rename SNAP package to ML-SNAP and fix up some remaining MLIAP to ML-IAP issues

This commit is contained in:
Axel Kohlmeyer
2021-06-29 11:06:59 -04:00
parent 553a06e823
commit e482502691
29 changed files with 266 additions and 268 deletions

View File

@ -0,0 +1,423 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_snav_atom.h"
#include <cstring>
#include "sna.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
ComputeSNAVAtom::ComputeSNAVAtom(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), cutsq(nullptr), list(nullptr), snav(nullptr),
radelem(nullptr), wjelem(nullptr)
{
double rfac0, rmin0;
int twojmax, switchflag, bzeroflag, bnormflag, wselfallflag;
radelem = nullptr;
wjelem = nullptr;
int ntypes = atom->ntypes;
int nargmin = 6+2*ntypes;
if (narg < nargmin) error->all(FLERR,"Illegal compute snav/atom command");
// default values
rmin0 = 0.0;
switchflag = 1;
bzeroflag = 1;
bnormflag = 0;
quadraticflag = 0;
chemflag = 0;
bnormflag = 0;
wselfallflag = 0;
nelements = 1;
// process required arguments
memory->create(radelem,ntypes+1,"sna/atom:radelem"); // offset by 1 to match up with types
memory->create(wjelem,ntypes+1,"sna/atom:wjelem");
rcutfac = atof(arg[3]);
rfac0 = atof(arg[4]);
twojmax = atoi(arg[5]);
for (int i = 0; i < ntypes; i++)
radelem[i+1] = atof(arg[6+i]);
for (int i = 0; i < ntypes; i++)
wjelem[i+1] = atof(arg[6+ntypes+i]);
// construct cutsq
double cut;
memory->create(cutsq,ntypes+1,ntypes+1,"sna/atom:cutsq");
for (int i = 1; i <= ntypes; i++) {
cut = 2.0*radelem[i]*rcutfac;
cutsq[i][i] = cut*cut;
for (int j = i+1; j <= ntypes; j++) {
cut = (radelem[i]+radelem[j])*rcutfac;
cutsq[i][j] = cutsq[j][i] = cut*cut;
}
}
// process optional args
int iarg = nargmin;
while (iarg < narg) {
if (strcmp(arg[iarg],"rmin0") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute snav/atom command");
rmin0 = atof(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"switchflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute snav/atom command");
switchflag = atoi(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"bzeroflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute snav/atom command");
bzeroflag = atoi(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"quadraticflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute snav/atom command");
quadraticflag = atoi(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"chem") == 0) {
if (iarg+2+ntypes > narg)
error->all(FLERR,"Illegal compute sna/atom command");
chemflag = 1;
memory->create(map,ntypes+1,"compute_sna_atom:map");
nelements = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
for (int i = 0; i < ntypes; i++) {
int jelem = utils::inumeric(FLERR,arg[iarg+2+i],false,lmp);
if (jelem < 0 || jelem >= nelements)
error->all(FLERR,"Illegal compute snav/atom command");
map[i+1] = jelem;
}
iarg += 2+ntypes;
} else if (strcmp(arg[iarg],"bnormflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute snav/atom command");
bnormflag = atoi(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"wselfallflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute snav/atom command");
wselfallflag = atoi(arg[iarg+1]);
iarg += 2;
} else error->all(FLERR,"Illegal compute snav/atom command");
}
snaptr = new SNA(lmp, rfac0, twojmax,
rmin0, switchflag, bzeroflag,
chemflag, bnormflag, wselfallflag, nelements);
ncoeff = snaptr->ncoeff;
nperdim = ncoeff;
if (quadraticflag) nperdim += (ncoeff*(ncoeff+1))/2;
size_peratom_cols = 6*nperdim*atom->ntypes;
comm_reverse = size_peratom_cols;
peratom_flag = 1;
nmax = 0;
snav = nullptr;
}
