Merge pull request #1421 from julient31/gneb_spin
Adding a GNEB implementation in the SPIN package
This commit is contained in:
@ -83,6 +83,7 @@ An alphabetic list of all general LAMMPS commands.
|
||||
"molecule"_molecule.html,
|
||||
"ndx2group"_group2ndx.html,
|
||||
"neb"_neb.html,
|
||||
"neb_spin"_neb_spin.html,
|
||||
"neigh_modify"_neigh_modify.html,
|
||||
"neighbor"_neighbor.html,
|
||||
"newton"_newton.html,
|
||||
|
||||
@ -116,6 +116,7 @@ Actions:
|
||||
|
||||
"minimize"_minimize.html,
|
||||
"neb"_neb.html,
|
||||
"neb_spin"_neb_spin.html,
|
||||
"prd"_prd.html,
|
||||
"rerun"_rerun.html,
|
||||
"run"_run.html,
|
||||
|
||||
@ -107,6 +107,7 @@ OPT.
|
||||
"mvv/edpd"_fix_mvv_dpd.html,
|
||||
"mvv/tdpd"_fix_mvv_dpd.html,
|
||||
"neb"_fix_neb.html,
|
||||
"neb_spin"_fix_neb_spin.html,
|
||||
"nph (ko)"_fix_nh.html,
|
||||
"nph/asphere (o)"_fix_nph_asphere.html,
|
||||
"nph/body"_fix_nph_body.html,
|
||||
|
||||
BIN
doc/src/Eqs/neb_spin_angle.jpg
Normal file
BIN
doc/src/Eqs/neb_spin_angle.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 9.4 KiB |
15
doc/src/Eqs/neb_spin_angle.tex
Normal file
15
doc/src/Eqs/neb_spin_angle.tex
Normal file
@ -0,0 +1,15 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\omega_i^{\nu} =
|
||||
(\nu - 1) \Delta \omega_i
|
||||
{\rm ~~and~~} \Delta \omega_i = \frac{\omega_i}{Q-1}
|
||||
, \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/neb_spin_k.jpg
Normal file
BIN
doc/src/Eqs/neb_spin_k.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 8.2 KiB |
16
doc/src/Eqs/neb_spin_k.tex
Normal file
16
doc/src/Eqs/neb_spin_k.tex
Normal file
@ -0,0 +1,16 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\vec{k}_i =
|
||||
\frac{\vec{m}_i^I \times \vec{m}_i^F}{\left|\vec{m}_i^I
|
||||
\times \vec{m}_i^F\right|}
|
||||
%&{\rm ~if~}& \vec{m}_i^I \times \vec{m}_i^F
|
||||
, \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/neb_spin_rodrigues_formula.jpg
Normal file
BIN
doc/src/Eqs/neb_spin_rodrigues_formula.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 20 KiB |
16
doc/src/Eqs/neb_spin_rodrigues_formula.tex
Normal file
16
doc/src/Eqs/neb_spin_rodrigues_formula.tex
Normal file
@ -0,0 +1,16 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\vec{m}_i^{\nu} = \vec{m}_i^{I} \cos(\omega_i^{\nu})
|
||||
+ (\vec{k}_i \times \vec{m}_i^{I}) \sin(\omega_i^{\nu})
|
||||
+ (1.0-\cos(\omega_i^{\nu})) \vec{k}_i (\vec{k}_i\cdot
|
||||
\vec{m}_i^{I})
|
||||
, \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
@ -17,6 +17,7 @@ periodically.
