.png
:width: 24%
.. |guiprefs4| image:: JPG/lammps-gui-prefs-editor.png
:width: 24%
|guiprefs1| |guiprefs2| |guiprefs3| |guiprefs4|
General Settings:
^^^^^^^^^^^^^^^^^
- *Echo input to log:* when checked, all input commands, including
variable expansions, will be echoed to the log window. This is
equivalent to using `-echo screen` at the command line. There is no
log *file* produced by default, since LAMMPS GUI uses `-log none`.
- *Include citation details:* when checked full citation info will be
included to the log window. This is equivalent to using `-cite
screen` on the command line.
- *Show log window by default:* when checked, the screen output of a
LAMMPS run will be collected in a log window during the run
- *Show chart window by default:* when checked, the thermodynamic
output of a LAMMPS run will be collected and displayed in a chart
window as line graphs.
- *Show slide show window by default:* when checked, a slide show
window will be shown with images from a dump image command, if
present, in the LAMMPS input.
- *Replace log window on new run:* when checked, an existing log
window will be replaced on a new LAMMPS run, otherwise each run will
create a new log window.
- *Replace chart window on new run:* when checked, an existing chart
window will be replaced on a new LAMMPS run, otherwise each run will
create a new chart window.
- *Replace image window on new render:* when checked, an existing
chart window will be replaced when a new snapshot image is requested,
otherwise each command will create a new image window.
- *Path to LAMMPS Shared Library File:* this option is only visible
when LAMMPS GUI was compiled to load the LAMMPS library at run time
instead of being linked to it directly. With the ``Browse..`` button
or by changing the text, a different shared library file with a
different compilation of LAMMPS with different settings or from a
different version can be loaded. After this setting was changed,
LAMMPS GUI needs to be re-launched.
- *Select Default Font:* Opens a font selection dialog where the type
and size for the default font (used for everything but the editor and
log) of the application can be set.
- *Select Text Font:* Opens a font selection dialog where the type and
size for the text editor and log font of the application can be set.
- *GUI update interval:* Allows to set the time interval between GUI
and data updates during a LAMMPS run in milliseconds. The default is
to update the GUI every 100 milliseconds. This is good for most cases.
For LAMMPS runs that run very fast, however, data may be missed and
through lowering this interval, this can be corrected. However, this
will make the GUI use more resources, which may be a problem on some
computers with slower CPUs. The default value is 100 milliseconds.
Accelerators:
^^^^^^^^^^^^^
This tab enables selection of an accelerator package for LAMMPS to use
and is equivalent to using the `-suffix` and `-package` flags on the
command line. Only settings supported by the LAMMPS library and local
hardware are available. The `Number of threads` field allows setting
the maximum number of threads for the accelerator packages that use
threads.
Snapshot Image:
^^^^^^^^^^^^^^^
This tab allows setting defaults for the snapshot images displayed in
the ``Image Viewer`` window, such as its dimensions and the zoom
factor applied. The *Antialias* switch will render images with twice
the number of pixels for width and height and then smoothly scale the
image back to the requested size. This produces higher quality images
with smoother edges at the expense of requiring more CPU time to
render the image. The *HQ Image mode* option turns on screen space
ambient occlusion (SSAO) mode when rendering images. This is also
more time consuming, but produces a more 'spatial' representation of
the system shading of atoms by their depth. The *VDW Style* checkbox
selects whether atoms are represented by space filling spheres when
checked or by smaller spheres and sticks. Finally there are a couple
of drop down lists to select the background and box colors.
Editor Settings:
^^^^^^^^^^^^^^^^
This tab allows tweaking settings of the editor window. Specifically
the amount of padding to be added to LAMMPS commands, types or type
ranges, IDs (e.g. for fixes), and names (e.g. for groups). The value
set is the minimum width for the text element and it can be chosen in
the range between 1 and 32.
The two settings which follow enable or disable the automatic
reformatting when hitting the 'Enter' key and the automatic display of
the completion pop-up window.
-----------
Keyboard Shortcuts
------------------
Almost all functionality is accessible from the menu of the editor
window or through keyboard shortcuts. The following shortcuts are
available (On macOS use the Command key instead of Ctrl/Control).
.. list-table::
:header-rows: 1
:widths: auto
* - Shortcut
- Function
- Shortcut
- Function
- Shortcut
- Function
* - Ctrl+N
- New File
- Ctrl+Z
- Undo edit
- Ctrl+Enter
- Run Input
* - Ctrl+O
- Open File
- Ctrl+Shift+Z
- Redo edit
- Ctrl+/
- Stop Active Run
* - Ctrl+S
- Save File
- Ctrl+C
- Copy text
- Ctrl+Shift+V
- Set Variables
* - Ctrl+Shift+S
- Save File As
- Ctrl+X
- Cut text
- Ctrl+I
- Snapshot Image
* - Ctrl+Q
- Quit Application
- Ctrl+V
- Paste text
- Ctrl+L
- Slide Show
* - Ctrl+W
- Close Window
- Ctrl+A
- Select All
- Ctrl+P
- Preferences
* - Ctrl+Shift+A
- About LAMMPS
- Ctrl+Shift+H
- Quick Help
- Ctrl+Shift+G
- LAMMPS GUI Howto
* - Ctrl+Shift+M
- LAMMPS Manual
- Ctrl+?
- Context Help
- Ctrl+Shift+W
- Show Variables
* - Ctrl+Shift+Enter
- Run File
- TAB
- Reformat line
- Shift+TAB
- Show Completions
Further editing keybindings `are documented with the Qt documentation
<https://doc.qt.io/qt-5/qplaintextedit.html#editing-key-bindings>`_. In
case of conflicts the list above takes precedence.
All other windows only support a subset of keyboard shortcuts listed
above. Typically, the shortcuts `Ctrl-/` (Stop Run), `Ctrl-W` (Close
Window), and `Ctrl-Q` (Quit Application) are supported.

