Merge branch 'lammps:develop' into mliappy_unified

This commit is contained in:
Steven Anaya
2022-07-14 02:11:45 -06:00
committed by GitHub
723 changed files with 164253 additions and 8271 deletions

12
src/.gitignore vendored
View File

@ -173,12 +173,20 @@
/pair_tdpd.cpp
/pair_tdpd.h
/compute_grid.cpp
/compute_grid.h
/compute_grid_local.cpp
/compute_grid_local.h
/compute_sna_atom.cpp
/compute_sna_atom.h
/compute_snad_atom.cpp
/compute_snad_atom.h
/compute_snav_atom.cpp
/compute_snav_atom.h
/compute_sna_grid.cpp
/compute_sna_grid.h
/compute_sna_grid_local.cpp
/compute_sna_grid_local.h
/compute_snap.cpp
/compute_snap.h
/openmp_snap.h
@ -997,6 +1005,8 @@
/neb.h
/netcdf_units.cpp
/netcdf_units.h
/pair_threebody_table.cpp
/pair_threebody_table.h
/pair_adp.cpp
/pair_adp.h
/pair_agni.cpp
@ -1291,6 +1301,8 @@
/pair_sph_taitwater_morris.h
/pair_sw.cpp
/pair_sw.h
/pair_sw_angle_table.cpp
/pair_sw_angle_table.h
/pair_sw_mod.cpp
/pair_sw_mod.h
/pair_tersoff.cpp

40
src/AMOEBA/Install.sh Normal file
View File

@ -0,0 +1,40 @@
# Install/unInstall package files in LAMMPS
# mode = 0/1/2 for uninstall/install/update
mode=$1
# enforce using portable C locale
LC_ALL=C
export LC_ALL
# arg1 = file, arg2 = file it depends on
action () {
if (test $mode = 0) then
rm -f ../$1
elif (! cmp -s $1 ../$1) then
if (test -z "$2" || test -e ../$2) then
cp $1 ..
if (test $mode = 2) then
echo " updating src/$1"
fi
fi
elif (test -n "$2") then
if (test ! -e ../$2) then
rm -f ../$1
fi
fi
}
# pair style amoeba calls KSPACE functions and requires FFT grid.
if (test $1 = 1) then
if (test ! -e ../pppm.cpp) then
echo "Must install KSPACE package with AMOEBA package"
exit 1
fi
fi
for file in *.cpp *.h; do
action ${file}
done

View File

@ -0,0 +1,167 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_amoeba.h"
#include "atom.h"
#include "memory.h"
#include "neigh_list.h"
#include <cmath>
using namespace LAMMPS_NS;
enum{VDWL,REPULSE,QFER,DISP,MPOLE,POLAR,USOLV,DISP_LONG,MPOLE_LONG,POLAR_LONG};
/* ----------------------------------------------------------------------
charge_transfer = HIPPO charge transfer forces
adapted from Tinker echgtrn1b() routine
------------------------------------------------------------------------- */
void PairAmoeba::charge_transfer()
{
int i,j,ii,jj,itype,jtype,iclass,jclass;
double e,de,felec;
double rr1,r,r2;
double r3,r4,r5;
double xi,yi,zi;
double xr,yr,zr;
double chgi,chgj;
double alphai,alphaj;
double expi,expj;
double frcx,frcy,frcz;
double vxx,vyy,vzz;
double vxy,vxz,vyz;
double taper,dtaper;
double factor_mpole;
int inum,jnum;
int *ilist,*jlist,*numneigh,**firstneigh;
// set cutoffs and taper coeffs
choose(QFER);
// owned atoms
double **x = atom->x;
double **f = atom->f;
// neigh list
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// set the energy unit conversion factor
felec = electric / am_dielectric;
// find charge transfer energy and derivatives via neighbor list
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = amtype[i];
iclass = amtype2class[itype];
jlist = firstneigh[i];
jnum = numneigh[i];
xi = x[i][0];
yi = x[i][1];
zi = x[i][2];
chgi = chgct[iclass];
alphai = dmpct[iclass];
if (alphai == 0.0) alphai = 100.0;
// evaluate all sites within the cutoff distance
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_mpole = special_mpole[sbmask15(j)];
if (factor_mpole == 0.0) continue;
j &= NEIGHMASK15;
xr = x[j][0] - xi;
yr = x[j][1] - yi;
zr = x[j][2] - zi;
r2 = xr*xr + yr* yr + zr*zr;
if (r2 > off2) continue;
jtype = amtype[j];
jclass = amtype2class[jtype];
r = sqrt(r2);
rr1 = 1.0 / r;
chgj = chgct[jclass];
alphaj = dmpct[jclass];
if (alphaj == 0.0) alphaj = 100.0;
expi = exp(-alphai*r);
expj = exp(-alphaj*r);
e = -chgi*expj - chgj*expi;
de = chgi*expj*alphaj + chgj*expi*alphai;
e = felec * e * factor_mpole;
de = felec * de * factor_mpole;
// use energy switching if near the cutoff distance
if (r2 > cut2) {
r3 = r2 * r;
r4 = r2 * r2;
r5 = r2 * r3;
taper = c5*r5 + c4*r4 + c3*r3 + c2*r2 + c1*r + c0;
dtaper = 5.0*c5*r4 + 4.0*c4*r3 + 3.0*c3*r2 + 2.0*c2*r + c1;
de = e*dtaper + de*taper;
e *= taper;
}
eqxfer += e;
// compute the force components for this interaction
frcx = de * xr * rr1;
frcy = de * yr * rr1;
frcz = de * zr * rr1;
// increment the total charge transfer energy and derivatives
f[i][0] += frcx;
f[i][1] += frcy;
f[i][2] += frcz;
f[j][0] -= frcx;
f[j][1] -= frcy;
f[j][2] -= frcz;
// increment the internal virial tensor components
if (vflag_global) {
vxx = xr * frcx;
vxy = yr * frcx;
vxz = zr * frcx;
vyy = yr * frcy;
vyz = zr * frcy;
vzz = zr * frcz;
virqxfer[0] -= vxx;
virqxfer[1] -= vyy;
virqxfer[2] -= vzz;
virqxfer[3] -= vxy;
virqxfer[4] -= vxz;
virqxfer[5] -= vyz;
}
}
}
}