/* ---------------------------------------------------------------------- */
ComputeSNAVAtom::~ComputeSNAVAtom()
{
memory->destroy(snav);
memory->destroy(radelem);
memory->destroy(wjelem);
memory->destroy(cutsq);
delete snaptr;
}
/* ---------------------------------------------------------------------- */
void ComputeSNAVAtom::init()
{
if (force->pair == nullptr)
error->all(FLERR,"Compute snav/atom requires a pair style be defined");
// TODO: Not sure what to do with this error check since cutoff radius is not
// a single number
//if (sqrt(cutsq) > force->pair->cutforce)
// error->all(FLERR,"Compute snav/atom cutoff is longer than pairwise cutoff");
// need an occasional full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style,"snav/atom") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute snav/atom");
snaptr->init();
}
/* ---------------------------------------------------------------------- */
void ComputeSNAVAtom::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeSNAVAtom::compute_peratom()
{
int ntotal = atom->nlocal + atom->nghost;
invoked_peratom = update->ntimestep;
// grow snav array if necessary
if (atom->nmax > nmax) {
memory->destroy(snav);
nmax = atom->nmax;
memory->create(snav,nmax,size_peratom_cols,
"snav/atom:snav");
array_atom = snav;
}
// clear local array
for (int i = 0; i < ntotal; i++)
for (int icoeff = 0; icoeff < size_peratom_cols; icoeff++) {
snav[i][icoeff] = 0.0;
}
// invoke full neighbor list (will copy or build if necessary)
neighbor->build_one(list);
const int inum = list->inum;
const int* const ilist = list->ilist;
const int* const numneigh = list->numneigh;
int** const firstneigh = list->firstneigh;
int * const type = atom->type;
// compute sna derivatives for each atom in group
// use full neighbor list to count atoms less than cutoff
double** const x = atom->x;
const int* const mask = atom->mask;
for (int ii = 0; ii < inum; ii++) {
const int i = ilist[ii];
if (mask[i] & groupbit) {
const double xtmp = x[i][0];
const double ytmp = x[i][1];
const double ztmp = x[i][2];
const int itype = type[i];
int ielem = 0;
if (chemflag)
ielem = map[itype];
const double radi = radelem[itype];
const int* const jlist = firstneigh[i];
const int jnum = numneigh[i];
const int typeoffset = 6*nperdim*(atom->type[i]-1);
// insure rij, inside, and typej are of size jnum
snaptr->grow_rij(jnum);
// rij[][3] = displacements between atom I and those neighbors
// inside = indices of neighbors of I within cutoff
// typej = types of neighbors of I within cutoff
// note Rij sign convention => dU/dRij = dU/dRj = -dU/dRi
int ninside = 0;
for (int jj = 0; jj < jnum; jj++) {
int j = jlist[jj];
j &= NEIGHMASK;
const double delx = x[j][0] - xtmp;
const double dely = x[j][1] - ytmp;
const double delz = x[j][2] - ztmp;
const double rsq = delx*delx + dely*dely + delz*delz;
int jtype = type[j];
int jelem = 0;
if (chemflag)
jelem = map[jtype];
if (rsq < cutsq[itype][jtype]&&rsq>1e-20) {
snaptr->rij[ninside][0] = delx;
snaptr->rij[ninside][1] = dely;
snaptr->rij[ninside][2] = delz;
snaptr->inside[ninside] = j;
snaptr->wj[ninside] = wjelem[jtype];
snaptr->rcutij[ninside] = (radi+radelem[jtype])*rcutfac;
snaptr->element[ninside] = jelem; // element index for multi-element snap
ninside++;
}
}
snaptr->compute_ui(ninside, ielem);
snaptr->compute_zi();
if (quadraticflag) {
snaptr->compute_bi(ielem);
}
for (int jj = 0; jj < ninside; jj++) {
const int j = snaptr->inside[jj];
snaptr->compute_duidrj(snaptr->rij[jj], snaptr->wj[jj],
snaptr->rcutij[jj], jj, snaptr->element[jj]);
snaptr->compute_dbidrj();
// Accumulate -dBi/dRi*Ri, -dBi/dRj*Rj