View File

@ -0,0 +1,371 @@
Moltemplate Tutorial
====================
In this tutorial, we are going to use the tool :ref:`Moltemplate
<moltemplate>` to set up a classical molecular dynamic simulation using
the :ref:`OPLS-AA force field <OPLSAA96>`. The first
task is to describe an organic compound and create a complete input deck
for LAMMPS. The second task is to map the OPLS-AA force field to a
molecular sample created with an external tool, e.g. PACKMOL, and
exported as a PDB file. The files used in this tutorial can be found
in the ``tools/moltemplate/tutorial-files`` folder of the LAMMPS
source code distribution.
Simulating an organic solvent
"""""""""""""""""""""""""""""
This example aims to create a cubic box of the organic solvent
formamide.
The first step is to create a molecular topology in the
LAMMPS-template (LT) file format representing a single molecule, which
will be stored in a Moltemplate object called ``_FAM inherits OPLSAA {}``.
This command states that the object ``_FAM`` is based on an existing
object called ``OPLSAA``, which contains OPLS-AA parameters, atom type
definitions, partial charges, masses and bond-angle rules for many organic
and biological compounds.
The atomic structure is the starting point to populate the command
``write('Data Atoms') {}``, which will write the ``Atoms`` section in the
LAMMPS data file. The OPLS-AA force field uses the ``atom_style full``,
therefore, this column format is used:
``# atomID molID atomType charge coordX coordY coordZ``.
The ``atomID``\ s are replaced with Moltemplate ``$``-type variables, which
are then substituted with unique numerical IDs. The same logic is applied
to the ``molID``, except that the same variable is used for the whole
molecule. The atom types are assigned using ``@``-type variables. The
assignment of atom types (e.g. ``@atom:177``, ``@atom:178``) is done using
the OPLS-AA atom types defined in the "In Charges" section of the file
``oplsaa.lt``, looking for a reasonable match with the description of the atom.
The resulting file (``formamide.lt``) follows:
.. code-block:: bash
_FAM inherits OPLSAA {
# atomID molID atomType charge coordX coordY coordZ
write('Data Atoms') {
$atom:C00 $mol @atom:177 0.00 0.100 0.490 0.0
$atom:O01 $mol @atom:178 0.00 1.091 -0.250 0.0
$atom:N02 $mol @atom:179 0.00 -1.121 -0.181 0.0
$atom:H03 $mol @atom:182 0.00 -2.013 0.272 0.0
$atom:H04 $mol @atom:182 0.00 -1.056 -1.190 0.0
$atom:H05 $mol @atom:221 0.00 0.144 1.570 0.0
}
# A list of the bonds in the molecule:
# BondID AtomID1 AtomID2
write('Data Bond List') {
$bond:C1 $atom:C00 $atom:O01
$bond:C2 $atom:C00 $atom:H05
$bond:C3 $atom:C00 $atom:N02
$bond:C4 $atom:N02 $atom:H03
$bond:C5 $atom:N02 $atom:H04
}
}
You don't have to specify the charge in this example because they will
be assigned according to the atom type. Analogously, only a
"Data Bond List" section is needed as the atom type will determine the
bond type. The other bonded interactions (e.g. angles,
dihedrals, and impropers) will be automatically generated by
Moltemplate.
If the simulation is non-neutral, or Moltemplate complains that you have
missing bond, angle, or dihedral types, this means at least one of your
atom types is incorrect.
The second step is to create a master file with instructions to build a
starting structure and the LAMMPS commands to run an NPT simulation. The
master file (``solv_01.lt``) follows:
.. code-block:: bash
# Import the force field.
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa.lt
import formamide.lt # after oplsaa.lt, as it depends on it.
# Create the input sample.
solv = new _FAM [5].move( 4.6, 0, 0)
[5].move( 0, 4.6, 0)
[5].move( 0, 0, 4.6)
solv[*][*][*].move(-11.5, -11.5, -11.5)
# Set the simulation box.
write_once("Data Boundary") {
-11.5 11.5 xlo xhi
-11.5 11.5 ylo yhi
-11.5 11.5 zlo zhi
}
# Create an input deck for LAMMPS.
write_once("In Init"){
# Input variables.
variable run string solv_01 # output name
variable ts equal 1 # timestep
variable temp equal 300 # equilibrium temperature
variable p equal 1. # equilibrium pressure
variable d equal 1000 # output frequency
variable equi equal 5000 # Equilibration steps
variable prod equal 30000 # Production steps
# PBC (set them before the creation of the box).
boundary p p p
}
# Run an NPT simulation.
write_once("In Run"){
# Derived variables.
variable tcouple equal \$\{ts\}*100
variable pcouple equal \$\{ts\}*1000
# Output.
thermo \$d
thermo_style custom step etotal evdwl ecoul elong ebond eangle &
edihed eimp ke pe temp press vol density cpu
thermo_modify flush yes
# Trajectory.
dump TRJ all dcd \$d \$\{run\}.dcd
dump_modify TRJ unwrap yes
# Thermalisation and relaxation, NPT ensemble.
timestep \$\{ts\}
fix NPT all npt temp \$\{temp\} \$\{temp\} \$\{tcouple\} iso \$p \$p \$\{pcouple\}
velocity all create \$\{temp\} 858096 dist gaussian
# Short runs to update the PPPM settings as the box shinks.
run \$\{equi\} post no
run \$\{equi\} post no
run \$\{equi\} post no
run \$\{equi\}
# From now on, the density shouldn't change too much.
run \$\{prod\}
unfix NPT
}
The first two commands insert the content of files ``oplsaa.lt`` and
``formamide.lt`` into the master file. At this point, we can use the
command ``solv = new _FAM [N]`` to create N copies of a molecule of type
``_FAM``. In this case, we create an array of 5*5*5 molecules on a cubic
grid using the coordinate transformation command ``.move( 4.6, 0, 0)``.
See the Moltemplate documentation to learn more about the syntax. As
the sample was created from scratch, we also specify the simulation box
size in the "Data Boundary" section.
The LAMMPS setting for the force field are specified in the file
``oplsaa.lt`` and are written automatically in the input deck. We also
specify the boundary conditions and a set of variables in
the "In Init" section. The remaining commands to run an NPT simulation
are written in the "In Run" section. Note that in this script, LAMMPS
variables are protected with the escape character ``\`` to distinguish