View File

@ -0,0 +1,843 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "amoeba_convolution.h"
#include "comm.h"
#include "domain.h"
#include "fft3d_wrap.h"
#include "gridcomm.h"
#include "memory.h"
#include "neighbor.h"
#include "remap_wrap.h"
#include "update.h"
using namespace LAMMPS_NS;
// DEBUG
#define DEBUG_AMOEBA 0
#if DEBUG_AMOEBA
char *labels[7] =
{(char *) "MPOLE_GRID", (char *) "POLAR_GRID",
(char *) "POLAR_GRIDC", (char *) "DISP_GRID",
(char *) "INDUCE_GRID", (char *) "INDUCE_GRIDC"};
enum{GRIDBRICK_OUT,GRIDBRICK_IN,FFT,CFFT1,CFFT2};
#endif
// END DEBUG
enum{MPOLE_GRID,POLAR_GRID,POLAR_GRIDC,DISP_GRID,INDUCE_GRID,INDUCE_GRIDC};
//#define SCALE 1
#define SCALE 0
#ifdef FFT_SINGLE
#define ZEROF 0.0f
#define ONEF 1.0f
#else
#define ZEROF 0.0
#define ONEF 1.0
#endif
/* ----------------------------------------------------------------------
partition an FFT grid across processors
both for a brick and FFT x pencil decomposition
nx,nz,nz = global FFT grid size
order = size of stencil in each dimension that maps atoms to grid
adapted from PPPM::set_grid_local()
------------------------------------------------------------------------- */
AmoebaConvolution::AmoebaConvolution(LAMMPS *lmp, Pair *pair,
int nx_caller, int ny_caller, int nz_caller,
int order_caller, int which_caller) :
Pointers(lmp)
{
amoeba = pair;
nx = nx_caller;
ny = ny_caller;
nz = nz_caller;
order = order_caller;
which = which_caller;
flag3d = 1;
if (which == POLAR_GRIDC || which == INDUCE_GRIDC) flag3d = 0;
nfft_global = (bigint) nx * ny * nz;
// global indices of grid range from 0 to N-1
// nlo_in,nhi_in = lower/upper limits of the 3d sub-brick of
// global grid that I own without ghost cells
// both non-tiled and tiled proc layouts use 0-1 fractional subdomain info
if (comm->layout != Comm::LAYOUT_TILED) {
nxlo_in = static_cast<int> (comm->xsplit[comm->myloc[0]] * nx);
nxhi_in = static_cast<int> (comm->xsplit[comm->myloc[0]+1] * nx) - 1;
nylo_in = static_cast<int> (comm->ysplit[comm->myloc[1]] * ny);
nyhi_in = static_cast<int> (comm->ysplit[comm->myloc[1]+1] * ny) - 1;
nzlo_in = static_cast<int> (comm->zsplit[comm->myloc[2]] * nz);
nzhi_in = static_cast<int> (comm->zsplit[comm->myloc[2]+1] * nz) - 1;
} else {
nxlo_in = static_cast<int> (comm->mysplit[0][0] * nx);
nxhi_in = static_cast<int> (comm->mysplit[0][1] * nx) - 1;
nylo_in = static_cast<int> (comm->mysplit[1][0] * ny);
nyhi_in = static_cast<int> (comm->mysplit[1][1] * ny) - 1;
nzlo_in = static_cast<int> (comm->mysplit[2][0] * nz);
nzhi_in = static_cast<int> (comm->mysplit[2][1] * nz) - 1;
}
// nlower,nupper = stencil size for mapping particles to FFT grid
int nlower = -(order-1)/2;
int nupper = order/2;
// nlo_out,nhi_out = lower/upper limits of the 3d sub-brick of
// global grid that my particles can contribute charge to
// effectively nlo_in,nhi_in + ghost cells
// nlo,nhi = global coords of grid pt to "lower left" of smallest/largest
// position a particle in my box can be at
// dist[3] = particle position bound = subbox + skin/2.0
// convert to triclinic if necessary
// nlo_out,nhi_out = nlo,nhi + stencil size for particle mapping
double *prd,*boxlo,*sublo,*subhi;
int triclinic = domain->triclinic;
if (triclinic == 0) {
prd = domain->prd;
boxlo = domain->boxlo;
sublo = domain->sublo;
subhi = domain->subhi;
} else {
prd = domain->prd_lamda;
boxlo = domain->boxlo_lamda;
sublo = domain->sublo_lamda;
subhi = domain->subhi_lamda;
}
double xprd = prd[0];
double yprd = prd[1];
double zprd = prd[2];
double dist[3] = {0.0,0.0,0.0};
double cuthalf = 0.5*neighbor->skin;
if (triclinic == 0) dist[0] = dist[1] = dist[2] = cuthalf;
else kspacebbox(cuthalf,&dist[0]);
int nlo,nhi;
nlo = static_cast<int> ((sublo[0]-dist[0]-boxlo[0]) * nx/xprd);
nhi = static_cast<int> ((subhi[0]+dist[0]-boxlo[0]) * nx/xprd);
nxlo_out = nlo + nlower;
nxhi_out = nhi + nupper;
nlo = static_cast<int> ((sublo[1]-dist[1]-boxlo[1]) * ny/yprd);
nhi = static_cast<int> ((subhi[1]+dist[1]-boxlo[1]) * ny/yprd);
nylo_out = nlo + nlower;
nyhi_out = nhi + nupper;
nlo = static_cast<int> ((sublo[2]-dist[2]-boxlo[2]) * nz/zprd);
nhi = static_cast<int> ((subhi[2]+dist[2]-boxlo[2]) * nz/zprd);
nzlo_out = nlo + nlower;
nzhi_out = nhi + nupper;
// x-pencil decomposition of FFT mesh
// global indices range from 0 to N-1
// each proc owns entire x-dimension, clumps of columns in y,z dimensions
// npey_fft,npez_fft = # of procs in y,z dims
// if nprocs is small enough, proc can own 1 or more entire xy planes,
// else proc owns 2d sub-blocks of yz plane
// me_y,me_z = which proc (0-npe_fft-1) I am in y,z dimensions
// nlo_fft,nhi_fft = lower/upper limit of the section
// of the global FFT mesh that I own in x-pencil decomposition
int me = comm->me;
int nprocs = comm->nprocs;
int npey_fft,npez_fft;
if (nz >= nprocs) {
npey_fft = 1;
npez_fft = nprocs;
} else procs2grid2d(nprocs,ny,nz,npey_fft,npez_fft);
int me_y = me % npey_fft;
int me_z = me / npey_fft;
nxlo_fft = 0;
nxhi_fft = nx - 1;
nylo_fft = me_y*ny/npey_fft;
nyhi_fft = (me_y+1)*ny/npey_fft - 1;
nzlo_fft = me_z*nz/npez_fft;
nzhi_fft = (me_z+1)*nz/npez_fft - 1;
// grid sizes
// nbrick_owned = owned grid points in brick decomp
// nbrick_ghosts = owned + ghost grid points in grid decomp
// nfft_owned = owned grid points in FFT decomp
// ngrid_either = max of nbrick_onwed and nfft_owned
// nfft = total FFT grid points
nbrick_owned = (nxhi_in-nxlo_in+1) * (nyhi_in-nylo_in+1) *
(nzhi_in-nzlo_in+1);
nbrick_ghosts = (nxhi_out-nxlo_out+1) * (nyhi_out-nylo_out+1) *
(nzhi_out-nzlo_out+1);
nfft_owned = (nxhi_fft-nxlo_fft+1) * (nyhi_fft-nylo_fft+1) *
(nzhi_fft-nzlo_fft+1);
ngrid_either = MAX(nbrick_owned,nfft_owned);
// instantiate FFT, GridComm, and Remap
int tmp;
fft1 = new FFT3d(lmp,world,nx,ny,nz,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
1,0,&tmp,0);
// 0,0,&tmp,0);
fft2 = new FFT3d(lmp,world,nx,ny,nz,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in,
//1,0,&tmp,0);
0,0,&tmp,0);
gc = new GridComm(lmp,world,nx,ny,nz,
nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in,
nxlo_out,nxhi_out,nylo_out,nyhi_out,nzlo_out,nzhi_out);
int nqty = flag3d ? 1 : 2;
remap = new Remap(lmp,world,
nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
nqty,0,0,FFT_PRECISION,0);
// memory allocations
if (flag3d) {
memory->create3d_offset(grid_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out,
nxlo_out,nxhi_out,"amoeba:grid_brick");
grid_brick_start = &grid_brick[nzlo_out][nylo_out][nxlo_out];
cgrid_brick = nullptr;
} else {
memory->create4d_offset_last(cgrid_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out,
nxlo_out,nxhi_out,2,"amoeba:cgrid_brick");
grid_brick_start = &cgrid_brick[nzlo_out][nylo_out][nxlo_out][0];
grid_brick = nullptr;
}
memory->create(grid_fft,ngrid_either,"amoeba:grid_fft");
memory->create(cfft,2*ngrid_either,"amoeba:cfft");
int ngc_buf1,ngc_buf2;
gc->setup(ngc_buf1,ngc_buf2);
memory->create(gc_buf1,nqty*ngc_buf1,"amoeba:gc_buf1");
memory->create(gc_buf2,nqty*ngc_buf2,"amoeba:gc_buf2");
memory->create(remap_buf,nqty*nfft_owned,"amoeba:remap_buf");
}
/* ----------------------------------------------------------------------
free all memory
------------------------------------------------------------------------- */
AmoebaConvolution::~AmoebaConvolution()
{
memory->destroy3d_offset(grid_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy4d_offset_last(cgrid_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy(grid_fft);
memory->destroy(cfft);
memory->destroy(gc_buf1);
memory->destroy(gc_buf2);
memory->destroy(remap_buf);
delete fft1;
delete fft2;
delete gc;
delete remap;
}
/* ----------------------------------------------------------------------
zero brick grid, including ghosts
can be 3d real or 4d complex array
return pointer to data in brick grid, caller casts to 3d or 4d
------------------------------------------------------------------------- */
void *AmoebaConvolution::zero()
{
if (flag3d) return zero_3d();
return zero_4d();
}
/* ---------------------------------------------------------------------- */
void *AmoebaConvolution::zero_3d()
{
if (!grid_brick) return nullptr;
memset(&(grid_brick[nzlo_out][nylo_out][nxlo_out]),0,
nbrick_ghosts*sizeof(FFT_SCALAR));
return (void *) grid_brick;
}
/* ---------------------------------------------------------------------- */
void *AmoebaConvolution::zero_4d()
{
if (!cgrid_brick) return nullptr;
memset(&(cgrid_brick[nzlo_out][nylo_out][nxlo_out][0]),0,
2*nbrick_ghosts*sizeof(FFT_SCALAR));
return (void *) cgrid_brick;
}
/* ----------------------------------------------------------------------
perform pre-convolution grid operations
can be 3d real or 4d complex array
return pointer to complex cfft vector
------------------------------------------------------------------------- */
FFT_SCALAR *AmoebaConvolution::pre_convolution()
{
if (flag3d) return pre_convolution_3d();
return pre_convolution_4d();
}
/* ----------------------------------------------------------------------
perform pre-convolution grid operations for 3d grid_brick array
------------------------------------------------------------------------- */
FFT_SCALAR *AmoebaConvolution::pre_convolution_3d()
{
int ix,iy,iz,n;
// reverse comm for 3d brick grid + ghosts
#if DEBUG_AMOEBA
debug_scalar(GRIDBRICK_OUT,"PRE Convo / PRE GridComm");
#endif
gc->reverse_comm(GridComm::PAIR,amoeba,1,sizeof(FFT_SCALAR),which,
gc_buf1,gc_buf2,MPI_FFT_SCALAR);
#if DEBUG_AMOEBA
debug_scalar(GRIDBRICK_IN,"PRE Convo / POST GridComm");
debug_file(GRIDBRICK_IN,"pre.convo.post.gridcomm");
#endif
// copy owned 3d brick grid values to FFT grid
n = 0;
for (iz = nzlo_in; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
grid_fft[n++] = grid_brick[iz][iy][ix];
// remap FFT grid from brick to x pencil partitioning
remap->perform(grid_fft,grid_fft,remap_buf);
#if DEBUG_AMOEBA
debug_scalar(FFT,"PRE Convo / POST Remap");
debug_file(FFT,"pre.convo.post.remap");
#endif
// copy real values into complex grid
n = 0;
for (int i = 0; i < nfft_owned; i++) {
cfft[n++] = grid_fft[i];
cfft[n++] = ZEROF;
}
// perform forward FFT
fft1->compute(cfft,cfft,FFT3d::FORWARD);
if (SCALE) {
double scale = 1.0/nfft_global;
for (int i = 0; i < 2*nfft_owned; i++) cfft[i] *= scale;
}
#if DEBUG_AMOEBA
debug_scalar(CFFT1,"PRE Convo / POST FFT");
debug_file(CFFT1,"pre.convo.post.fft");
#endif
return cfft;
}
/* ----------------------------------------------------------------------
perform pre-convolution grid operations for 4d cgrid_brick array
------------------------------------------------------------------------- */
FFT_SCALAR *AmoebaConvolution::pre_convolution_4d()
{
int ix,iy,iz,n;
// reverse comm for 4d brick grid + ghosts
#if DEBUG_AMOEBA
debug_scalar(GRIDBRICK_OUT,"PRE Convo / PRE GridComm");
#endif
gc->reverse_comm(GridComm::PAIR,amoeba,2,sizeof(FFT_SCALAR),which,
gc_buf1,gc_buf2,MPI_FFT_SCALAR);
#if DEBUG_AMOEBA
debug_scalar(GRIDBRICK_IN,"PRE Convo / POST GridComm");
debug_file(GRIDBRICK_IN,"pre.convo.post.gridcomm");
#endif
// copy owned 4d brick grid values to FFT grid
n = 0;
