Changes to MLIAP python
- update lammps python package to use setuptools - refactor MLIAP classes into lammps python package lammps.mliap package - change TorchWrapper to use dtype and device as arguments - turn activation of mliappy into functions (was a class) - add a check to see if python interpreter is compatible with python lib calls internal to lammps mliap_model_python_couple.pyx: - load models ending in '.pt' or '.pth' with pytorch rather than pickle
This commit is contained in:
@ -84,6 +84,16 @@ for the :doc:`pair_style snap <pair_snap>` coefficient file.
|
||||
Specifically, the line containing the element weight and radius is omitted,
|
||||
since these are handled by the *descriptor*.
|
||||
|
||||
Notes on mliappy models:
|
||||
When the *model* keyword is *mliappy*, the filename should end in '.pt',
|
||||
'.pth' for pytorch models, or be a pickle file. To load a model from
|
||||
memory (i.e. an existing python object), specify the filename as
|
||||
"LATER", and then call `lammps.mliap.load_model(model)` from python
|
||||
before using the pair style. When using lammps via the library mode, you will need to call
|
||||
`lammps.mliappy.activate_mliappy(lmp)` on the active lammps object
|
||||
before the pair style is defined. This call locates and loads the mliap-specific
|
||||
python module that is built into lammps.
|
||||
|
||||
The *descriptor* keyword is followed by a descriptor style, and additional arguments.
|
||||
Currently the only descriptor style is *sna*, indicating the bispectrum component
|
||||
descriptors used by the Spectral Neighbor Analysis Potential (SNAP) potentials of
|
||||
|
||||
@ -11,7 +11,7 @@ variable zblz equal 73
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model mliappy Ta06A.mliap.pytorch.model.pkl &
|
||||
mliap model mliappy Ta06A.mliap.pytorch.model.pt &
|
||||
descriptor sna Ta06A.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz} ${zblz}
|
||||
pair_coeff * * mliap Ta
|
||||
|
||||
@ -1,13 +1,9 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
import torch
|
||||
import pickle
|
||||
import os
|
||||
import shutil
|
||||
|
||||
shutil.copyfile('../../src/MLIAP/mliappy_pytorch.py','./mliappy_pytorch.py')
|
||||
|
||||
import mliappy_pytorch
|
||||
# torch.nn.modules useful for defining a MLIAPPY model.
|
||||
from lammps.mliap.pytorch import TorchWrapper, IgnoreElems
|
||||
|
||||
# Read coefficients
|
||||
coeffs = np.genfromtxt("Ta06A.mliap.model",skip_header=6)
|
||||
@ -21,13 +17,10 @@ with torch.autograd.no_grad():
|
||||
lin.weight.set_(torch.from_numpy(weights).unsqueeze(0))
|
||||
lin.bias.set_(torch.as_tensor(bias,dtype=torch.float64).unsqueeze(0))
|
||||
|
||||
# Wrap the pytorch model for usage with mliappy energy model
|
||||
model = mliappy_pytorch.IgnoreElems(lin)
|
||||
# Wrap the pytorch model for usage with mliappy coupling.
|
||||
model = IgnoreElems(lin) # The linear module does not use the types.
|
||||
n_descriptors = lin.weight.shape[1]
|
||||
n_params = mliappy_pytorch.calc_n_params(model)
|
||||
n_types = 1
|
||||
linked_model = mliappy_pytorch.TorchWrapper64(model,n_descriptors=n_descriptors,n_elements=n_types)
|
||||
n_elements = 1
|
||||
linked_model = TorchWrapper(model,n_descriptors=n_descriptors,n_elements=n_elements)
|
||||
|
||||
# Save the result.
|
||||
with open("Ta06A.mliap.pytorch.model.pkl",'wb') as pfile:
|
||||
pickle.dump(linked_model,pfile)
|
||||
torch.save(linked_model,"Ta06A.mliap.pytorch.model.pt")
|
||||
|
||||
@ -81,26 +81,24 @@ import lammps
|
||||
|
||||
lmp = lammps.lammps(cmdargs=['-echo','both'])
|
||||
|
||||
# this commmand must be run before the MLIAP object is declared in lammps.
|
||||
# Before defining the pair style, one must do the following:
|
||||
import lammps.mliap
|
||||
lammps.mliap.activate_mliappy(lmp)