them from Moltemplate variables, e.g. ``\$\{run\}`` is a LAMMPS
variable that is written in the input deck as ``${run}``.
Compile the master file with:
.. code-block:: bash
moltemplate.sh -overlay-all solv_01.lt
And execute the simulation with the following:
.. code-block:: bash
mpirun -np 4 lmp -in solv_01.in -l solv_01.log
.. figure:: JPG/solv_01.png
:figwidth: 80%
:figclass: align-center
Snapshot of the sample at the beginning and end of the simulation.
Rendered with Ovito.
Mapping an existing structure
"""""""""""""""""""""""""""""
Another helpful way to use Moltemplate is mapping an existing molecular
sample to a force field. This is useful when a complex sample is
assembled from different simulations or created with specialized
software (e.g. PACKMOL). As in the previous example, all molecular
species in the sample must be defined using single-molecule Moltemplate
objects. For this example, we use a short polymer in a box containing
water molecules and ions in the PDB file ``model.pdb``.
It is essential to understand that the order of atoms in the PDB file
and in the Moltemplate master script must match, as we are using the
coordinates from the PDB file in the order they appear. The order of
atoms and molecules in the PDB file provided is as follows:
- 500 water molecules, with atoms ordered in this sequence:
.. parsed-literal::
ATOM 1 O MOL D 1 5.901 7.384 1.103 0.00 0.00 DUM
ATOM 2 H MOL D 1 6.047 8.238 0.581 0.00 0.00 DUM
ATOM 3 H MOL D 1 6.188 7.533 2.057 0.00 0.00 DUM
- 1 polymer molecule.
- 1 Ca\ :sup:`2+` ion.
- 2 Cl\ :sup:`-` ions.
In the master LT file, this sequence of molecules is matched with the
following commands:
.. code-block:: bash
# Create the sample.
wat=new SPC[500]
pol=new PolyNIPAM[1]
cat=new Ca[1]
ani=new Cl[2]
Note that the first command would create 500 water molecules in the
same position in space, and the other commands will use the coordinates
specified in the corresponding molecular topology block. However, the
coordinates will be overwritten by rendering an external atomic
structure file. Note that if the same molecule species are scattered in
the input structure, it is recommended to reorder and group together
for molecule types to facilitate the creation of the input sample.
The molecular topology for the polymer is created as in the previous
example, with the atom types assigned as in the following schema:
.. figure:: JPG/PolyNIPAM.jpg
:scale: 30%
:align: center
Atom types assigned to the polymer's repeating unit.
The molecular topology of the water and ions is stated directly into
the master file for the sake of space, but they could also be written
in a separate file(s) and imported before the sample is created.
The resulting master LT file defining short annealing at a fixed volume
(NVT) follows:
.. code-block:: bash
# Use the OPLS-AA force field for all species.
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa.lt
import PolyNIPAM.lt
# Define the SPC water and ions as in the OPLS-AA
Ca inherits OPLSAA {
write("Data Atoms"){
$atom:a1 $mol:. @atom:354 0.0 0.00000 0.00000 0.000000
}
}
Cl inherits OPLSAA {
write("Data Atoms"){
$atom:a1 $mol:. @atom:344 0.0 0.00000 0.00000 0.000000
}
}
SPC inherits OPLSAA {
write("Data Atoms"){
$atom:O $mol:. @atom:76 0. 0.0000000 0.00000 0.000000
$atom:H1 $mol:. @atom:77 0. 0.8164904 0.00000 0.5773590
$atom:H2 $mol:. @atom:77 0. -0.8164904 0.00000 0.5773590
}
write("Data Bond List") {
$bond:OH1 $atom:O $atom:H1
$bond:OH2 $atom:O $atom:H2
}
}
# Create the sample.
wat=new SPC[500]
pol=new PolyNIPAM[1]
cat=new Ca[1]
ani=new Cl[2]
# Periodic boundary conditions:
write_once("Data Boundary"){
0 26 xlo xhi
0 26 ylo yhi
0 26 zlo zhi
}
# Define the input variables.
write_once("In Init"){
# Input variables.
variable run string sample01 # output name
variable ts equal 2 # timestep
variable temp equal 298.15 # equilibrium temperature
variable p equal 1. # equilibrium pressure
variable equi equal 30000 # equilibration steps
# PBC (set them before the creation of the box).
boundary p p p
neighbor 3 bin
}
# Run an NVT simulation.
write_once("In Run"){
# Set the output.
thermo 1000
thermo_style custom step etotal evdwl ecoul elong ebond eangle &
edihed eimp pe ke temp press atoms vol density cpu
thermo_modify flush yes
compute pe1 all pe/atom pair
dump TRJ all custom 100 \$\{run\}.dump id xu yu zu c_pe1
# Minimise the input structure, just in case.
minimize .01 .001 1000 100000
write_data \$\{run\}.min
# Set the constrains.
group watergroup type @atom:76 @atom:77
fix 0 watergroup shake 0.0001 10 0 b @bond:042_043 a @angle:043_042_043
# Short annealing.
timestep \$\{ts\}
fix 1 all nvt temp \$\{temp\} \$\{temp\} \$(100*dt)
velocity all create \$\{temp\} 315443
run \$\{equi\}
unfix 1
}
In this example, the water model is SPC and it is defined in the
``oplsaa.lt`` file with atom types ``@atom:76`` and ``@atom:77``. For
water we also use the ``group`` and ``fix shake`` commands with
Moltemplate ``@``-type variables, to ensure consistency with the
numerical values assigned during compilation. To identify the bond and
angle types, look for the extended ``@atom`` IDs, which in this case
are:
.. code-block:: bash
replace{ @atom:76 @atom:76_b042_a042_d042_i042 }
replace{ @atom:77 @atom:77_b043_a043_d043_i043 }
From which we can identify the following "Data Bonds By Type":
``@bond:042_043 @atom:*_b042*_a*_d*_i* @atom:*_b043*_a*_d*_i*`` and
"Data Angles By Type": ``@angle:043_042_043 @atom:*_b*_a043*_d*_i*
@atom:*_b*_a042*_d*_i* @atom:*_b*_a043*_d*_i*``
Compile the master file with:
.. code-block:: bash
moltemplate.sh -overlay-all -pdb model.pdb sample01.lt
And execute the simulation with the following:
.. code-block:: bash
mpirun -np 4 lmp -in sample01.in -l sample01.log
.. figure:: JPG/sample01.png
:figwidth: 50%
:figclass: align-center
Sample visualized with Ovito loading the trajectory into the DATA
file written after minimization.
------------
.. _OPLSAA96:
**(OPLS-AA)** Jorgensen, Maxwell, Tirado-Rives, J Am Chem Soc,
118(45), 11225-11236 (1996).