for (iz = nzlo_in; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
cfft[n++] = cgrid_brick[iz][iy][ix][0];
cfft[n++] = cgrid_brick[iz][iy][ix][1];
}
// remap FFT grid from brick to x pencil partitioning
// NOTE: could just setup FFT to start from brick decomp and skip remap
remap->perform(cfft,cfft,remap_buf);
#if DEBUG_AMOEBA
debug_scalar(FFT,"PRE Convo / POST Remap");
debug_file(FFT,"pre.convo.post.remap");
#endif
// perform forward FFT
fft1->compute(cfft,cfft,FFT3d::FORWARD);
if (SCALE) {
double scale = 1.0/nfft_global;
for (int i = 0; i < 2*nfft_owned; i++) cfft[i] *= scale;
}
#if DEBUG_AMOEBA
debug_scalar(CFFT1,"PRE Convo / POST FFT");
debug_file(CFFT1,"pre.convo.post.fft");
#endif
return cfft;
}
/* ----------------------------------------------------------------------
perform post-convolution grid operations
can be 3d real or 4d complex array
return pointer to data in brick grid, caller casts to 3d or 4d
------------------------------------------------------------------------- */
void *AmoebaConvolution::post_convolution()
{
if (flag3d) return post_convolution_3d();
return post_convolution_4d();
}
/* ----------------------------------------------------------------------
perform post-convolution grid operations for 3d grid_brick array
------------------------------------------------------------------------- */
void *AmoebaConvolution::post_convolution_3d()
{
int ix,iy,iz,n;
// perform backward FFT
#if DEBUG_AMOEBA
debug_scalar(CFFT1,"POST Convo / PRE FFT");
debug_file(CFFT1,"post.convo.pre.fft");
#endif
fft2->compute(cfft,cfft,FFT3d::BACKWARD);
#if DEBUG_AMOEBA
debug_scalar(CFFT2,"POST Convo / POST FFT");
debug_file(CFFT2,"post.convo.post.fft");
#endif
// copy real portion of 1d complex values into 3d real grid
n = 0;
for (iz = nzlo_in; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
grid_brick[iz][iy][ix] = cfft[n];
n += 2;
}
// forward comm to populate ghost grid values
#if DEBUG_AMOEBA
debug_scalar(GRIDBRICK_IN,"POST Convo / PRE gridcomm");
debug_file(GRIDBRICK_IN,"post.convo.pre.gridcomm");
#endif
gc->forward_comm(GridComm::PAIR,amoeba,1,sizeof(FFT_SCALAR),which,
gc_buf1,gc_buf2,MPI_FFT_SCALAR);
return (void *) grid_brick;
}
/* ----------------------------------------------------------------------
perform post-convolution grid operations for 4d cgrid_brick array
------------------------------------------------------------------------- */
void *AmoebaConvolution::post_convolution_4d()
{
int ix,iy,iz,n;
// perform backward FFT
#if DEBUG_AMOEBA
debug_scalar(CFFT1,"POST Convo / PRE FFT");
debug_file(CFFT1,"post.convo.pre.fft");
#endif
fft2->compute(cfft,cfft,FFT3d::BACKWARD);
#if DEBUG_AMOEBA
debug_scalar(CFFT2,"POST Convo / POST FFT");
debug_file(CFFT2,"post.convo.post.fft");
#endif
// copy 1d complex values into 4d complex grid
n = 0;
for (iz = nzlo_in; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
cgrid_brick[iz][iy][ix][0] = cfft[n++];
cgrid_brick[iz][iy][ix][1] = cfft[n++];
}
// forward comm to populate ghost grid values
#if DEBUG_AMOEBA
debug_scalar(GRIDBRICK_IN,"POST Convo / PRE gridcomm");
debug_file(GRIDBRICK_IN,"post.convo.pre.gridcomm");
#endif
gc->forward_comm(GridComm::PAIR,amoeba,2,sizeof(FFT_SCALAR),which,
gc_buf1,gc_buf2,MPI_FFT_SCALAR);
return (void *) cgrid_brick;
}
/* ----------------------------------------------------------------------
convert a sphere in box coords to an ellipsoid in lamda (0-1)
coords and return the tight (axis-aligned) bounding box, does not
preserve vector magnitude
see http://www.loria.fr/~shornus/ellipsoid-bbox.html and
http://yiningkarlli.blogspot.com/2013/02/
bounding-boxes-for-ellipsoidsfigure.html
------------------------------------------------------------------------- */
void AmoebaConvolution::kspacebbox(double r, double *b)
{
double *h = domain->h;
double lx,ly,lz,xy,xz,yz;
lx = h[0]; ly = h[1]; lz = h[2];
yz = h[3]; xz = h[4]; xy = h[5];
b[0] = r*sqrt(ly*ly*lz*lz + ly*ly*xz*xz - 2.0*ly*xy*xz*yz + lz*lz*xy*xy +
xy*xy*yz*yz)/(lx*ly*lz);
b[1] = r*sqrt(lz*lz + yz*yz)/(ly*lz);
b[2] = r/lz;
}
/* ----------------------------------------------------------------------
map nprocs to NX by NY grid as PX by PY procs - return optimal px,py
copy of PPPM::procs2grid2d()
------------------------------------------------------------------------- */
void AmoebaConvolution::procs2grid2d(int nprocs, int nx, int ny, int &px, int &py)
{
// loop thru all possible factorizations of nprocs
// surf = surface area of largest proc sub-domain
// innermost if test minimizes surface area and surface/volume ratio
int bestsurf = 2 * (nx + ny);
int bestboxx = 0;
int bestboxy = 0;
int boxx,boxy,surf,ipx,ipy;
ipx = 1;
while (ipx <= nprocs) {
if (nprocs % ipx == 0) {
ipy = nprocs/ipx;
boxx = nx/ipx;
if (nx % ipx) boxx++;
boxy = ny/ipy;
if (ny % ipy) boxy++;
surf = boxx + boxy;
if (surf < bestsurf ||
(surf == bestsurf && boxx*boxy > bestboxx*bestboxy)) {
bestsurf = surf;
bestboxx = boxx;
bestboxy = boxy;
px = ipx;
py = ipy;
}
}
ipx++;
}
}
#if DEBUG_AMOEBA
/* ----------------------------------------------------------------------
output a scalar value to screen
array = which array is being summed over
---------------------------------------------------------------------- */
void AmoebaConvolution::debug_scalar(int array, const char *label)
{
double sum = 0.0;
if (array == GRIDBRICK_OUT) {
if (flag3d) {
for (int iz = nzlo_out; iz <= nzhi_out; iz++)
for (int iy = nylo_out; iy <= nyhi_out; iy++)
for (int ix = nxlo_out; ix <= nxhi_out; ix++)
sum += grid_brick[iz][iy][ix];
} else {
for (int iz = nzlo_out; iz <= nzhi_out; iz++)
for (int iy = nylo_out; iy <= nyhi_out; iy++)
for (int ix = nxlo_out; ix <= nxhi_out; ix++) {
sum += cgrid_brick[iz][iy][ix][0];
sum += cgrid_brick[iz][iy][ix][1];
}
}
}
if (array == GRIDBRICK_IN) {
if (flag3d) {
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
for (int iy = nylo_in; iy <= nyhi_in; iy++)
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
sum += grid_brick[iz][iy][ix];
} else {
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
for (int iy = nylo_in; iy <= nyhi_in; iy++)
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
sum += cgrid_brick[iz][iy][ix][0];
sum += cgrid_brick[iz][iy][ix][1];
}
}
}
if (array == FFT) {
if (flag3d) {
for (int i = 0; i < nfft_owned; i++)
sum += grid_fft[i];
} else {
for (int i = 0; i < 2*nfft_owned; i++)
sum += cfft[i];
}
}
if (array == CFFT1) {
for (int i = 0; i < 2*nfft_owned; i++)
sum += cfft[i];
}
if (array == CFFT2) {
for (int i = 0; i < 2*nbrick_owned; i++)
sum += cfft[i];
}
/*
double sumall;
MPI_Allreduce(&sum,&sumall,1,MPI_DOUBLE,MPI_SUM,world);
if (comm->me == 0) printf("%s: %s: %12.8g\n",labels[which],label,sumall);
*/
}
/* ----------------------------------------------------------------------
dump grid values to a file
array = which array is being output
---------------------------------------------------------------------- */
void AmoebaConvolution::debug_file(int array, const char *label)
{
FILE *fp;
int me = comm->me;
int nprocs = comm->nprocs;
// open file
char fname[128];
sprintf(fname,"tmp.%s.%s",labels[which],label);
if (me == 0) fp = fopen(fname,"w");
// file header
// ncol = # of columns, including grid cell ID
bigint ntot = nx * ny * nz;
int ncol;
char *columns;
if (array == CFFT1 || array == CFFT2 || !flag3d) {
ncol = 3;
columns = (char *) "id real imag";
} else {
ncol = 2;
columns = (char *) "id value";
}
char boundstr[9]; // encoding of boundary flags
domain->boundary_string(boundstr);
if (me == 0) {
fprintf(fp,"ITEM: TIMESTEP\n");
fprintf(fp,BIGINT_FORMAT "\n",update->ntimestep);
fprintf(fp,"ITEM: NUMBER OF ATOMS\n");
fprintf(fp,BIGINT_FORMAT "\n",ntot);
fprintf(fp,"ITEM: BOX BOUNDS %s\n",boundstr);
fprintf(fp,"%-1.16e %-1.16e\n",domain->boxlo[0],domain->boxhi[0]);
fprintf(fp,"%-1.16e %-1.16e\n",domain->boxlo[1],domain->boxhi[1]);
fprintf(fp,"%-1.16e %-1.16e\n",domain->boxlo[2],domain->boxhi[2]);
fprintf(fp,"ITEM: ATOMS %s\n",columns);
}
// pack my values
// ngrid = # of grid cells I own
int ngrid;
if (array == GRIDBRICK_IN) ngrid = nbrick_owned;
else if (array == FFT) ngrid = nfft_owned;
else if (array == CFFT1) ngrid = nfft_owned;
else if (array == CFFT2) ngrid = nbrick_owned;
int ngridmax;
MPI_Allreduce(&ngrid,&ngridmax,1,MPI_INT,MPI_MAX,world);
double *buf,*buf2;
memory->create(buf,ncol*ngridmax,"amoeba:buf");
memory->create(buf2,ncol*ngridmax,"amoeba:buf2");
ngrid = 0;
if (array == GRIDBRICK_IN) {
if (flag3d) {
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
for (int iy = nylo_in; iy <= nyhi_in; iy++)
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
int id = iz*ny*nx + iy*nx + ix + 1;
buf[ncol*ngrid] = id;
buf[ncol*ngrid+1] = grid_brick[iz][iy][ix];
ngrid++;
}
} else {
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
for (int iy = nylo_in; iy <= nyhi_in; iy++)
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
int id = iz*ny*nx + iy*nx + ix + 1;
buf[ncol*ngrid] = id;
buf[ncol*ngrid+1] = cgrid_brick[iz][iy][ix][0];
buf[ncol*ngrid+2] = cgrid_brick[iz][iy][ix][1];
ngrid++;
}
}
}
if (array == FFT) {
if (flag3d) {
int m = 0;
for (int iz = nzlo_fft; iz <= nzhi_fft; iz++)
for (int iy = nylo_fft; iy <= nyhi_fft; iy++)
for (int ix = nxlo_fft; ix <= nxhi_fft; ix++) {
int id = iz*ny*nx + iy*nx + ix + 1;
buf[ncol*ngrid] = id;
buf[ncol*ngrid+1] = grid_fft[m++];
ngrid++;
}
} else {
int m = 0;
for (int iz = nzlo_fft; iz <= nzhi_fft; iz++)
for (int iy = nylo_fft; iy <= nyhi_fft; iy++)
for (int ix = nxlo_fft; ix <= nxhi_fft; ix++) {
int id = iz*ny*nx + iy*nx + ix + 1;
buf[ncol*ngrid] = id;
buf[ncol*ngrid+1] = cfft[m++];
buf[ncol*ngrid+2] = cfft[m++];
ngrid++;
}
}
}
if (array == CFFT1) {
int m = 0;
for (int iz = nzlo_fft; iz <= nzhi_fft; iz++)
for (int iy = nylo_fft; iy <= nyhi_fft; iy++)
for (int ix = nxlo_fft; ix <= nxhi_fft; ix++) {
int id = iz*ny*nx + iy*nx + ix + 1;
buf[ncol*ngrid] = id;
buf[ncol*ngrid+1] = cfft[m++];
buf[ncol*ngrid+2] = cfft[m++];
ngrid++;
}
}
if (array == CFFT2) {
int m = 0;
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
for (int iy = nylo_in; iy <= nyhi_in; iy++)
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
int id = iz*ny*nx + iy*nx + ix + 1;
buf[ncol*ngrid] = id;
buf[ncol*ngrid+1] = cfft[m++];
buf[ncol*ngrid+2] = cfft[m++];
ngrid++;
}
}
// proc 0 outputs values
// pings other procs, send/recv of their values
int tmp,nlines;
MPI_Request request;
MPI_Status status;
if (me == 0) {
for (int iproc = 0; iproc < nprocs; iproc++) {
if (iproc) {
MPI_Irecv(buf,ngridmax*ncol,MPI_DOUBLE,iproc,0,world,&request);
MPI_Send(&tmp,0,MPI_INT,me+iproc,0,world);
MPI_Wait(&request,&status);
MPI_Get_count(&status,MPI_DOUBLE,&nlines);
nlines /= ncol;
} else nlines = ngrid;
int n = 0;
for (int m = 0; m < nlines; m++) {
if (ncol == 2)
fprintf(fp,"%d %12.8g\n",(int) buf[n],buf[n+1]);
else if (ncol == 3)
fprintf(fp,"%d %12.8g %12.8g\n",(int ) buf[n],buf[n+1],buf[n+2]);
n += ncol;
}
}
} else {
MPI_Recv(&tmp,0,MPI_INT,0,0,world,MPI_STATUS_IGNORE);
MPI_Rsend(buf,ngrid*ncol,MPI_DOUBLE,0,0,world);
}
// close file
if (me == 0) fclose(fp);
// clean up
memory->destroy(buf);
memory->destroy(buf2);
}
#endif