|
||||
These are the relevant commands:
|
||||
|
||||
"neb"_neb.html for nudged elastic band calculations
|
||||
"neb_spin"_neb_spin.html for magnetic nudged elastic band calculations
|
||||
"prd"_prd.html for parallel replica dynamics
|
||||
"tad"_tad.html for temperature accelerated dynamics
|
||||
"temper"_temper.html for parallel tempering
|
||||
|
||||
@ -918,6 +918,7 @@ src/SPIN: filenames -> commands
|
||||
"fix nve/spin"_fix_nve_spin.html
|
||||
"fix precession/spin"_fix_precession_spin.html
|
||||
"compute spin"_compute_spin.html
|
||||
"neb/spin"_neb_spin.html
|
||||
examples/SPIN :ul
|
||||
|
||||
:line
|
||||
|
||||
@ -67,6 +67,7 @@ Commands :h1
|
||||
minimize
|
||||
molecule
|
||||
neb
|
||||
neb_spin
|
||||
neigh_modify
|
||||
neighbor
|
||||
newton
|
||||
|
||||
@ -97,7 +97,7 @@ Note that in this case the specified {Kspring} is in force/distance
|
||||
units.
|
||||
|
||||
With a value of {ideal}, the spring force is computed as suggested in
|
||||
"(WeinenE)"_#WeinenE :
|
||||
"(WeinanE)"_#WeinanE :
|
||||
|
||||
Fnudge_parallel = -{Kspring} * (RD-RDideal) / (2 * meanDist) :pre
|
||||
|
||||
@ -224,8 +224,8 @@ specified (no inter-replica force on the end replicas).
|
||||
[(Henkelman2)] Henkelman, Uberuaga, Jonsson, J Chem Phys, 113,
|
||||
9901-9904 (2000).
|
||||
|
||||
:link(WeinenE)
|
||||
[(WeinenE)] E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002).
|
||||
:link(WeinanE)
|
||||
[(WeinanE)] E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002).
|
||||
|
||||
:link(Jonsson)
|
||||
[(Jonsson)] Jonsson, Mills and Jacobsen, in Classical and Quantum
|
||||
|
||||
76
doc/src/fix_neb_spin.txt
Normal file
76
doc/src/fix_neb_spin.txt
Normal file
@ -0,0 +1,76 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
fix neb/spin command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID neb/spin Kspring :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
neb/spin = style name of this fix command :l
|
||||
Kspring = spring constant for parallel nudging force
|
||||
(force/distance units or force units, see parallel keyword) :pre,ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 active neb/spin 1.0
|
||||
|
||||
[Description:]
|
||||
|
||||
Add nudging forces to spins in the group for a multi-replica
|
||||
simulation run via the "neb/spin"_neb_spin.html command to perform a
|
||||
geodesic nudged elastic band (GNEB) calculation for finding the
|
||||
transition state.
|
||||
Hi-level explanations of GNEB are given with the
|
||||
"neb/spin"_neb_spin.html command and on the
|
||||
"Howto replica"_Howto_replica.html doc page.
|
||||
The fix neb/spin command must be used with the "neb/spin" command and
|
||||
defines how inter-replica nudging forces are computed. A GNEB
|
||||
calculation is divided in two stages. In the first stage n replicas
|
||||
are relaxed toward a MEP until convergence. In the second stage, the
|
||||
climbing image scheme is enabled, so that the replica having the highest
|
||||
energy relaxes toward the saddle point (i.e. the point of highest energy
|
||||
along the MEP), and a second relaxation is performed.
|
||||
|
||||
The nudging forces are calculated as explained in
|
||||
"(BessarabB)"_#BessarabB).
|
||||
See this reference for more explanation about their expression.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
No information about this fix is written to "binary restart
|
||||
files"_restart.html. None of the "fix_modify"_fix_modify.html options
|
||||
are relevant to this fix. No global or per-atom quantities are stored
|
||||
by this fix for access by various "output commands"_Howto_output.html.
|
||||
No parameter of this fix can be used with the {start/stop} keywords of
|
||||
the "run"_run.html command.
|
||||
|
||||
The forces due to this fix are imposed during an energy minimization,
|
||||
as invoked by the "minimize"_minimize.html command via the
|
||||
"neb/spin"_neb_spin.html command.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This command can only be used if LAMMPS was built with the SPIN
|
||||
package. See the "Build package"_Build_package.html doc
|
||||
page for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"neb_spin"_neb_spin.html
|
||||
|
||||
[Default:]
|
||||
|
||||
none
|
||||
|
||||
:line
|
||||
|
||||
:link(BessarabB)
|
||||
[(BessarabB)] Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196,
|
||||
335-347 (2015).