View File

@ -1,7 +1,7 @@
Output from LAMMPS (thermo, dumps, computes, fixes, variables)
==============================================================
There are four basic kinds of LAMMPS output:
There are four basic forms of LAMMPS output:
* :doc:`Thermodynamic output <thermo_style>`, which is a list of
quantities printed every few timesteps to the screen and logfile.
@ -20,18 +20,17 @@ output files, depending on what :doc:`dump <dump>` and :doc:`fix <fix>`
commands you specify.
As discussed below, LAMMPS gives you a variety of ways to determine
what quantities are computed and printed when the thermodynamics,
what quantities are calculated and printed when the thermodynamics,
dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also :doc:`add their own computes and
fixes to LAMMPS <Modify>` which can then generate values that can then
be output with these commands.
fixes to LAMMPS <Modify>` which can generate values that can then be
output with these commands.
The following subsections discuss different LAMMPS commands related
to output and the kind of data they operate on and produce:
* :ref:`Global/per-atom/local/per-grid data <global>`
* :ref:`Scalar/vector/array data <scalar>`
* :ref:`Per-grid data <grid>`
* :ref:`Disambiguation <disambiguation>`
* :ref:`Thermodynamic output <thermo>`
* :ref:`Dump file output <dump>`
@ -48,34 +47,65 @@ to output and the kind of data they operate on and produce:
Global/per-atom/local/per-grid data
-----------------------------------
Various output-related commands work with four different styles of
Various output-related commands work with four different "styles" of
data: global, per-atom, local, and per-grid. A global datum is one or
more system-wide values, e.g. the temperature of the system. A
per-atom datum is one or more values per atom, e.g. the kinetic energy
of each atom. Local datums are calculated by each processor based on
the atoms it owns, but there may be zero or more per atom, e.g. a list
the atoms it owns, and there may be zero or more per atom, e.g. a list
of bond distances.
A per-grid datum is one or more values per grid cell, for a grid which
overlays the simulation domain. The grid cells and the data they
store are distributed across processors; each processor owns the grid
cells whose center point falls within its subdomain.
overlays the simulation domain. Similar to atoms and per-atom data,
the grid cells and the data they store are distributed across
processors; each processor owns the grid cells whose center points
fall within its subdomain.
.. _scalar:
Scalar/vector/array data
------------------------
Global, per-atom, and local datums can come in three kinds: a single
scalar value, a vector of values, or a 2d array of values. The doc
page for a "compute" or "fix" or "variable" that generates data will
specify both the style and kind of data it produces, e.g. a per-atom
vector.
Global, per-atom, local, and per-grid datums can come in three
"kinds": a single scalar value, a vector of values, or a 2d array of
values. More specifically these are the valid kinds for each style:
When a quantity is accessed, as in many of the output commands
discussed below, it can be referenced via the following bracket
notation, where ID in this case is the ID of a compute. The leading
"c\_" would be replaced by "f\_" for a fix, or "v\_" for a variable:
* global scalar
* global vector
* global array
* per-atom vector
* per-atom array
* local vector
* local array
* per-grid vector
* per-grid array
A per-atom vector means a single value per atom; the "vector" is the
length of the number of atoms. A per-atom array means multiple values
per atom. Similarly a local vector or array means one or multiple
values per entity (e.g. per bond in the system). And a per-grid
vector or array means one or multiple values per grid cell.
The doc page for a compute or fix or variable that generates data will
specify both the styles and kinds of data it produces, e.g. a per-atom
vector. Note that a compute or fix may generate multiple styles and
kinds of output. However, for per-atom data only a vector or array is
output, never both. Likewise for per-local and per-grid data. An
example of a fix which generates multiple styles and kinds of data is
the :doc:`fix mdi/qm <fix_mdi_qm>` command. It outputs a global
scalar, global vector, and per-atom array for the quantum mechanical
energy and virial of the system and forces on each atom.
By contrast, different variable styles generate only a single kind of
data: a global scalar for an equal-style variable, global vector for a
vector-style variable, and a per-atom vector for an atom-style
variable.
When data is accessed by another command, as in many of the output
commands discussed below, it can be referenced via the following
bracket notation, where ID in this case is the ID of a compute. The