View File

@ -0,0 +1,85 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifndef LMP_AMOEBA_CONVOLUTION_H
#define LMP_AMOEBA_CONVOLUTION_H
#include "pointers.h"
#ifdef FFT_SINGLE
typedef float FFT_SCALAR;
#define LMP_FFT_PREC "single"
#define MPI_FFT_SCALAR MPI_FLOAT
#else
typedef double FFT_SCALAR;
#define LMP_FFT_PREC "double"
#define MPI_FFT_SCALAR MPI_DOUBLE
#endif
namespace LAMMPS_NS {
class AmoebaConvolution : protected Pointers {
public:
int nx, ny, nz;
int order;
int nfft_owned; // owned grid points in FFT decomp
int nxlo_in, nxhi_in, nylo_in, nyhi_in, nzlo_in, nzhi_in;
int nxlo_out, nxhi_out, nylo_out, nyhi_out, nzlo_out, nzhi_out;
int nxlo_fft, nxhi_fft, nylo_fft, nyhi_fft, nzlo_fft, nzhi_fft;
bigint nfft_global; // nx * ny * nz
double *grid_brick_start; // lower left corner of (c)grid_brick data
AmoebaConvolution(class LAMMPS *, class Pair *, int, int, int, int, int);
~AmoebaConvolution();
void *zero();
FFT_SCALAR *pre_convolution();
void *post_convolution();
private:
int which; // caller name for convolution being performed
int flag3d; // 1 if using 3d grid_brick, 0 for 4d cgrid_brick
int nbrick_owned; // owned grid points in brick decomp
int nbrick_ghosts; // owned + ghost brick grid points
int ngrid_either; // max of nbrick_owned or nfft_owned
class Pair *amoeba;
class FFT3d *fft1, *fft2;
class GridComm *gc;
class Remap *remap;
double ***grid_brick; // 3d real brick grid with ghosts
double ****cgrid_brick; // 4d complex brick grid with ghosts
FFT_SCALAR *grid_fft; // 3d FFT grid as 1d vector
FFT_SCALAR *cfft; // 3d complex FFT grid as 1d vector
double *gc_buf1, *gc_buf2; // buffers for GridComm
double *remap_buf; // buffer for Remap
void *zero_3d();
void *zero_4d();
FFT_SCALAR *pre_convolution_3d();
FFT_SCALAR *pre_convolution_4d();
void *post_convolution_3d();
void *post_convolution_4d();
void kspacebbox(double, double *);
void procs2grid2d(int, int, int, int &, int &);
// DEBUG
void debug_scalar(int, const char *);
void debug_file(int, const char *);
};
} // namespace LAMMPS_NS
#endif