|
||||
# Otherwise, when running lammps in library mode,
|
||||
# you will get an error:
|
||||
# "ERROR: Loading MLIAPPY coupling module failure."
|
||||
|
||||
lmp.mliappy.activate()
|
||||
|
||||
# setup the simulation and declare an empty model
|
||||
# Setup the simulation and declare an empty model
|
||||
# by specifying model filename as "LATER"
|
||||
|
||||
lmp.commands_string(before_loading)
|
||||
|
||||
# define the PyTorch model by loading a pkl file.
|
||||
# this could also be done in other ways.
|
||||
# Define the model however you like. In this example
|
||||
# we load it from disk:
|
||||
import torch
|
||||
model = torch.load('Ta06A.mliap.pytorch.model.pt')
|
||||
|
||||
import pickle
|
||||
with open('Ta06A.mliap.pytorch.model.pkl','rb') as pfile:
|
||||
model = pickle.load(pfile)
|
||||
|
||||
# connect the PyTorch model to the mliap pair style
|
||||
|
||||
lmp.mliappy.load_model(model)
|
||||
# Connect the PyTorch model to the mliap pair style.
|
||||
lammps.mliap.load_model(model)
|
||||
|
||||
# run the simulation with the mliap pair style
|
||||
|
||||
lmp.commands_string(after_loading)
|
||||
|
||||
@ -95,22 +95,26 @@ print("Installing LAMMPS Python package version %s into site-packages folder" %
|
||||
# we need to switch to the folder of the python package
|
||||
os.chdir(os.path.dirname(args.package))
|
||||
|
||||
from distutils.core import setup
|
||||
from setuptools import setup, find_packages
|
||||
from distutils.sysconfig import get_python_lib
|
||||
import site
|
||||
tryuser=False
|
||||
|
||||
#Arguments common to global or user install -- everything but data_files
|
||||
setup_kwargs= dict(name="lammps",
|
||||
version=verstr,
|
||||
author="Steve Plimpton",
|
||||
author_email="sjplimp@sandia.gov",
|
||||
url="https://lammps.sandia.gov",
|
||||
description="LAMMPS Molecular Dynamics Python package",
|
||||
license="GPL",
|
||||
packages=find_packages(),
|
||||
)
|
||||
|
||||
tryuser=False
|
||||
try:
|
||||
sys.argv = ["setup.py","install"] # as if had run "python setup.py install"
|
||||
setup(name = "lammps",
|
||||
version = verstr,
|
||||
author = "Steve Plimpton",
|
||||
author_email = "sjplimp@sandia.gov",
|
||||
url = "https://lammps.sandia.gov",
|
||||
description = "LAMMPS Molecular Dynamics Python package",
|
||||
license = "GPL",
|
||||
packages=['lammps'],
|
||||
data_files = [(os.path.join(get_python_lib(), 'lammps'), [args.lib])])
|
||||
setup_kwargs['data_files']=[(os.path.join(get_python_lib(), 'lammps'), [args.lib])]
|
||||
setup(**setup_kwargs)
|
||||
except:
|
||||
tryuser=True
|
||||
print ("Installation into global site-packages folder failed.\nTrying user folder %s now." % site.USER_SITE)
|
||||
@ -118,14 +122,7 @@ except:
|
||||
if tryuser:
|
||||
try:
|
||||
sys.argv = ["setup.py","install","--user"] # as if had run "python setup.py install --user"
|
||||
setup(name = "lammps",
|
||||
version = verstr,
|
||||
author = "Steve Plimpton",
|
||||
author_email = "sjplimp@sandia.gov",
|
||||
url = "https://lammps.sandia.gov",
|
||||
description = "LAMMPS Molecular Dynamics Python package",
|
||||
license = "GPL",
|
||||
packages=['lammps'],
|
||||
data_files = [(os.path.join(site.USER_SITE, 'lammps'), [args.lib])])
|
||||
setup_kwargs['data_files']=[(os.path.join(site.USER_SITE, 'lammps'), [args.lib])]
|
||||
setup(**setup_kwargs)
|
||||
except:
|
||||
print("Installation into user site package folder failed.")