leading "c\_" would be replaced by "f\_" for a fix, or "v\_" for a
variable (and ID would be the name of the variable):
+-------------+--------------------------------------------+
| c_ID | entire scalar, vector, or array |
@ -85,40 +115,56 @@ notation, where ID in this case is the ID of a compute. The leading
| c_ID[I][J] | one element of array |
+-------------+--------------------------------------------+
In other words, using one bracket reduces the dimension of the data
once (vector -> scalar, array -> vector). Using two brackets reduces
the dimension twice (array -> scalar). Thus a command that uses
scalar values as input can typically also process elements of a vector
or array.
Note that using one bracket reduces the dimension of the data once
(vector -> scalar, array -> vector). Using two brackets reduces the
dimension twice (array -> scalar). Thus a command that uses scalar
values as input can also conceptually operate on an element of a
vector or array.
.. _grid:
Per-grid data
------------------------
Per-grid data can come in two kinds: a vector of values (one per grid
cekk), or a 2d array of values (multiple values per grid ckk). The
doc page for a "compute" or "fix" that generates data will specify
names for both the grid(s) and datum(s) it produces, e.g. per-grid
vectors or arrays, which can be referenced by other commands. See the
:doc:`Howto grid <Howto_grid>` doc page for more details.
Per-grid vectors or arrays are accessed similarly, except that the ID
for the compute or fix includes a grid name and a data name. This is
because a fix or compute can create multiple grids (of different
sizes) and multiple sets of data (for each grid). The fix or compute
defines names for each grid and for each data set, so that all of them
can be accessed by other commands. See the :doc:`Howto grid
<Howto_grid>` doc page for more details.
.. _disambiguation:
Disambiguation
--------------
Some computes and fixes produce data in multiple styles, e.g. a global
scalar and a per-atom vector. Usually the context in which the input
script references the data determines which style is meant. Example:
if a compute provides both a global scalar and a per-atom vector, the
former will be accessed by using ``c_ID`` in an equal-style variable,
while the latter will be accessed by using ``c_ID`` in an atom-style
variable. Note that atom-style variable formulas can also access
global scalars, but in this case it is not possible to do this
directly because of the ambiguity. Instead, an equal-style variable
can be defined which accesses the global scalar, and that variable can
be used in the atom-style variable formula in place of ``c_ID``.
When a compute or fix produces data in multiple styles, e.g. global
and per-atom, a reference to the data can sometimes be ambiguous.
Usually the context in which the input script references the data
determines which style is meant.
For example, if a compute outputs a global vector and a per-atom
array, an element of the global vector will be accessed by using
``c_ID[I]`` in :doc:`thermodynamic output <thermo_style>`, while a
column of the per-atom array will be accessed by using ``c_ID[I]`` in
a :doc:`dump custom <dump>` command.
However, if a :doc:`atom-style variable <variable>` references
``c_ID[I]``, then it could be intended to refer to a single element of
the global vector or a column of the per-atom array. The doc page for
any command that has a potential ambiguity (variables are the most
common) will explain how to resolve the ambiguity.
In this case, an atom-style variables references per-atom data if it
exists. If access to an element of a global vector is needed (as in
this example), an equal-style variable which references the value can
be defined and used in the atom-style variable formula instead.
Similarly, :doc:`thermodynamic output <thermo_style>` can only
reference global data from a compute or fix. But you can indirectly
access per-atom data as follows. The reference ``c_ID[245][2]`` for
the ID of a :doc:`compute displace/atom <compute_displace_atom>`
command, refers to the y-component of displacement for the atom with
ID 245. While you cannot use that reference directly in the
:doc:`thermo_style <thermo_style>` command, you can use it an
equal-style variable formula, and then reference the variable in
thermodynamic output.
.. _thermo:
@ -389,7 +435,7 @@ output and input data types must match, e.g. global/per-atom/local
data and scalar/vector/array data.
Also note that, as described above, when a command takes a scalar as
input, that could be an element of a vector or array. Likewise a
input, that could also be an element of a vector or array. Likewise a
vector input could be a column of an array.
+--------------------------------------------------------+----------------------------------------------+----------------------------------------------------+