|
||||
@ -31,7 +31,7 @@ fix 1 all precession/spin zeeman 0.1 0.0 0.0 1.0 anisotropy 0.001 0.0 0.0 1.0 :p
|
||||
|
||||
[Description:]
|
||||
|
||||
Impose a force torque to each magnetic spin in the group.
|
||||
This fix applies a precession torque to each magnetic spin in the group.
|
||||
|
||||
Style {zeeman} is used for the simulation of the interaction
|
||||
between the magnetic spins in the defined group and an external
|
||||
|
||||
@ -84,6 +84,7 @@ Fixes :h1
|
||||
fix_msst
|
||||
fix_mvv_dpd
|
||||
fix_neb
|
||||
fix_neb_spin
|
||||
fix_nh
|
||||
fix_nh_eff
|
||||
fix_nh_uef
|
||||
|
||||
@ -179,6 +179,7 @@ min_spin.html
|
||||
minimize.html
|
||||
molecule.html
|
||||
neb.html
|
||||
neb_spin.html
|
||||
neigh_modify.html
|
||||
neighbor.html
|
||||
newton.html
|
||||
@ -309,6 +310,7 @@ fix_mscg.html
|
||||
fix_msst.html
|
||||
fix_mvv_dpd.html
|
||||
fix_neb.html
|
||||
fix_neb_spin.html
|
||||
fix_nh.html
|
||||
fix_nh_eff.html
|
||||
fix_nph_asphere.html
|
||||
|
||||
375
doc/src/neb_spin.txt
Normal file
375
doc/src/neb_spin.txt
Normal file
@ -0,0 +1,375 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
neb command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
neb/spin etol ttol N1 N2 Nevery file-style arg keyword :pre
|
||||
|
||||
etol = stopping tolerance for energy (energy units) :ulb,l
|
||||
ttol = stopping tolerance for torque ( units) :l
|
||||
N1 = max # of iterations (timesteps) to run initial NEB :l
|
||||
N2 = max # of iterations (timesteps) to run barrier-climbing NEB :l
|
||||
Nevery = print replica energies and reaction coordinates every this many timesteps :l
|
||||
file-style = {final} or {each} or {none} :l
|
||||
{final} arg = filename
|
||||
filename = file with initial coords for final replica
|
||||
coords for intermediate replicas are linearly interpolated
|
||||
between first and last replica
|
||||
{each} arg = filename
|
||||
filename = unique filename for each replica (except first)
|
||||
with its initial coords
|
||||
{none} arg = no argument all replicas assumed to already have
|
||||
their initial coords :pre
|
||||
keyword = {verbose}
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
neb/spin 0.1 0.0 1000 500 50 final coords.final
|
||||
neb/spin 0.0 0.001 1000 500 50 each coords.initial.$i
|
||||
neb/spin 0.0 0.001 1000 500 50 none verbose :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Perform a geodesic nudged elastic band (GNEB) calculation using multiple
|
||||
replicas of a system. Two or more replicas must be used; the first
|
||||
and last are the end points of the transition path.
|
||||
|
||||
GNEB is a method for finding both the spin configurations and height
|
||||
of the energy barrier associated with a transition state, e.g.
|
||||
spins to perform a collective rotation from one energy basin to
|
||||
another.
|
||||
The implementation in LAMMPS follows the discussion in the
|
||||
following paper: "(BessarabA)"_#BessarabA.
|
||||
|
||||
Each replica runs on a partition of one or more processors. Processor
|
||||
partitions are defined at run-time using the "-partition command-line
|
||||
switch"_Run_options.html. Note that if you have MPI installed, you
|
||||
can run a multi-replica simulation with more replicas (partitions)
|
||||
than you have physical processors, e.g you can run a 10-replica
|
||||
simulation on just one or two processors. You will simply not get the
|
||||
performance speed-up you would see with one or more physical
|
||||
processors per replica. See the "Howto replica"_Howto_replica.html
|
||||
doc page for further discussion.