|
||||
|
||||
@ -379,8 +379,6 @@ class lammps(object):
|
||||
self.lib.lammps_set_fix_external_callback.argtypes = [c_void_p, c_char_p, self.FIX_EXTERNAL_CALLBACK_FUNC, py_object]
|
||||
self.lib.lammps_set_fix_external_callback.restype = None
|
||||
|
||||
self.mliappy = MLIAPPY(self)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
# shut-down LAMMPS instance
|
||||
|
||||
@ -1673,41 +1671,4 @@ class lammps(object):
|
||||
idx = self.lib.lammps_find_compute_neighlist(self.lmp, computeid, request)
|
||||
return idx
|
||||
|
||||
class MLIAPPY():
|
||||
def __init__(self,lammps):
|
||||
self._module = None
|
||||
self.lammps = lammps
|
||||
|
||||
@property
|
||||
def module(self):
|
||||
if self._module:
|
||||
return self._module
|
||||
|
||||
try:
|
||||
# Begin Importlib magic to find the embedded python module
|
||||
# This is needed because the filename for liblammps does not
|
||||
# match the spec for normal python modules, wherein
|
||||
# file names match with PyInit function names.
|
||||
# Also, python normally doesn't look for extensions besides '.so'
|
||||
# We fix both of these problems by providing an explict
|
||||
# path to the extension module 'mliap_model_python_couple' in
|
||||
import sys
|
||||
import importlib.util
|
||||
import importlib.machinery
|
||||
|
||||
path = self.lammps.lib._name
|
||||
loader = importlib.machinery.ExtensionFileLoader('mliap_model_python_couple',path)
|
||||
spec = importlib.util.spec_from_loader('mliap_model_python_couple',loader)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules['mliap_model_python_couple']=module
|
||||
spec.loader.exec_module(module)
|
||||
self._module = module
|
||||
# End Importlib magic to find the embedded python module
|
||||
except:
|
||||
raise ImportError("Could not load MLIAPPY coupling module")
|
||||
|
||||
def activate(self):
|
||||
self.module
|
||||
|
||||
def load_model(self,model):
|
||||
self.module.load_from_python(model)
|
||||
|
||||
13
python/lammps/mliap/__init__.py
Normal file
13
python/lammps/mliap/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
|
||||
# Check compatiblity of this build with the python shared library.
|
||||
# If this fails, lammps will segfault because its library will
|
||||
# try to improperly start up a new interpreter.
|
||||
import sysconfig
|
||||
import ctypes
|
||||
library = sysconfig.get_config_vars('INSTSONAME')[0]
|
||||
pylib = ctypes.CDLL(library)
|
||||
if not pylib.Py_IsInitialized():
|
||||
raise RuntimeError("This interpreter is not compatible with python-based mliap for LAMMPS.")
|
||||
del sysconfig, ctypes, library, pylib
|
||||
|
||||
from .loader import load_model, activate_mliappy
|
||||
52
python/lammps/mliap/loader.py
Normal file
52
python/lammps/mliap/loader.py
Normal file
@ -0,0 +1,52 @@
|
||||
# ----------------------------------------------------------------------
|
||||
# LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
# http://lammps.sandia.gov, Sandia National Laboratories
|
||||
# Steve Plimpton, sjplimp@sandia.gov
|
||||
#
|
||||
# Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
# certain rights in this software. This software is distributed under
|
||||
# the GNU General Public License.
|
||||
#
|
||||
# See the README file in the top-level LAMMPS directory.
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Contributing author: Nicholas Lubbers (LANL)
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
|
||||
import sys
|
||||
import importlib.util
|
||||
import importlib.machinery
|
||||
|
||||
def activate_mliappy(lmp):
|
||||
try:
|
||||
# Begin Importlib magic to find the embedded python module
|
||||
# This is needed because the filename for liblammps does not
|
||||
# match the spec for normal python modules, wherein
|
||||
# file names match with PyInit function names.
|
||||
# Also, python normally doesn't look for extensions besides '.so'
|
||||
# We fix both of these problems by providing an explict
|
||||
# path to the extension module 'mliap_model_python_couple' in
|
||||
|
||||
path = lmp.lib._name
|
||||
loader = importlib.machinery.ExtensionFileLoader('mliap_model_python_couple', path)
|
||||
spec = importlib.util.spec_from_loader('mliap_model_python_couple', loader)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules['mliap_model_python_couple'] = module
|
||||
spec.loader.exec_module(module)
|
||||
# End Importlib magic to find the embedded python module
|
||||
|
||||
except Exception as ee:
|
||||
raise ImportError("Could not load MLIAP python coupling module.") from ee
|
||||
|
||||
def load_model(model):
|
||||
try:
|
||||
import mliap_model_python_couple
|
||||
except ImportError as ie:
|
||||
raise ImportError("MLIAP python module must be activated before loading\n"
|
||||
"the pair style. Call lammps.mliap.activate_mliappy(lmp)."