View File

@ -133,7 +133,7 @@ to the location in the virtual environment with:
.. code-block:: bash
cmake . -DPYTHON_EXECUTABLE=$(which python)
cmake . -DPython_EXECUTABLE=$(which python)
# install LAMMPS package in virtualenv
(testing) make install-python

View File

@ -119,6 +119,45 @@ for example :doc:`dump yaml <dump>` or :doc:`fix ave/time <fix_ave_time>`
Depending on the kind of data being written, organization of the data
or the specific syntax used may change, but the principles are very
similar and all files should be readable with a suitable YAML parser.
A simple example for this is given below:
.. code-block:: python
import yaml
try:
from yaml import CSafeLoader as YamlLoader
except ImportError:
from yaml import SafeLoader as YamlLoader
timesteps = []
with open("dump.yaml", "r") as f:
data = yaml.load_all(f, Loader=YamlLoader)
for d in data:
print('Processing timestep %d' % d['timestep'])
timesteps.append(d)
print('Read %d timesteps from yaml dump' % len(timesteps))
print('Second timestep: ', timesteps[1]['timestep'])
print('Box info: x: ' , timesteps[1]['box'][0], ' y:', timesteps[1]['box'][1], ' z:',timesteps[1]['box'][2])
print('First 5 per-atom columns: ', timesteps[1]['keywords'][0:5])
print('Corresponding 10th atom data: ', timesteps[1]['data'][9][0:5])
The corresponding output for a YAML dump command added to the "melt" example is:
.. parsed-literal::
Processing timestep 0
Processing timestep 50
Processing timestep 100
Processing timestep 150
Processing timestep 200
Processing timestep 250
Read 6 timesteps from yaml dump
Second timestep: 50
Box info: x: [0, 16.795961913825074] y: [0, 16.795961913825074] z: [0, 16.795961913825074]
First 5 per-atom columns: ['id', 'type', 'x', 'y', 'z']
Corresponding 10th atom data: [10, 1, 4.43828, 0.968481, 0.108555]
Processing scalar data with Python
----------------------------------