|
||||
|
||||
NOTE: As explained below, a GNEB calculation performs a damped dynamics
|
||||
minimization across all the replicas. The "spin"_min_spin.html
|
||||
style minimizer has to be defined in your input script.
|
||||
|
||||
When a GNEB calculation is performed, it is assumed that each replica
|
||||
is running the same system, though LAMMPS does not check for this.
|
||||
I.e. the simulation domain, the number of magnetic atoms, the
|
||||
interaction potentials, and the starting configuration when the neb
|
||||
command is issued should be the same for every replica.
|
||||
|
||||
In a GNEB calculation each replica is connected to other replicas by
|
||||
inter-replica nudging forces. These forces are imposed by the "fix
|
||||
neb/spin"_fix_neb_spin.html command, which must be used in conjunction
|
||||
with the neb command.
|
||||
The group used to define the fix neb/spin command defines the
|
||||
GNEB magnetic atoms which are the only ones that inter-replica springs
|
||||
are applied to.
|
||||
If the group does not include all magnetic atoms, then non-GNEB
|
||||
magnetic atoms have no inter-replica springs and the torques they feel
|
||||
and their precession motion is computed in the usual way due only
|
||||
to other magnetic atoms within their replica.
|
||||
Conceptually, the non-GNEB atoms provide a background force field for
|
||||
the GNEB atoms.
|
||||
Their magnetic spins can be allowed to evolve during the GNEB
|
||||
minimization procedure.
|
||||
|
||||
The initial spin configuration for each of the replicas can be
|
||||
specified in different manners via the {file-style} setting, as
|
||||
discussed below. Only atomic spins whose initial coordinates should
|
||||
differ from the current configuration need to be specified.
|
||||
|
||||
Conceptually, the initial and final configurations for the first
|
||||
replica should be states on either side of an energy barrier.
|
||||
|
||||
As explained below, the initial configurations of intermediate
|
||||
replicas can be spin coordinates interpolated in a linear fashion
|
||||
between the first and last replicas. This is often adequate for
|
||||
simple transitions. For more complex transitions, it may lead to slow
|
||||
convergence or even bad results if the minimum energy path (MEP, see
|
||||
below) of states over the barrier cannot be correctly converged to
|
||||
from such an initial path. In this case, you will want to generate
|
||||
initial states for the intermediate replicas that are geometrically
|
||||
closer to the MEP and read them in.
|
||||
|
||||
:line
|
||||
|
||||
For a {file-style} setting of {final}, a filename is specified which
|
||||
contains atomic and spin coordinates for zero or more atoms, in the
|
||||
format described below.
|
||||
For each atom that appears in the file, the new coordinates are
|
||||
assigned to that atom in the final replica. Each intermediate replica
|
||||
also assigns a new spin to that atom in an interpolated manner.
|
||||
This is done by using the current direction of the spin at the starting
|
||||
point and the read-in direction as the final point.
|
||||
The "angular distance" between them is calculated, and the new direction
|
||||
is assigned to be a fraction of the angular distance.
|
||||
|
||||
NOTE: The "angular distance" between the starting and final point is
|
||||
evaluated in the geodesic sense, as described in
|
||||
"(BessarabA)"_#BessarabA.
|
||||
|
||||
NOTE: The angular interpolation between the starting and final point
|
||||
is achieved using Rodrigues formula:
|
||||
|
||||
:c,image(Eqs/neb_spin_rodrigues_formula.jpg)
|
||||
|
||||
where m_i^I is the initial spin configuration for the spin i,
|
||||
omega_i^nu is a rotation angle defined as:
|
||||
|
||||
:c,image(Eqs/neb_spin_angle.jpg)
|
||||
|
||||
with nu the image number, Q the total number of images, and
|
||||
omega_i the total rotation between the initial and final spins.
|
||||
k_i defines a rotation axis such as:
|
||||
|
||||
:c,image(Eqs/neb_spin_k.jpg)
|
||||
|
||||
if the initial and final spins are not aligned.
|
||||
If the initial and final spins are aligned, then their cross
|
||||
product is null, and the expression above does not apply.