double *snavi = snav[i]+typeoffset;
double *snavj = snav[j]+typeoffset;
for (int icoeff = 0; icoeff < ncoeff; icoeff++) {
snavi[icoeff] += snaptr->dblist[icoeff][0]*xtmp;
snavi[icoeff+nperdim] += snaptr->dblist[icoeff][1]*ytmp;
snavi[icoeff+2*nperdim] += snaptr->dblist[icoeff][2]*ztmp;
snavi[icoeff+3*nperdim] += snaptr->dblist[icoeff][1]*ztmp;
snavi[icoeff+4*nperdim] += snaptr->dblist[icoeff][0]*ztmp;
snavi[icoeff+5*nperdim] += snaptr->dblist[icoeff][0]*ytmp;
snavj[icoeff] -= snaptr->dblist[icoeff][0]*x[j][0];
snavj[icoeff+nperdim] -= snaptr->dblist[icoeff][1]*x[j][1];
snavj[icoeff+2*nperdim] -= snaptr->dblist[icoeff][2]*x[j][2];
snavj[icoeff+3*nperdim] -= snaptr->dblist[icoeff][1]*x[j][2];
snavj[icoeff+4*nperdim] -= snaptr->dblist[icoeff][0]*x[j][2];
snavj[icoeff+5*nperdim] -= snaptr->dblist[icoeff][0]*x[j][1];
}
if (quadraticflag) {
const int quadraticoffset = ncoeff;
snavi += quadraticoffset;
snavj += quadraticoffset;
int ncount = 0;
for (int icoeff = 0; icoeff < ncoeff; icoeff++) {
double bi = snaptr->blist[icoeff];
double bix = snaptr->dblist[icoeff][0];
double biy = snaptr->dblist[icoeff][1];
double biz = snaptr->dblist[icoeff][2];
// diagonal element of quadratic matrix
double dbxtmp = bi*bix;
double dbytmp = bi*biy;
double dbztmp = bi*biz;
snavi[ncount] += dbxtmp*xtmp;
snavi[ncount+nperdim] += dbytmp*ytmp;
snavi[ncount+2*nperdim] += dbztmp*ztmp;
snavi[ncount+3*nperdim] += dbytmp*ztmp;
snavi[ncount+4*nperdim] += dbxtmp*ztmp;
snavi[ncount+5*nperdim] += dbxtmp*ytmp;
snavj[ncount] -= dbxtmp*x[j][0];
snavj[ncount+nperdim] -= dbytmp*x[j][1];
snavj[ncount+2*nperdim] -= dbztmp*x[j][2];
snavj[ncount+3*nperdim] -= dbytmp*x[j][2];
snavj[ncount+4*nperdim] -= dbxtmp*x[j][2];
snavj[ncount+5*nperdim] -= dbxtmp*x[j][1];
ncount++;
// upper-triangular elements of quadratic matrix
for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++) {
double dbxtmp = bi*snaptr->dblist[jcoeff][0]
+ bix*snaptr->blist[jcoeff];
double dbytmp = bi*snaptr->dblist[jcoeff][1]
+ biy*snaptr->blist[jcoeff];
double dbztmp = bi*snaptr->dblist[jcoeff][2]
+ biz*snaptr->blist[jcoeff];
snavi[ncount] += dbxtmp*xtmp;
snavi[ncount+nperdim] += dbytmp*ytmp;
snavi[ncount+2*nperdim] += dbztmp*ztmp;
snavi[ncount+3*nperdim] += dbytmp*ztmp;
snavi[ncount+4*nperdim] += dbxtmp*ztmp;
snavi[ncount+5*nperdim] += dbxtmp*ytmp;
snavj[ncount] -= dbxtmp*x[j][0];
snavj[ncount+nperdim] -= dbytmp*x[j][1];
snavj[ncount+2*nperdim] -= dbztmp*x[j][2];
snavj[ncount+3*nperdim] -= dbytmp*x[j][2];
snavj[ncount+4*nperdim] -= dbxtmp*x[j][2];
snavj[ncount+5*nperdim] -= dbxtmp*x[j][1];
ncount++;
}
}
}
}
}
}
// communicate snav contributions between neighbor procs
comm->reverse_comm_compute(this);
}
/* ---------------------------------------------------------------------- */
int ComputeSNAVAtom::pack_reverse_comm(int n, int first, double *buf)
{
int i,m,last,icoeff;
m = 0;
last = first + n;
for (i = first; i < last; i++)
for (icoeff = 0; icoeff < size_peratom_cols; icoeff++)
buf[m++] = snav[i][icoeff];
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeSNAVAtom::unpack_reverse_comm(int n, int *list, double *buf)
{
int i,j,m,icoeff;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
for (icoeff = 0; icoeff < size_peratom_cols; icoeff++)
snav[j][icoeff] += buf[m++];
}
}
/* ----------------------------------------------------------------------
memory usage
------------------------------------------------------------------------- */
double ComputeSNAVAtom::memory_usage()
{
double bytes = (double)nmax*size_peratom_cols * sizeof(double); // snav
bytes += snaptr->memory_usage(); // SNA object
return bytes;
}