View File

@ -0,0 +1,422 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_amoeba.h"
#include "amoeba_convolution.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "fft3d_wrap.h"
#include "math_const.h"
#include "math_special.h"
#include "memory.h"
#include "neigh_list.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace MathConst;
using MathSpecial::cube;
using MathSpecial::powint;
enum{VDWL,REPULSE,QFER,DISP,MPOLE,POLAR,USOLV,DISP_LONG,MPOLE_LONG,POLAR_LONG};
/* ----------------------------------------------------------------------
dispersion = Ewald dispersion
adapted from Tinker edisp1d() routine
------------------------------------------------------------------------- */
void PairAmoeba::dispersion()
{
// set cutoffs, taper coeffs, and PME params
if (use_dewald) choose(DISP_LONG);
else choose(DISP);
// owned atoms
int nlocal = atom->nlocal;
// compute the real space portion of the Ewald summation
if (disp_rspace_flag) dispersion_real();
// compute the reciprocal space part of the Ewald summation
if (disp_kspace_flag) dispersion_kspace();
// compute the self-energy portion of the Ewald summation
int itype,iclass;
double term;
for (int i = 0; i < nlocal; i++) {
itype = amtype[i];
iclass = amtype2class[itype];
term = powint(aewald,6) / 12.0;
edisp += term*csix[iclass]*csix[iclass];
}
}
/* ----------------------------------------------------------------------
dispersion_real = real-space portion of Ewald dispersion
adapted from Tinker edreal1d() routine
------------------------------------------------------------------------- */
void PairAmoeba::dispersion_real()
{
int i,j,ii,jj,itype,jtype,iclass,jclass;
double xi,yi,zi;
double xr,yr,zr;
double e,de;
double ci,ck;
double r,r2,r6,r7;
double ai,ai2;
double ak,ak2;
double di,di2,di3,di4,di5;
double dk,dk2,dk3;
double ti,ti2;
double tk,tk2;
double expi,expk;
double damp3,damp5;
double damp,ddamp;
double ralpha2,scale;
double expterm,term;
double expa,rterm;
double dedx,dedy,dedz;
double vxx,vyx,vzx;
double vyy,vzy,vzz;
double factor_disp;
int inum,jnum;
int *ilist,*jlist,*numneigh,**firstneigh;
// owned atoms
double **x = atom->x;
double **f = atom->f;
// neigh list
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// compute the real space portion of the Ewald summation
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = amtype[i];
iclass = amtype2class[itype];
jlist = firstneigh[i];
jnum = numneigh[i];
ci = csix[iclass];
ai = adisp[iclass];
xi = x[i][0];
yi = x[i][1];
zi = x[i][2];
// decide whether to compute the current interaction
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_disp = special_disp[sbmask15(j)];
j &= NEIGHMASK15;
xr = xi - x[j][0];
yr = yi - x[j][1];
zr = zi - x[j][2];
r2 = xr*xr + yr*yr + zr*zr;
if (r2 > off2) continue;
// compute the energy contribution for this interaction
jtype = amtype[j];
jclass = amtype2class[jtype];
ck = csix[jclass];
ak = adisp[jclass];
r6 = r2*r2*r2;
ralpha2 = r2 * aewald*aewald;
term = 1.0 + ralpha2 + 0.5*ralpha2*ralpha2;
expterm = exp(-ralpha2);
expa = expterm * term;
// find the damping factor for the dispersion interaction
r = sqrt(r2);
r7 = r6 * r;
di = ai * r;
di2 = di * di;
di3 = di * di2;
dk = ak * r;
expi = exp(-di);
expk = exp(-dk);
if (ai != ak) {
ai2 = ai * ai;
ak2 = ak * ak;
dk2 = dk * dk;
dk3 = dk * dk2;
ti = ak2 / (ak2-ai2);
ti2 = ti * ti;
tk = ai2 / (ai2-ak2);
tk2 = tk * tk;
damp3 = 1.0 - ti2*(1.0+di+0.5*di2)*expi - tk2*(1.0+dk+0.5*dk2)*expk -
2.0*ti2*tk*(1.0+di)*expi - 2.0*tk2*ti*(1.0+dk)*expk;
damp5 = 1.0 - ti2*(1.0+di+0.5*di2+di3/6.0)*expi -
tk2*(1.0+dk+0.5*dk2 + dk3/6.0)*expk -
2.0*ti2*tk*(1.0+di+di2/3.0)*expi - 2.0*tk2*ti*(1.0+dk+dk2/3.0)*expk;
ddamp = 0.25 * di2 * ti2 * ai * expi * (r*ai+4.0*tk-1.0) +
0.25 * dk2 * tk2 * ak * expk * (r*ak+4.0*ti-1.0);
} else {
di4 = di2 * di2;
di5 = di2 * di3;
damp3 = 1.0 - (1.0+di+0.5*di2 + 7.0*di3/48.0+di4/48.0)*expi;
damp5 = 1.0 - (1.0+di+0.5*di2 + di3/6.0+di4/24.0+di5/144.0)*expi;
ddamp = ai * expi * (di5-3.0*di3-3.0*di2) / 96.0;
}
damp = 1.5*damp5 - 0.5*damp3;
// apply damping and scaling factors for this interaction
scale = factor_disp * damp*damp;
scale = scale - 1.0;
e = -ci * ck * (expa+scale) / r6;
rterm = -cube(ralpha2) * expterm / r;
de = -6.0*e/r2 - ci*ck*rterm/r7 - 2.0*ci*ck*factor_disp*damp*ddamp/r7;
edisp += e;
// increment the damped dispersion derivative components
dedx = de * xr;
dedy = de * yr;
dedz = de * zr;
f[i][0] -= dedx;
f[i][1] -= dedy;
f[i][2] -= dedz;
f[j][0] += dedx;
f[j][1] += dedy;
f[j][2] += dedz;
// increment the internal virial tensor components
if (vflag_global) {
vxx = xr * dedx;
vyx = yr * dedx;
vzx = zr * dedx;
vyy = yr * dedy;
vzy = zr * dedy;
vzz = zr * dedz;
virdisp[0] -= vxx;
virdisp[1] -= vyy;
virdisp[2] -= vzz;
virdisp[3] -= vyx;
virdisp[4] -= vzx;
virdisp[5] -= vzy;
}
}
}
}
/* ----------------------------------------------------------------------
dispersion_kspace = KSpace portion of Ewald dispersion
adapted from Tinker edrecip1d() routine
------------------------------------------------------------------------- */
void PairAmoeba::dispersion_kspace()
{
int i,j,k,m,n,ib,jb,kb,itype,iclass;
int nhalf1,nhalf2,nhalf3;
int nxlo,nxhi,nylo,nyhi,nzlo,nzhi;
double e,fi,denom,scale;
double r1,r2,r3;
double h1,h2,h3;
double term,vterm;
double expterm;
double erfcterm;
double hsq,struc2;
double h,hhh,b,bfac;
double term1,denom0;
double fac1,fac2,fac3;
double de1,de2,de3;
double dt1,dt2,dt3;
double t1,t2,t3;
// return if the Ewald coefficient is zero
if (aewald < 1.0e-6) return;
// owned atoms
double **f = atom->f;
int nlocal = atom->nlocal;
double volbox = domain->prd[0] * domain->prd[1] * domain->prd[2];
// FFT moduli pre-computations
// set igrid for each atom and its B-spline coeffs
nfft1 = d_kspace->nx;
nfft2 = d_kspace->ny;
nfft3 = d_kspace->nz;
bsorder = d_kspace->order;
moduli();
bspline_fill();
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
// zeroed by zero()
double ***gridpre = (double ***) d_kspace->zero();
// map atoms to grid
grid_disp(gridpre);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomposition
double *gridfft = d_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
nhalf1 = (nfft1+1) / 2;
nhalf2 = (nfft2+1) / 2;
nhalf3 = (nfft3+1) / 2;
nxlo = d_kspace->nxlo_fft;
nxhi = d_kspace->nxhi_fft;
nylo = d_kspace->nylo_fft;
nyhi = d_kspace->nyhi_fft;
nzlo = d_kspace->nzlo_fft;
nzhi = d_kspace->nzhi_fft;
bfac = MY_PI / aewald;
fac1 = 2.0*pow(MY_PI,3.5);
fac2 = cube(aewald);
fac3 = -2.0*aewald*MY_PI*MY_PI;
denom0 = (6.0*volbox)/pow(MY_PI,1.5);
n = 0;
for (k = nzlo; k <= nzhi; k++) {
for (j = nylo; j <= nyhi; j++) {
for (i = nxlo; i <= nxhi; i++) {
r1 = (i >= nhalf1) ? i-nfft1 : i;
r2 = (j >= nhalf2) ? j-nfft2 : j;
r3 = (k >= nhalf3) ? k-nfft3 : k;
h1 = recip[0][0]*r1 + recip[0][1]*r2 + recip[0][2]*r3; // matvec
h2 = recip[1][0]*r1 + recip[1][1]*r2 + recip[1][2]*r3;
h3 = recip[2][0]*r1 + recip[2][1]*r2 + recip[2][2]*r3;
hsq = h1*h1 + h2*h2 + h3*h3;
h = sqrt(hsq);
b = h*bfac;
hhh = h*hsq;
term = -b*b;
expterm = 0.0;
erfcterm = erfc(b);
denom = denom0*bsmod1[i]*bsmod2[j]*bsmod3[k];
if (term > -50.0 && hsq != 0.0) {
expterm = exp(term);
erfcterm = erfc(b);
term1 = fac1*erfcterm*hhh + expterm*(fac2 + fac3*hsq);
struc2 = gridfft[n]*gridfft[n] + gridfft[n+1]*gridfft[n+1];
e = -(term1 / denom) * struc2;
edisp += e;
if (vflag_global) {
vterm = 3.0 * (fac1*erfcterm*h + fac3*expterm) * struc2/denom;
virdisp[0] -= h1*h1*vterm - e;
virdisp[1] -= h2*h2*vterm - e;
virdisp[2] -= h3*h3*vterm - e;
virdisp[3] -= h1*h2*vterm;
virdisp[4] -= h1*h3*vterm;
virdisp[5] -= h2*h3*vterm;
}
} else term1 = 0.0;
scale = -term1 / denom;
gridfft[n] *= scale;
gridfft[n+1] *= scale;
n += 2;
}
}
}
// post-convolution operations including backward FFT
// gridppost = my portion of 3d grid in brick decomp w/ ghost values
double ***gridpost = (double ***) d_kspace->post_convolution();
// get first derivatives of the reciprocal space energy
int nlpts = (bsorder-1) / 2;
for (m = 0; m < nlocal; m++) {
itype = amtype[m];
iclass = amtype2class[itype];
de1 = de2 = de3 = 0.0;
k = igrid[m][2] - nlpts;
for (kb = 0; kb < bsorder; kb++) {
t3 = thetai3[m][kb][0];
dt3 = nfft3 * thetai3[m][kb][1];
j = igrid[m][1] - nlpts;
for (jb = 0; jb < bsorder; jb++) {
t2 = thetai2[m][jb][0];
dt2 = nfft2 * thetai2[m][jb][1];
i = igrid[m][0] - nlpts;
for (ib = 0; ib < bsorder; ib++) {
t1 = thetai1[m][ib][0];
dt1 = nfft1 * thetai1[m][ib][1];
term = gridpost[k][j][i];
de1 += 2.0*term*dt1*t2*t3;
de2 += 2.0*term*dt2*t1*t3;
de3 += 2.0*term*dt3*t1*t2;
i++;
}
j++;
}
k++;
}
fi = csix[iclass];
f[m][0] -= fi * (recip[0][0]*de1 + recip[0][1]*de2 + recip[0][2]*de3);
f[m][1] -= fi * (recip[1][0]*de1 + recip[1][1]*de2 + recip[1][2]*de3);
f[m][2] -= fi * (recip[2][0]*de1 + recip[2][1]*de2 + recip[2][2]*de3);
}
// account for the energy and virial correction terms
term = csixpr * aewald*aewald*aewald / denom0;
if (comm->me == 0) {
edisp -= term;
if (vflag_global) {
virdisp[0] -= term;
virdisp[1] -= term;
virdisp[2] -= term;
}
}
}

1402
src/AMOEBA/amoeba_file.cpp Normal file

File diff suppressed because it is too large Load Diff

205
src/AMOEBA/amoeba_hal.cpp Normal file
View File

@ -0,0 +1,205 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_amoeba.h"
#include "atom.h"
#include "error.h"
#include "neigh_list.h"
#include <cmath>
using namespace LAMMPS_NS;
enum{VDWL,REPULSE,QFER,DISP,MPOLE,POLAR,USOLV,DISP_LONG,MPOLE_LONG,POLAR_LONG};
/* ----------------------------------------------------------------------
hal = buffered 14-7 Vdwl interactions
adapted from Tinker ehal1c() routine
------------------------------------------------------------------------- */
void PairAmoeba::hal()
{
int i,j,ii,jj,itype,jtype,iclass,jclass,iv,jv;
int special_which;
double e,de,eps;
double rv,rv7;
double xi,yi,zi;
double xr,yr,zr;
double redi,rediv;
double redj,redjv;
double dedx,dedy,dedz;
double rho,tau,tau7;
double dtau,gtau;
double taper,dtaper;
double rik,rik2,rik3;
double rik4,rik5;
double rik6,rik7;
double vxx,vyy,vzz;
double vyx,vzx,vzy;
double factor_hal;
int inum,jnum;
int *ilist,*jlist,*numneigh,**firstneigh;
// set cutoffs and taper coeffs
choose(VDWL);
// owned atoms
double **f = atom->f;
// neigh list
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// find van der Waals energy and derivatives via neighbor list
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = amtype[i];
iclass = amtype2class[itype];
jlist = firstneigh[i];
jnum = numneigh[i];
redi = kred[iclass];
rediv = 1.0 - redi;
xi = xred[i][0];
yi = xred[i][1];
zi = xred[i][2];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
special_which = sbmask15(j);
factor_hal = special_hal[special_which];
if (factor_hal == 0.0) continue;
j &= NEIGHMASK15;
xr = xi - xred[j][0];
yr = yi - xred[j][1];
zr = zi - xred[j][2];
rik2 = xr*xr + yr*yr + zr*zr;
if (rik2 > off2) continue;
// compute the energy contribution for this interaction
jtype = amtype[j];
jclass = amtype2class[jtype];
// check for an interaction distance less than the cutoff
// special_which = 3 is a 1-4 neighbor with its own sigma,epsilon
rik = sqrt(rik2);
rv = radmin[iclass][jclass];
eps = epsilon[iclass][jclass];
if (special_which == 3) {
rv = radmin4[iclass][jclass];
eps = epsilon4[iclass][jclass];
}
eps *= factor_hal;
rv7 = pow(rv,7.0);
rik6 = pow(rik2,3.0);
rik7 = rik6 * rik;
rho = rik7 + ghal*rv7;
tau = (dhal+1.0) / (rik + dhal*rv);
tau7 = pow(tau,7.0);
dtau = tau / (dhal+1.0);
gtau = eps*tau7*rik6*(ghal+1.0)*pow(rv7/rho,2.0);
e = eps*tau7*rv7*((ghal+1.0)*rv7/rho-2.0);
de = -7.0 * (dtau*e+gtau);
// use energy switching if near the cutoff distance
if (rik2 > cut2) {
rik3 = rik2 * rik;
rik4 = rik2 * rik2;
rik5 = rik2 * rik3;
taper = c5*rik5 + c4*rik4 + c3*rik3 + c2*rik2 + c1*rik + c0;
dtaper = 5.0*c5*rik4 + 4.0*c4*rik3 + 3.0*c3*rik2 + 2.0*c2*rik + c1;
de = e*dtaper + de*taper;
e *= taper;
}
ehal += e;
// find the chain rule terms for derivative components
de = de / rik;
dedx = de * xr;
dedy = de * yr;
dedz = de * zr;
// increment the total van der Waals energy and derivatives
// if jv < 0, trigger an error, needed H-bond partner is missing
iv = red2local[i];
jv = red2local[j];
if (jv < 0)
error->one(FLERR,"AMOEBA hal cannot find H bond partner - "
"ghost comm is too short");
if (i == iv) {
f[i][0] -= dedx;
f[i][1] -= dedy;
f[i][2] -= dedz;
} else {
f[i][0] -= dedx*redi;
f[i][1] -= dedy*redi;
f[i][2] -= dedz*redi;
f[iv][0] -= dedx*rediv;
f[iv][1] -= dedy*rediv;
f[iv][2] -= dedz*rediv;
}
if (j == jv) {
f[j][0] += dedx;
f[j][1] += dedy;
f[j][2] += dedz;
} else {
redj = kred[jclass];
redjv = 1.0 - redj;
f[j][0] += dedx*redj;
f[j][1] += dedy*redj;
f[j][2] += dedz*redj;
f[jv][0] += dedx*redjv;
f[jv][1] += dedy*redjv;
f[jv][2] += dedz*redjv;
}
// increment the internal virial tensor components
if (vflag_global) {
vxx = xr * dedx;
vyx = yr * dedx;
vzx = zr * dedx;
vyy = yr * dedy;
vzy = zr * dedy;
vzz = zr * dedz;
virhal[0] -= vxx;
virhal[1] -= vyy;
virhal[2] -= vzz;
virhal[3] -= vyx;
virhal[4] -= vzx;
virhal[5] -= vzy;
}
}
}
}