|
||||
If they point toward the same direction, the intermediate images
|
||||
conserve the same orientation.
|
||||
If the initial and final spins are aligned, but point toward
|
||||
opposite directions, an arbitrary rotation vector belonging to
|
||||
the plane perpendicular to initial and final spins is chosen.
|
||||
In this case, a warning message is displayed.
|
||||
|
||||
For a {file-style} setting of {each}, a filename is specified which is
|
||||
assumed to be unique to each replica.
|
||||
See the "neb"_neb.html documentation page for more information about this
|
||||
option.
|
||||
|
||||
For a {file-style} setting of {none}, no filename is specified. Each
|
||||
replica is assumed to already be in its initial configuration at the
|
||||
time the neb command is issued. This allows each replica to define
|
||||
its own configuration by reading a replica-specific data or restart or
|
||||
dump file, via the "read_data"_read_data.html,
|
||||
"read_restart"_read_restart.html, or "read_dump"_read_dump.html
|
||||
commands. The replica-specific names of these files can be specified
|
||||
as in the discussion above for the {each} file-style. Also see the
|
||||
section below for how a NEB calculation can produce restart files, so
|
||||
that a long calculation can be restarted if needed.
|
||||
|
||||
NOTE: None of the {file-style} settings change the initial
|
||||
configuration of any atom in the first replica. The first replica
|
||||
must thus be in the correct initial configuration at the time the neb
|
||||
command is issued.
|
||||
|
||||
:line
|
||||
|
||||
A NEB calculation proceeds in two stages, each of which is a
|
||||
minimization procedure, performed via damped dynamics. To enable
|
||||
this, you must first define a damped spin dynamics
|
||||
"min_style"_min_style.html, using the {spin} style (see
|
||||
"min_spin"_min_spin.html for more information).
|
||||
The other styles cannot be used, since they relax the lattice
|
||||
degrees of freedom instead of the spins.
|
||||
|
||||
The minimizer tolerances for energy and force are set by {etol} and
|
||||
{ttol}, the same as for the "minimize"_minimize.html command.
|
||||
|
||||
A non-zero {etol} means that the GNEB calculation will terminate if the
|
||||
energy criterion is met by every replica. The energies being compared
|
||||
to {etol} do not include any contribution from the inter-replica
|
||||
nudging forces, since these are non-conservative. A non-zero {ttol}
|
||||
means that the GNEB calculation will terminate if the torque criterion
|
||||
is met by every replica. The torques being compared to {ttol} include
|
||||
the inter-replica nudging forces.
|
||||
|
||||
The maximum number of iterations in each stage is set by {N1} and
|
||||
{N2}. These are effectively timestep counts since each iteration of
|
||||
damped dynamics is like a single timestep in a dynamics
|
||||
"run"_run.html. During both stages, the potential energy of each
|
||||
replica and its normalized distance along the reaction path (reaction
|
||||
coordinate RD) will be printed to the screen and log file every
|
||||
{Nevery} timesteps. The RD is 0 and 1 for the first and last replica.
|
||||
For intermediate replicas, it is the cumulative angular distance
|
||||
(normalized by the total cumulative angular distance) between adjacent
|
||||
replicas, where "distance" is defined as the length of the 3N-vector of
|
||||
the geodesic distances in spin coordinates, with N the number of
|
||||
GNEB spins involved (see equation (13) in "(BessarabA)"_#BessarabA).
|
||||
These outputs allow you to monitor NEB's progress in
|
||||
finding a good energy barrier. {N1} and {N2} must both be multiples
|
||||
of {Nevery}.
|
||||
|
||||
In the first stage of GNEB, the set of replicas should converge toward
|
||||
a minimum energy path (MEP) of conformational states that transition
|
||||
over a barrier. The MEP for a transition is defined as a sequence of
|
||||
3N-dimensional spin states, each of which has a potential energy
|
||||
gradient parallel to the MEP itself.