|
||||
) from ie
|
||||
mliap_model_python_couple.load_from_python(model)
|
||||
|
||||
@ -22,20 +22,28 @@ def calc_n_params(model):
|
||||
return sum(p.nelement() for p in model.parameters())
|
||||
|
||||
class TorchWrapper(torch.nn.Module):
|
||||
def __init__(self, model,n_descriptors,n_elements,n_params=None):
|
||||
def __init__(self, model,n_descriptors,n_elements,n_params=None,device=None,dtype=torch.float64):
|
||||
super().__init__()
|
||||
|
||||
self.model = model
|
||||
self.model.to(self.dtype)
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
|
||||
# Put model on device and convert to dtype
|
||||
self.to(self.dtype)
|
||||
self.to(self.device)
|
||||
|
||||
if n_params is None:
|
||||
n_params = calc_n_params(model)
|
||||
|
||||
self.n_params = n_params
|
||||
self.n_descriptors = n_descriptors
|
||||
self.n_elements = n_elements
|
||||
|
||||
def __call__(self, elems, bispectrum, beta, energy):
|
||||
def forward(self, elems, bispectrum, beta, energy):
|
||||
|
||||
bispectrum = torch.from_numpy(bispectrum).to(self.dtype).requires_grad_(True)
|
||||
elems = torch.from_numpy(elems).to(torch.long) - 1
|
||||
bispectrum = torch.from_numpy(bispectrum).to(dtype=self.dtype, device=self.device).requires_grad_(True)
|
||||
elems = torch.from_numpy(elems).to(dtype=torch.long, device=self.device) - 1
|
||||
|
||||
with torch.autograd.enable_grad():
|
||||
|
||||
@ -48,12 +56,6 @@ class TorchWrapper(torch.nn.Module):
|
||||
beta[:] = beta_nn.detach().cpu().numpy().astype(np.float64)
|
||||
energy[:] = energy_nn.detach().cpu().numpy().astype(np.float64)
|
||||
|
||||
class TorchWrapper32(TorchWrapper):
|
||||
dtype = torch.float32
|
||||
|
||||
class TorchWrapper64(TorchWrapper):
|
||||
dtype = torch.float64
|
||||
|
||||
class IgnoreElems(torch.nn.Module):
|
||||
def __init__(self,subnet):
|
||||
super().__init__()
|
||||
@ -1,6 +1,6 @@
|
||||
# this only installs the LAMMPS python package
|
||||
# it assumes the LAMMPS shared library is already installed
|
||||
from distutils.core import setup
|
||||
from setuptools import setup, find_packages
|
||||
import os
|
||||
|
||||
LAMMPS_PYTHON_DIR = os.path.dirname(os.path.realpath(__file__))
|
||||
@ -22,5 +22,5 @@ setup(
|
||||
url = "https://lammps.sandia.gov",
|
||||
description = "LAMMPS Molecular Dynamics Python package",
|
||||
license = "GPL",
|
||||
packages=["lammps"]
|
||||
packages=find_packages(),
|
||||
)
|
||||
|
||||
@ -46,7 +46,7 @@ cdef object c_id(MLIAPModelPython * c_model):
|
||||
"""
|
||||
return int(<uintptr_t> c_model)
|
||||
|
||||
cdef object retrieve(MLIAPModelPython * c_model):
|
||||
cdef object retrieve(MLIAPModelPython * c_model) with gil:
|
||||
try:
|
||||
model = LOADED_MODELS[c_id(c_model)]
|
||||
except KeyError as ke:
|
||||
@ -61,8 +61,12 @@ cdef public int MLIAPPY_load_model(MLIAPModelPython * c_model, char* fname) with
|
||||
model = None
|
||||
returnval = 0
|
||||
else:
|
||||
with open(str_fname,'rb') as pfile:
|
||||
model = pickle.load(pfile)
|
||||
if str_fname.endswith(".pt") or str_fname.endswith('.pth'):
|
||||
import torch
|
||||
model = torch.load(str_fname)
|
||||
else:
|
||||
with open(str_fname,'rb') as pfile:
|
||||
model = pickle.load(pfile)
|
||||
returnval = 1
|
||||
LOADED_MODELS[c_id(c_model)] = model
|
||||
return returnval
|
||||
|
||||
Reference in New Issue
Block a user