1699
src/AMOEBA/amoeba_induce.cpp Normal file

File diff suppressed because it is too large Load Diff

1236
src/AMOEBA/amoeba_kspace.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,982 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_amoeba.h"
#include "amoeba_convolution.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "fft3d_wrap.h"
#include "math_const.h"
#include "memory.h"
#include "neigh_list.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace MathConst;
enum{FIELD,ZRSD,TORQUE,UFLD}; // reverse comm
enum{VDWL,REPULSE,QFER,DISP,MPOLE,POLAR,USOLV,DISP_LONG,MPOLE_LONG,POLAR_LONG};
#ifdef FFT_SINGLE
#define ZEROF 0.0f
#define ONEF 1.0f
#else
#define ZEROF 0.0
#define ONEF 1.0
#endif
/* ----------------------------------------------------------------------
multipole = multipole interactions
adapted from Tinker empole1d() routine
------------------------------------------------------------------------- */
void PairAmoeba::multipole()
{
double e;
double felec;
double term,fterm;
double ci;
double dix,diy,diz;
double qixx,qixy,qixz,qiyy,qiyz,qizz;
double cii,dii,qii;
// set cutoffs, taper coeffs, and PME params
if (use_ewald) choose(MPOLE_LONG);
else choose(MPOLE);
// owned atoms
const int nlocal = atom->nlocal;
// zero repulsion torque on owned + ghost atoms
const int nall = nlocal + atom->nghost;
for (int i = 0; i < nall; i++) {
tq[i][0] = 0.0;
tq[i][1] = 0.0;
tq[i][2] = 0.0;
}
// set the energy unit conversion factor
felec = electric / am_dielectric;
// compute the real space part of the Ewald summation
if (mpole_rspace_flag) multipole_real();
// compute the reciprocal space part of the Ewald summation
if (mpole_kspace_flag) multipole_kspace();
// compute the Ewald self-energy term over all the atoms
term = 2.0 * aewald * aewald;
fterm = -felec * aewald / MY_PIS;
for (int i = 0; i < nlocal; i++) {
ci = rpole[i][0];
dix = rpole[i][1];
diy = rpole[i][2];
diz = rpole[i][3];
qixx = rpole[i][4];
qixy = rpole[i][5];
qixz = rpole[i][6];
qiyy = rpole[i][8];
qiyz = rpole[i][9];
qizz = rpole[i][12];
cii = ci*ci;
dii = dix*dix + diy*diy + diz*diz;
qii = 2.0*(qixy*qixy+qixz*qixz+qiyz*qiyz) +
qixx*qixx + qiyy*qiyy + qizz*qizz;
e = fterm * (cii + term*(dii/3.0+2.0*term*qii/5.0));
empole += e;
}
}
/* ----------------------------------------------------------------------
multipole_real = real-space portion of mulipole interactions
adapted from Tinker emreal1d() routine
------------------------------------------------------------------------- */
void PairAmoeba::multipole_real()
{
int i,j,k,itype,jtype,iclass,jclass;
int ii,jj;
int ix,iy,iz;
double e,de,felec;
double bfac;
double alsq2,alsq2n;
double exp2a,ralpha;
double scalek;
double xi,yi,zi;
double xr,yr,zr;
double xix,yix,zix;
double xiy,yiy,ziy;
double xiz,yiz,ziz;
double r,r2,rr1,rr3;
double rr5,rr7,rr9,rr11;
double rr1i,rr3i,rr5i,rr7i;
double rr1k,rr3k,rr5k,rr7k;
double rr1ik,rr3ik,rr5ik;
double rr7ik,rr9ik,rr11ik;
double ci,dix,diy,diz;
double qixx,qixy,qixz;
double qiyy,qiyz,qizz;
double ck,dkx,dky,dkz;
double qkxx,qkxy,qkxz;
double qkyy,qkyz,qkzz;
double dir,dkr,dik,qik;
double qix,qiy,qiz,qir;
double qkx,qky,qkz,qkr;
double diqk,dkqi,qiqk;
double dirx,diry,dirz;
double dkrx,dkry,dkrz;
double dikx,diky,dikz;
double qirx,qiry,qirz;
double qkrx,qkry,qkrz;
double qikx,qiky,qikz;
double qixk,qiyk,qizk;
double qkxi,qkyi,qkzi;
double qikrx,qikry,qikrz;
double qkirx,qkiry,qkirz;
double diqkx,diqky,diqkz;
double dkqix,dkqiy,dkqiz;
double diqkrx,diqkry,diqkrz;
double dkqirx,dkqiry,dkqirz;
double dqikx,dqiky,dqikz;
double corei,corek;
double vali,valk;
double alphai,alphak;
double term1,term2,term3;
double term4,term5,term6;
double term1i,term2i,term3i;
double term1k,term2k,term3k;
double term1ik,term2ik,term3ik;
double term4ik,term5ik;
double frcx,frcy,frcz;
double vxx,vyy,vzz;
double vxy,vxz,vyz;
double factor_mpole;
double ttmi[3],ttmk[3];
double fix[3],fiy[3],fiz[3];
double dmpi[9],dmpj[9];
double dmpij[11];
double bn[6];
int inum,jnum;
int *ilist,*jlist,*numneigh,**firstneigh;
// owned atoms
double *pval = atom->dvector[index_pval];
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
// neigh list
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// set conversion factor, cutoff and switching coefficients
felec = electric / am_dielectric;
// DEBUG
//int count = 0;
//int imin,imax;
// compute the real space portion of the Ewald summation
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = amtype[i];
iclass = amtype2class[itype];
jlist = firstneigh[i];
jnum = numneigh[i];
xi = x[i][0];
yi = x[i][1];
zi = x[i][2];
ci = rpole[i][0];
dix = rpole[i][1];
diy = rpole[i][2];
diz = rpole[i][3];
qixx = rpole[i][4];
qixy = rpole[i][5];
qixz = rpole[i][6];
qiyy = rpole[i][8];
qiyz = rpole[i][9];
qizz = rpole[i][12];
if (!amoeba) {
corei = pcore[iclass];
alphai = palpha[iclass];
vali = pval[i];
}
// evaluate all sites within the cutoff distance
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_mpole = special_mpole[sbmask15(j)];
j &= NEIGHMASK15;
xr = x[j][0] - xi;
yr = x[j][1] - yi;
zr = x[j][2] - zi;
r2 = xr*xr + yr*yr + zr*zr;
if (r2 > off2) continue;
// DEBUG
//imin = MIN(atom->tag[i],atom->tag[j]);
//imax = MAX(atom->tag[i],atom->tag[j]);
jtype = amtype[j];
jclass = amtype2class[jtype];
r = sqrt(r2);
ck = rpole[j][0];
dkx = rpole[j][1];
dky = rpole[j][2];
dkz = rpole[j][3];
qkxx = rpole[j][4];
qkxy = rpole[j][5];
qkxz = rpole[j][6];
qkyy = rpole[j][8];
qkyz = rpole[j][9];
qkzz = rpole[j][12];
// intermediates involving moments and separation distance
dir = dix*xr + diy*yr + diz*zr;
qix = qixx*xr + qixy*yr + qixz*zr;
qiy = qixy*xr + qiyy*yr + qiyz*zr;
qiz = qixz*xr + qiyz*yr + qizz*zr;
qir = qix*xr + qiy*yr + qiz*zr;
dkr = dkx*xr + dky*yr + dkz*zr;
qkx = qkxx*xr + qkxy*yr + qkxz*zr;
qky = qkxy*xr + qkyy*yr + qkyz*zr;
qkz = qkxz*xr + qkyz*yr + qkzz*zr;
qkr = qkx*xr + qky*yr + qkz*zr;
dik = dix*dkx + diy*dky + diz*dkz;
qik = qix*qkx + qiy*qky + qiz*qkz;
diqk = dix*qkx + diy*qky + diz*qkz;
dkqi = dkx*qix + dky*qiy + dkz*qiz;
qiqk = 2.0*(qixy*qkxy+qixz*qkxz+qiyz*qkyz) +
qixx*qkxx + qiyy*qkyy + qizz*qkzz;
// additional intermediates involving moments and distance
dirx = diy*zr - diz*yr;
diry = diz*xr - dix*zr;
dirz = dix*yr - diy*xr;
dkrx = dky*zr - dkz*yr;
dkry = dkz*xr - dkx*zr;
dkrz = dkx*yr - dky*xr;
dikx = diy*dkz - diz*dky;
diky = diz*dkx - dix*dkz;
dikz = dix*dky - diy*dkx;
qirx = qiz*yr - qiy*zr;
qiry = qix*zr - qiz*xr;
qirz = qiy*xr - qix*yr;
qkrx = qkz*yr - qky*zr;
qkry = qkx*zr - qkz*xr;
qkrz = qky*xr - qkx*yr;
qikx = qky*qiz - qkz*qiy;
qiky = qkz*qix - qkx*qiz;
qikz = qkx*qiy - qky*qix;
qixk = qixx*qkx + qixy*qky + qixz*qkz;
qiyk = qixy*qkx + qiyy*qky + qiyz*qkz;
qizk = qixz*qkx + qiyz*qky + qizz*qkz;
qkxi = qkxx*qix + qkxy*qiy + qkxz*qiz;
qkyi = qkxy*qix + qkyy*qiy + qkyz*qiz;
qkzi = qkxz*qix + qkyz*qiy + qkzz*qiz;