|
||||
The configuration of highest energy along a MEP corresponds to a saddle
|
||||
point. The replica states will also be roughly equally spaced along
|
||||
the MEP due to the inter-replica nudging force added by the
|
||||
"fix neb"_fix_neb.html command.
|
||||
|
||||
In the second stage of GNEB, the replica with the highest energy is
|
||||
selected and the inter-replica forces on it are converted to a force
|
||||
that drives its spin coordinates to the top or saddle point of the
|
||||
barrier, via the barrier-climbing calculation described in
|
||||
"(BessarabA)"_#BessarabA. As before, the other replicas rearrange
|
||||
themselves along the MEP so as to be roughly equally spaced.
|
||||
|
||||
When both stages are complete, if the GNEB calculation was successful,
|
||||
the configurations of the replicas should be along (close to) the MEP
|
||||
and the replica with the highest energy should be a spin
|
||||
configuration at (close to) the saddle point of the transition. The
|
||||
potential energies for the set of replicas represents the energy
|
||||
profile of the transition along the MEP.
|
||||
|
||||
:line
|
||||
|
||||
An atom map must be defined which it is not by default for "atom_style
|
||||
atomic"_atom_style.html problems. The "atom_modify
|
||||
map"_atom_modify.html command can be used to do this.
|
||||
|
||||
An initial value can be defined for the timestep. Although, the {spin}
|
||||
minimization algorithm is an adaptive timestep methodology, so that
|
||||
this timestep is likely to evolve during the calculation.
|
||||
|
||||
The minimizers in LAMMPS operate on all spins in your system, even
|
||||
non-GNEB atoms, as defined above.
|
||||
|
||||
:line
|
||||
|
||||
Each file read by the neb/spin command containing spin coordinates used
|
||||
to initialize one or more replicas must be formatted as follows.
|
||||
|
||||
The file can be ASCII text or a gzipped text file (detected by a .gz
|
||||
suffix). The file can contain initial blank lines or comment lines
|
||||
starting with "#" which are ignored. The first non-blank, non-comment
|
||||
line should list N = the number of lines to follow. The N successive
|
||||
lines contain the following information:
|
||||
|
||||
ID1 g1 x1 y1 z1 sx1 sy1 sz1
|
||||
ID2 g2 x2 y2 z2 sx2 sy2 sz2
|
||||
...
|
||||
IDN gN yN zN sxN syN szN :pre
|
||||
|
||||
The fields are the atom ID, the norm of the associated magnetic spin,
|
||||
followed by the {x,y,z} coordinates and the {sx,sy,sz} spin coordinates.
|
||||
The lines can be listed in any order. Additional trailing information on
|
||||
the line is OK, such as a comment.
|
||||
|
||||
Note that for a typical GNEB calculation you do not need to specify
|
||||
initial spin coordinates for very many atoms to produce differing starting
|
||||
and final replicas whose intermediate replicas will converge to the
|
||||
energy barrier. Typically only new spin coordinates for atoms
|
||||
geometrically near the barrier need be specified.
|
||||
|
||||
Also note there is no requirement that the atoms in the file
|
||||
correspond to the GNEB atoms in the group defined by the "fix
|
||||
neb"_fix_neb.html command. Not every GNEB atom need be in the file,
|
||||
and non-GNEB atoms can be listed in the file.
|
||||
|
||||
:line
|
||||
|
||||
Four kinds of output can be generated during a GNEB calculation: energy
|
||||
barrier statistics, thermodynamic output by each replica, dump files,
|
||||
and restart files.
|
||||
|
||||
When running with multiple partitions (each of which is a replica in
|
||||
this case), the print-out to the screen and master log.lammps file
|
||||
contains a line of output, printed once every {Nevery} timesteps. It
|
||||
contains the timestep, the maximum torque per replica, the maximum
|
||||
torque per atom (in any replica), potential gradients in the initial,
|
||||
final, and climbing replicas, the forward and backward energy
|
||||
barriers, the total reaction coordinate (RDT), and the normalized
|
||||
reaction coordinate and potential energy of each replica.