View File

@ -193,11 +193,14 @@ file changed):
write_data tip4p-implicit.data nocoeff
Below is the code for a LAMMPS input file using the explicit method and
a TIP4P molecule file. Because of using :doc:`fix rigid/nvt/small
a TIP4P molecule file. Because of using :doc:`fix rigid/small
<fix_rigid>` no bonds need to be defined and thus no extra storage needs
to be reserved for them, but we need to switch to atom style full or use
:doc:`fix property/atom mol <fix_property_atom>` so that fix
rigid/nvt/small can identify rigid bodies by their molecule ID:
to be reserved for them, but we need to either switch to atom style full
or use :doc:`fix property/atom mol <fix_property_atom>` so that fix
rigid/small can identify rigid bodies by their molecule ID. Also a
:doc:`neigh_modify exclude <neigh_modify>` command is added to exclude
computing intramolecular non-bonded interactions, since those are
removed by the rigid fix anyway:
.. code-block:: LAMMPS
@ -216,17 +219,17 @@ rigid/nvt/small can identify rigid bodies by their molecule ID:
pair_coeff 2 2 0.0 1.0
pair_coeff 3 3 0.0 1.0
fix mol all property/atom mol
fix mol all property/atom mol ghost yes
molecule water tip4p.mol
create_atoms 0 random 33 34564 NULL mol water 25367 overlap 1.33
neigh_modify exclude molecule/intra all
timestep 0.5
fix integrate all rigid/nvt/small molecule temp 300.0 300.0 100.0
velocity all create 300.0 5463576
fix integrate all rigid/small molecule langevin 300.0 300.0 100.0 2345634
thermo_style custom step temp press etotal density pe ke
thermo 1000
run 20000
thermo 2000
run 40000
write_data tip4p-explicit.data nocoeff
.. _tip4p_molecule:

View File

@ -81,11 +81,13 @@ long-range Coulombic solver (e.g. Ewald or PPPM in LAMMPS).
Below is the code for a LAMMPS input file for setting up a simulation of
TIP5P water with a molecule file. Because of using :doc:`fix
rigid/nvt/small <fix_rigid>` no bonds need to be defined and thus no
extra storage needs to be reserved for them, but we need to switch to
rigid/small <fix_rigid>` no bonds need to be defined and thus no extra
storage needs to be reserved for them, but we need to either switch to
atom style full or use :doc:`fix property/atom mol <fix_property_atom>`
so that fix rigid/nvt/small can identify rigid bodies by their molecule
ID:
so that fix rigid/small can identify rigid bodies by their molecule ID.
Also a :doc:`neigh_modify exclude <neigh_modify>` command is added to
exclude computing intramolecular non-bonded interactions, since those
are removed by the rigid fix anyway:
.. code-block:: LAMMPS
@ -107,11 +109,11 @@ ID:
fix mol all property/atom mol
molecule water tip5p.mol
create_atoms 0 random 33 34564 NULL mol water 25367 overlap 1.33
neigh_modify exclude molecule/intra all
timestep 0.5
fix integrate all rigid/nvt/small molecule temp 300.0 300.0 100.0
fix integrate all rigid/small molecule langevin 300.0 300.0 50.0 235664
reset_timestep 0
velocity all create 300.0 5463576
thermo_style custom step temp press etotal density pe ke
thermo 1000

View File

@ -12,7 +12,8 @@ is created, e.g. by the :doc:`create_box <create_box>` or
:doc:`read_data <read_data>` or :doc:`read_restart <read_restart>`
commands. Additionally, LAMMPS defines box size parameters lx,ly,lz
where lx = xhi-xlo, and similarly in the y and z dimensions. The 6
parameters, as well as lx,ly,lz, can be output via the :doc:`thermo_style custom <thermo_style>` command.
parameters, as well as lx,ly,lz, can be output via the
:doc:`thermo_style custom <thermo_style>` command.
LAMMPS also allows simulations to be performed in triclinic
(non-orthogonal) simulation boxes shaped as a parallelepiped with

View File

@ -5,7 +5,7 @@ LAMMPS can be downloaded, built, and configured for macOS with `Homebrew
<homebrew_>`_. (Alternatively, see the installation instructions for
:doc:`downloading an executable via Conda <Install_conda>`.) The
following LAMMPS packages are unavailable at this time because of
additional requirements not yet met: GPU, KOKKOS, MSCG, MPIIO, POEMS,
additional requirements not yet met: GPU, KOKKOS, MSCG, POEMS,
VORONOI.
After installing Homebrew, you can install LAMMPS on your system with

View File

@ -18,11 +18,10 @@ needed to run in parallel with MPI.
The LAMMPS binaries contain *all* :doc:`optional packages <Packages>`
included in the source distribution except: ADIOS, H5MD, KIM, ML-PACE,
ML-QUIP, MSCG, NETCDF, PLUMED, QMMM, SCAFACOS, and VTK. The serial
version also does not include the MPIIO and LATBOLTZ packages. The
PYTHON package is only available in the Python installers that bundle a
Python runtime. The GPU package is compiled for OpenCL with mixed
precision kernels.
ML-QUIP, MSCG, NETCDF, QMMM, SCAFACOS, and VTK. The serial version also
does not include the LATBOLTZ package. The PYTHON package is only
available in the Python installers that bundle a Python runtime. The
GPU package is compiled for OpenCL with mixed precision kernels.
The LAMMPS library is compiled as a shared library and the
:doc:`LAMMPS Python module <Python_module>` is installed, so that