qikrx = qizk*yr - qiyk*zr;
qikry = qixk*zr - qizk*xr;
qikrz = qiyk*xr - qixk*yr;
qkirx = qkzi*yr - qkyi*zr;
qkiry = qkxi*zr - qkzi*xr;
qkirz = qkyi*xr - qkxi*yr;
diqkx = dix*qkxx + diy*qkxy + diz*qkxz;
diqky = dix*qkxy + diy*qkyy + diz*qkyz;
diqkz = dix*qkxz + diy*qkyz + diz*qkzz;
dkqix = dkx*qixx + dky*qixy + dkz*qixz;
dkqiy = dkx*qixy + dky*qiyy + dkz*qiyz;
dkqiz = dkx*qixz + dky*qiyz + dkz*qizz;
diqkrx = diqkz*yr - diqky*zr;
diqkry = diqkx*zr - diqkz*xr;
diqkrz = diqky*xr - diqkx*yr;
dkqirx = dkqiz*yr - dkqiy*zr;
dkqiry = dkqix*zr - dkqiz*xr;
dkqirz = dkqiy*xr - dkqix*yr;
dqikx = diy*qkz - diz*qky + dky*qiz - dkz*qiy -
2.0*(qixy*qkxz+qiyy*qkyz+qiyz*qkzz - qixz*qkxy-qiyz*qkyy-qizz*qkyz);
dqiky = diz*qkx - dix*qkz + dkz*qix - dkx*qiz -
2.0*(qixz*qkxx+qiyz*qkxy+qizz*qkxz - qixx*qkxz-qixy*qkyz-qixz*qkzz);
dqikz = dix*qky - diy*qkx + dkx*qiy - dky*qix -
2.0*(qixx*qkxy+qixy*qkyy+qixz*qkyz - qixy*qkxx-qiyy*qkxy-qiyz*qkxz);
// get reciprocal distance terms for this interaction
rr1 = felec / r;
rr3 = rr1 / r2;
rr5 = 3.0 * rr3 / r2;
rr7 = 5.0 * rr5 / r2;
rr9 = 7.0 * rr7 / r2;
rr11 = 9.0 * rr9 / r2;
// calculate the real space Ewald error function terms
ralpha = aewald * r;
bn[0] = erfc(ralpha) / r;
alsq2 = 2.0 * aewald*aewald;
alsq2n = 0.0;
if (aewald > 0.0) alsq2n = 1.0 / (MY_PIS*aewald);
exp2a = exp(-ralpha*ralpha);
for (k = 1; k < 6; k++) {
bfac = (double) (k+k-1);
alsq2n = alsq2 * alsq2n;
bn[k] = (bfac*bn[k-1]+alsq2n*exp2a) / r2;
}
for (k = 0; k < 6; k++) bn[k] *= felec;
// find damped multipole intermediates and energy value
if (!amoeba) {
corek = pcore[jclass];
alphak = palpha[jclass];
valk = pval[j];
term1 = corei*corek;
term1i = corek*vali;
term2i = corek*dir;
term3i = corek*qir;
term1k = corei*valk;
term2k = -corei*dkr;
term3k = corei*qkr;
term1ik = vali*valk;
term2ik = valk*dir - vali*dkr + dik;
term3ik = vali*qkr + valk*qir - dir*dkr + 2.0*(dkqi-diqk+qiqk);
term4ik = dir*qkr - dkr*qir - 4.0*qik;
term5ik = qir*qkr;
damppole(r,11,alphai,alphak,dmpi,dmpj,dmpij);
scalek = factor_mpole;
rr1i = bn[0] - (1.0-scalek*dmpi[0])*rr1;
rr3i = bn[1] - (1.0-scalek*dmpi[2])*rr3;
rr5i = bn[2] - (1.0-scalek*dmpi[4])*rr5;
rr7i = bn[3] - (1.0-scalek*dmpi[6])*rr7;
rr1k = bn[0] - (1.0-scalek*dmpj[0])*rr1;
rr3k = bn[1] - (1.0-scalek*dmpj[2])*rr3;
rr5k = bn[2] - (1.0-scalek*dmpj[4])*rr5;
rr7k = bn[3] - (1.0-scalek*dmpj[6])*rr7;
rr1ik = bn[0] - (1.0-scalek*dmpij[0])*rr1;
rr3ik = bn[1] - (1.0-scalek*dmpij[2])*rr3;
rr5ik = bn[2] - (1.0-scalek*dmpij[4])*rr5;
rr7ik = bn[3] - (1.0-scalek*dmpij[6])*rr7;
rr9ik = bn[4] - (1.0-scalek*dmpij[8])*rr9;
rr11ik = bn[5] - (1.0-scalek*dmpij[10])*rr11;
rr1 = bn[0] - (1.0-scalek)*rr1;
rr3 = bn[1] - (1.0-scalek)*rr3;
e = term1*rr1 + term4ik*rr7ik + term5ik*rr9ik +
term1i*rr1i + term1k*rr1k + term1ik*rr1ik +
term2i*rr3i + term2k*rr3k + term2ik*rr3ik +
term3i*rr5i + term3k*rr5k + term3ik*rr5ik;
// find damped multipole intermediates for force and torque
de = term1*rr3 + term4ik*rr9ik + term5ik*rr11ik +
term1i*rr3i + term1k*rr3k + term1ik*rr3ik +
term2i*rr5i + term2k*rr5k + term2ik*rr5ik +
term3i*rr7i + term3k*rr7k + term3ik*rr7ik;
term1 = -corek*rr3i - valk*rr3ik + dkr*rr5ik - qkr*rr7ik;
term2 = corei*rr3k + vali*rr3ik + dir*rr5ik + qir*rr7ik;
term3 = 2.0 * rr5ik;
term4 = -2.0 * (corek*rr5i+valk*rr5ik - dkr*rr7ik+qkr*rr9ik);
term5 = -2.0 * (corei*rr5k+vali*rr5ik + dir*rr7ik+qir*rr9ik);
term6 = 4.0 * rr7ik;
rr3 = rr3ik;
// find standard multipole intermediates and energy value
} else {
term1 = ci*ck;
term2 = ck*dir - ci*dkr + dik;
term3 = ci*qkr + ck*qir - dir*dkr + 2.0*(dkqi-diqk+qiqk);
term4 = dir*qkr - dkr*qir - 4.0*qik;
term5 = qir*qkr;
scalek = 1.0 - factor_mpole;
rr1 = bn[0] - scalek*rr1;
rr3 = bn[1] - scalek*rr3;
rr5 = bn[2] - scalek*rr5;
rr7 = bn[3] - scalek*rr7;
rr9 = bn[4] - scalek*rr9;
rr11 = bn[5] - scalek*rr11;
e = term1*rr1 + term2*rr3 + term3*rr5 + term4*rr7 + term5*rr9;
// find standard multipole intermediates for force and torque
de = term1*rr3 + term2*rr5 + term3*rr7 + term4*rr9 + term5*rr11;
term1 = -ck*rr3 + dkr*rr5 - qkr*rr7;
term2 = ci*rr3 + dir*rr5 + qir*rr7;
term3 = 2.0 * rr5;
term4 = 2.0 * (-ck*rr5+dkr*rr7-qkr*rr9);
term5 = 2.0 * (-ci*rr5-dir*rr7-qir*rr9);
term6 = 4.0 * rr7;
}
empole += e;
// compute the force components for this interaction
frcx = de*xr + term1*dix + term2*dkx + term3*(diqkx-dkqix) +
term4*qix + term5*qkx + term6*(qixk+qkxi);
frcy = de*yr + term1*diy + term2*dky + term3*(diqky-dkqiy) +
term4*qiy + term5*qky + term6*(qiyk+qkyi);
frcz = de*zr + term1*diz + term2*dkz + term3*(diqkz-dkqiz) +
term4*qiz + term5*qkz + term6*(qizk+qkzi);
// compute the torque components for this interaction
ttmi[0] = -rr3*dikx + term1*dirx + term3*(dqikx+dkqirx) -
term4*qirx - term6*(qikrx+qikx);
ttmi[1] = -rr3*diky + term1*diry + term3*(dqiky+dkqiry) -
term4*qiry - term6*(qikry+qiky);
ttmi[2] = -rr3*dikz + term1*dirz + term3*(dqikz+dkqirz) -
term4*qirz - term6*(qikrz+qikz);
ttmk[0] = rr3*dikx + term2*dkrx - term3*(dqikx+diqkrx) -
term5*qkrx - term6*(qkirx-qikx);
ttmk[1] = rr3*diky + term2*dkry - term3*(dqiky+diqkry) -
term5*qkry - term6*(qkiry-qiky);
ttmk[2] = rr3*dikz + term2*dkrz - term3*(dqikz+diqkrz) -
term5*qkrz - term6*(qkirz-qikz);
// increment force-based gradient and torque on first site
f[i][0] -= frcx;
f[i][1] -= frcy;
f[i][2] -= frcz;
tq[i][0] += ttmi[0];
tq[i][1] += ttmi[1];
tq[i][2] += ttmi[2];
// increment force-based gradient and torque on second site
f[j][0] += frcx;
f[j][1] += frcy;
f[j][2] += frcz;
tq[j][0] += ttmk[0];
tq[j][1] += ttmk[1];
tq[j][2] += ttmk[2];
// increment the virial due to pairwise Cartesian forces
if (vflag_global) {
vxx = -xr * frcx;
vxy = -0.5 * (yr*frcx+xr*frcy);
vxz = -0.5 * (zr*frcx+xr*frcz);
vyy = -yr * frcy;
vyz = -0.5 * (zr*frcy+yr*frcz);
vzz = -zr * frcz;
virmpole[0] -= vxx;
virmpole[1] -= vyy;
virmpole[2] -= vzz;
virmpole[3] -= vxy;
virmpole[4] -= vxz;
virmpole[5] -= vyz;
}
}
}
// reverse comm to sum torque from ghost atoms to owned atoms
crstyle = TORQUE;
comm->reverse_comm(this);
// resolve site torques then increment forces and virial
for (i = 0; i < nlocal; i++) {
torque2force(i,tq[i],fix,fiy,fiz,f);
if (!vflag_global) continue;
iz = zaxis2local[i];
ix = xaxis2local[i];
iy = yaxis2local[i];
xiz = x[iz][0] - x[i][0];
yiz = x[iz][1] - x[i][1];
ziz = x[iz][2] - x[i][2];
xix = x[ix][0] - x[i][0];
yix = x[ix][1] - x[i][1];
zix = x[ix][2] - x[i][2];
xiy = x[iy][0] - x[i][0];
yiy = x[iy][1] - x[i][1];
ziy = x[iy][2] - x[i][2];
vxx = xix*fix[0] + xiy*fiy[0] + xiz*fiz[0];
vxy = 0.5 * (yix*fix[0] + yiy*fiy[0] + yiz*fiz[0] +
xix*fix[1] + xiy*fiy[1] + xiz*fiz[1]);
vxz = 0.5 * (zix*fix[0] + ziy*fiy[0] + ziz*fiz[0] +
xix*fix[2] + xiy*fiy[2] + xiz*fiz[2]);
vyy = yix*fix[1] + yiy*fiy[1] + yiz*fiz[1];
vyz = 0.5 * (zix*fix[1] + ziy*fiy[1] + ziz*fiz[1] +
yix*fix[2] + yiy*fiy[2] + yiz*fiz[2]);