|
||||
|
||||
The "maximum torque per replica" is the two-norm of the
|
||||
3N-length vector given by the cross product of a spin by its
|
||||
precession vector omega, in each replica, maximized across replicas,
|
||||
which is what the {ttol} setting is checking against. In this case, N is
|
||||
all the atoms in each replica. The "maximum torque per atom" is the
|
||||
maximum torque component of any atom in any replica. The potential
|
||||
gradients are the two-norm of the 3N-length magnetic precession vector
|
||||
solely due to the interaction potential i.e. without adding in
|
||||
inter-replica forces, and projected along the path tangent (as detailed
|
||||
in Appendix D of "(BessarabA)"_#BessarabA).
|
||||
|
||||
The "reaction coordinate" (RD) for each replica is the two-norm of the
|
||||
3N-length vector of geodesic distances between its spins and the preceding
|
||||
replica's spins (see equation (13) of "(BessarabA)"_#BessarabA), added to
|
||||
the RD of the preceding replica. The RD of the first replica RD1 = 0.0;
|
||||
the RD of the final replica RDN = RDT, the total reaction coordinate.
|
||||
The normalized RDs are divided by RDT, so that they form a monotonically
|
||||
increasing sequence from zero to one. When computing RD, N only includes
|
||||
the spins being operated on by the fix neb/spin command.
|
||||
|
||||
The forward (reverse) energy barrier is the potential energy of the
|
||||
highest replica minus the energy of the first (last) replica.
|
||||
|
||||
Supplementary information for all replicas can be printed out to the
|
||||
screen and master log.lammps file by adding the verbose keyword. This
|
||||
information include the following.
|
||||
The "GradVidottan" are the projections of the potential gradient for
|
||||
the replica i on its tangent vector (as detailed in Appendix D of
|
||||
"(BessarabA)"_#BessarabA).
|
||||
The "DNi" are the non normalized geodesic distances (see equation (13)
|
||||
of "(BessarabA)"_#BessarabA), between a replica i and the next replica
|
||||
i+1. For the last replica, this distance is not defined and a "NAN"
|
||||
value is the corresponding output.
|
||||
|
||||
When a NEB calculation does not converge properly, the supplementary
|
||||
information can help understanding what is going wrong.
|
||||
|
||||
When running on multiple partitions, LAMMPS produces additional log
|
||||
files for each partition, e.g. log.lammps.0, log.lammps.1, etc. For a
|
||||
GNEB calculation, these contain the thermodynamic output for each
|
||||
replica.
|
||||
|
||||
If "dump"_dump.html commands in the input script define a filename
|
||||
that includes a {universe} or {uloop} style "variable"_variable.html,
|
||||
then one dump file (per dump command) will be created for each
|
||||
replica. At the end of the GNEB calculation, the final snapshot in
|
||||
each file will contain the sequence of snapshots that transition the
|
||||
system over the energy barrier. Earlier snapshots will show the
|
||||
convergence of the replicas to the MEP.
|
||||
|
||||
Likewise, "restart"_restart.html filenames can be specified with a
|
||||
{universe} or {uloop} style "variable"_variable.html, to generate
|
||||
restart files for each replica. These may be useful if the GNEB
|
||||
calculation fails to converge properly to the MEP, and you wish to
|
||||
restart the calculation from an intermediate point with altered
|
||||
parameters.
|
||||
|
||||
A c file script in provided in the tool/spin/interpolate_gneb
|
||||
directory, that interpolates the MEP given the information provided
|
||||
by the verbose output option (as detailed in Appendix D of
|
||||
"(BessarabA)"_#BessarabA).
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This command can only be used if LAMMPS was built with the SPIN
|
||||
package. See the "Build package"_Build_package.html doc
|
||||
page for more info.
|
||||
|
||||
:line
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"min/spin"_min_spin.html, "fix neb/spin"_fix_neb_spin.html
|
||||
|
||||
[Default:]
|
||||
|
||||
none
|
||||
|
||||
:line
|
||||
|
||||
:link(BessarabA)
|
||||
[(BessarabA)] Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196,
|
||||
335-347 (2015).
|
||||
Reference in New Issue
Block a user