View File

@ -5,7 +5,7 @@ LAMMPS is designed to be a fast, parallel engine for molecular
dynamics (MD) simulations. It provides only a modest amount of
functionality for setting up simulations and analyzing their output.
Specifically, LAMMPS was not conceived and designed for:
Originally, LAMMPS was not conceived and designed for:
* being run through a GUI
* building molecular systems, or building molecular topologies
@ -14,9 +14,10 @@ Specifically, LAMMPS was not conceived and designed for:
* visualize your MD simulation interactively
* plot your output data
Over the years some of these limitations have been reduced or
removed, through features added to LAMMPS or external tools
that either closely interface with LAMMPS or extend LAMMPS.
Over the years many of these limitations have been reduced or
removed. In part through features added to LAMMPS and in part
through external tools that either closely interface with LAMMPS
or extend LAMMPS.
Here are suggestions on how to perform these tasks:
@ -24,8 +25,9 @@ Here are suggestions on how to perform these tasks:
wraps the library interface is provided. Thus, GUI interfaces can be
written in Python or C/C++ that run LAMMPS and visualize or plot its
output. Examples of this are provided in the python directory and
described on the :doc:`Python <Python_head>` doc page. Also, there
are several external wrappers or GUI front ends.
described on the :doc:`Python <Python_head>` doc page. As of version
2 August 2023 :ref:`a GUI tool <lammps_gui>` is included in LAMMPS.
Also, there are several external wrappers or GUI front ends.
* **Builder:** Several pre-processing tools are packaged with LAMMPS.
Some of them convert input files in formats produced by other MD codes
such as CHARMM, AMBER, or Insight into LAMMPS input formats. Some of

View File

@ -25,7 +25,7 @@ LAMMPS can be compiled from source code using a (traditional) build
system based on shell scripts, a few shell utilities (grep, sed, cat,
tr) and the GNU make program. This requires running within a Bourne
shell (``/bin/sh``). Alternatively, a build system with different back ends
can be created using CMake. CMake must be at least version 3.10.
can be created using CMake. CMake must be at least version 3.16.
Operating systems
^^^^^^^^^^^^^^^^^
@ -62,9 +62,9 @@ regularly tested.
Portability compliance
^^^^^^^^^^^^^^^^^^^^^^
Only a subset of the LAMMPS source code is fully compliant to all of the
above mentioned standards. This is rather typical for projects like
LAMMPS that largely depend on contributions from the user community.
Only a subset of the LAMMPS source code is *fully* compliant to *all*
of the above mentioned standards. This is rather typical for projects
like LAMMPS that largely depend on contributions from the user community.
Not all contributors are trained as programmers and not all of them have
access to multiple platforms for testing. As part of the continuous
integration process, however, all contributions are automatically tested

BIN
doc/src/JPG/PolyNIPAM.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

BIN
doc/src/JPG/image.both.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
doc/src/JPG/image.fsaa.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

BIN
doc/src/JPG/image.ssao.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
doc/src/JPG/sample01.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 808 KiB

BIN
doc/src/JPG/solv_01.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

View File

@ -80,13 +80,15 @@ run LAMMPS in serial mode.
:class: note
If the LAMMPS executable encounters an error condition, it will abort
after printing an error message. For a library interface this is
usually not desirable. Thus LAMMPS can be compiled to to :ref:`throw
a C++ exception <exceptions>` instead. If enabled, the library
functions will catch those exceptions and return. The error status
:cpp:func:`can be queried <lammps_has_error>` and an :cpp:func:`error
message retrieved <lammps_get_last_error_message>`. We thus
recommend enabling C++ exceptions when using the library interface,
after printing an error message. It does so by catching the
exceptions that LAMMPS could throw. For a C library interface this
is usually not desirable since the calling code might lack the
ability to catch such exceptions. Thus, the library functions will
catch those exceptions and return from the affected functions. The
error status :cpp:func:`can be queried <lammps_has_error>` and an
:cpp:func:`error message retrieved <lammps_get_last_error_message>`.
This is, for example used by the :doc:`LAMMPS python module
<Python_module>` and then a suitable Python exception is thrown.
.. admonition:: Using the C library interface as a plugin
:class: note

View File

@ -9,6 +9,7 @@ fixes, or variables in LAMMPS using the following functions:
- :cpp:func:`lammps_extract_variable_datatype`
- :cpp:func:`lammps_extract_variable`
- :cpp:func:`lammps_set_variable`
- :cpp:func:`lammps_variable_info`
-----------------------
@ -37,6 +38,11 @@ fixes, or variables in LAMMPS using the following functions:
-----------------------
.. doxygenfunction:: lammps_variable_info
:project: progguide
-----------------------
.. doxygenenum:: _LMP_DATATYPE_CONST
.. doxygenenum:: _LMP_STYLE_CONST

Some files were not shown because too many files have changed in this diff Show More