vzz = zix*fix[2] + ziy*fiy[2] + ziz*fiz[2];
virmpole[0] -= vxx;
virmpole[1] -= vyy;
virmpole[2] -= vzz;
virmpole[3] -= vxy;
virmpole[4] -= vxz;
virmpole[5] -= vyz;
}
}
/* ----------------------------------------------------------------------
multipole_kspace = KSpace portion of multipole interactions
adapted from Tinker emrecip1() routine
literature reference:
C. Sagui, L. G. Pedersen and T. A. Darden, "Towards an Accurate
Representation of Electrostatics in Classical Force Fields:
Efficient Implementation of Multipolar Interactions in
Biomolecular Simulations", Journal of Chemical Physics, 120,
73-87 (2004)
------------------------------------------------------------------------- */
void PairAmoeba::multipole_kspace()
{
int i,j,k,n,ix,iy,iz;
int nhalf1,nhalf2,nhalf3;
int nxlo,nxhi,nylo,nyhi,nzlo,nzhi;
double e,eterm,felec;
double r1,r2,r3;
double h1,h2,h3;
double f1,f2,f3;
double xix,yix,zix;
double xiy,yiy,ziy;
double xiz,yiz,ziz;
double vxx,vyy,vzz,vxy,vxz,vyz;
double volterm,denom;
double hsq,expterm;
double term,pterm;
double vterm,struc2;
double tem[3],fix[3],fiy[3],fiz[3];
// indices into the electrostatic field array
// decremented by 1 versus Fortran
int deriv1[10] = {1, 4, 7, 8, 10, 15, 17, 13, 14, 19};
int deriv2[10] = {2, 7, 5, 9, 13, 11, 18, 15, 19, 16};
int deriv3[10] = {3, 8, 9, 6, 14, 16, 12, 19, 17, 18};
// return if the Ewald coefficient is zero
if (aewald < 1.0e-6) return;
// owned atoms
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
double volbox = domain->prd[0] * domain->prd[1] * domain->prd[2];
felec = electric / am_dielectric;
// FFT moduli pre-computations
// set igrid for each atom and its B-spline coeffs
nfft1 = m_kspace->nx;
nfft2 = m_kspace->ny;
nfft3 = m_kspace->nz;
bsorder = m_kspace->order;
moduli();
bspline_fill();
// copy multipole info to Cartesian cmp
for (i = 0; i < nlocal; i++) {
cmp[i][0] = rpole[i][0];
cmp[i][1] = rpole[i][1];
cmp[i][2] = rpole[i][2];
cmp[i][3] = rpole[i][3];
cmp[i][4] = rpole[i][4];
cmp[i][5] = rpole[i][8];
cmp[i][6] = rpole[i][12];
cmp[i][7] = 2.0 * rpole[i][5];
cmp[i][8] = 2.0 * rpole[i][6];
cmp[i][9] = 2.0 * rpole[i][9];
}
// convert Cartesian multipoles to fractional multipoles
cmp_to_fmp(cmp,fmp);
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
double ***gridpre = (double ***) m_kspace->zero();
// map atoms to grid
grid_mpole(fmp,gridpre);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomp as 1d vector
double *gridfft = m_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
// zero virial accumulation variables
vxx = vyy = vzz = vxy = vxz = vyz = 0.0;
// perform convolution on K-space points I own
nhalf1 = (nfft1+1) / 2;
nhalf2 = (nfft2+1) / 2;
nhalf3 = (nfft3+1) / 2;
nxlo = m_kspace->nxlo_fft;
nxhi = m_kspace->nxhi_fft;
nylo = m_kspace->nylo_fft;
nyhi = m_kspace->nyhi_fft;
nzlo = m_kspace->nzlo_fft;
nzhi = m_kspace->nzhi_fft;
pterm = pow((MY_PI/aewald),2.0);
volterm = MY_PI * volbox;
n = 0;
for (k = nzlo; k <= nzhi; k++) {
for (j = nylo; j <= nyhi; j++) {
for (i = nxlo; i <= nxhi; i++) {
r1 = (i >= nhalf1) ? i-nfft1 : i;
r2 = (j >= nhalf2) ? j-nfft2 : j;
r3 = (k >= nhalf3) ? k-nfft3 : k;
h1 = recip[0][0]*r1 + recip[0][1]*r2 + recip[0][2]*r3; // matvec
h2 = recip[1][0]*r1 + recip[1][1]*r2 + recip[1][2]*r3;
h3 = recip[2][0]*r1 + recip[2][1]*r2 + recip[2][2]*r3;
hsq = h1*h1 + h2*h2 + h3*h3;
term = -pterm * hsq;
expterm = 0.0;
if (term > -50.0 && hsq != 0.0) {
denom = volterm*hsq*bsmod1[i]*bsmod2[j]*bsmod3[k];
expterm = exp(term) / denom;
struc2 = gridfft[n]*gridfft[n] + gridfft[n+1]*gridfft[n+1];
eterm = 0.5 * felec * expterm * struc2;
vterm = (2.0/hsq) * (1.0-term) * eterm;
vxx += h1*h1*vterm - eterm;
vyy += h2*h2*vterm - eterm;
vzz += h3*h3*vterm - eterm;
vxy += h1*h2*vterm;
vxz += h1*h3*vterm;
vyz += h2*h3*vterm;
}
gridfft[n] *= expterm;
gridfft[n+1] *= expterm;
n += 2;
}
}
}
// save multipole virial for use in polarization computation
vmsave[0] = vxx;
vmsave[1] = vyy;
vmsave[2] = vzz;
vmsave[3] = vxy;
vmsave[4] = vxz;
vmsave[5] = vyz;
// post-convolution operations including backward FFT
// gridppost = my portion of 3d grid in brick decomp w/ ghost values
double ***gridpost = (double ***) m_kspace->post_convolution();
// get potential
fphi_mpole(gridpost,fphi);
for (i = 0; i < nlocal; i++) {
for (k = 0; k < 20; k++)
fphi[i][k] *= felec;
}
// convert field from fractional to Cartesian
fphi_to_cphi(fphi,cphi);
// increment the permanent multipole energy and gradient
e = 0.0;
for (i = 0; i < nlocal; i++) {
f1 = 0.0;
f2 = 0.0;
f3 = 0.0;
for (k = 0; k < 10; k++) {
e += fmp[i][k]*fphi[i][k];
f1 += fmp[i][k]*fphi[i][deriv1[k]];
f2 += fmp[i][k]*fphi[i][deriv2[k]];
f3 += fmp[i][k]*fphi[i][deriv3[k]];
}
f1 *= nfft1;
f2 *= nfft2;
f3 *= nfft3;
h1 = recip[0][0]*f1 + recip[0][1]*f2 + recip[0][2]*f3; // matvec?
h2 = recip[1][0]*f1 + recip[1][1]*f2 + recip[1][2]*f3;
h3 = recip[2][0]*f1 + recip[2][1]*f2 + recip[2][2]*f3;
f[i][0] -= h1;
f[i][1] -= h2;
f[i][2] -= h3;
}
empole += 0.5*e;
// augment the permanent multipole virial contributions
if (vflag_global) {
for (i = 0; i < nlocal; i++) {
vxx = vxx - cmp[i][1]*cphi[i][1] - 2.0*cmp[i][4]*cphi[i][4] -
cmp[i][7]*cphi[i][7] - cmp[i][8]*cphi[i][8];
vxy = vxy - 0.5*(cmp[i][2]*cphi[i][1]+cmp[i][1]*cphi[i][2]) -
(cmp[i][4]+cmp[i][5])*cphi[i][7] - 0.5*cmp[i][7]*(cphi[i][4]+cphi[i][5]) -
0.5*(cmp[i][8]*cphi[i][9]+cmp[i][9]*cphi[i][8]);
vxz = vxz - 0.5*(cmp[i][3]*cphi[i][1]+cmp[i][1]*cphi[i][3]) -
(cmp[i][4]+cmp[i][6])*cphi[i][8] - 0.5*cmp[i][8]*(cphi[i][4]+cphi[i][6]) -
0.5*(cmp[i][7]*cphi[i][9]+cmp[i][9]*cphi[i][7]);
vyy = vyy - cmp[i][2]*cphi[i][2] - 2.0*cmp[i][5]*cphi[i][5] -
cmp[i][7]*cphi[i][7] - cmp[i][9]*cphi[i][9];
vyz = vyz - 0.5*(cmp[i][3]*cphi[i][2]+cmp[i][2]*cphi[i][3]) -
(cmp[i][5]+cmp[i][6])*cphi[i][9] - 0.5*cmp[i][9]*(cphi[i][5]+cphi[i][6]) -
0.5*(cmp[i][7]*cphi[i][8]+cmp[i][8]*cphi[i][7]);
vzz = vzz - cmp[i][3]*cphi[i][3] - 2.0*cmp[i][6]*cphi[i][6] -
cmp[i][8]*cphi[i][8] - cmp[i][9]*cphi[i][9];
}
}
// resolve site torques then increment forces and virial
for (i = 0; i < nlocal; i++) {
tem[0] = cmp[i][3]*cphi[i][2] - cmp[i][2]*cphi[i][3] +
2.0*(cmp[i][6]-cmp[i][5])*cphi[i][9] +
cmp[i][8]*cphi[i][7] + cmp[i][9]*cphi[i][5] -
cmp[i][7]*cphi[i][8] - cmp[i][9]*cphi[i][6];
tem[1] = cmp[i][1]*cphi[i][3] - cmp[i][3]*cphi[i][1] +
2.0*(cmp[i][4]-cmp[i][6])*cphi[i][8] +
cmp[i][7]*cphi[i][9] + cmp[i][8]*cphi[i][6] -
cmp[i][8]*cphi[i][4] - cmp[i][9]*cphi[i][7];
tem[2] = cmp[i][2]*cphi[i][1] - cmp[i][1]*cphi[i][2] +
2.0*(cmp[i][5]-cmp[i][4])*cphi[i][7] +
cmp[i][7]*cphi[i][4] + cmp[i][9]*cphi[i][8] -
cmp[i][7]*cphi[i][5] - cmp[i][8]*cphi[i][9];
torque2force(i,tem,fix,fiy,fiz,f);
if (vflag_global) {
iz = zaxis2local[i];
ix = xaxis2local[i];
iy = yaxis2local[i];
xiz = x[iz][0] - x[i][0];
yiz = x[iz][1] - x[i][1];
ziz = x[iz][2] - x[i][2];
xix = x[ix][0] - x[i][0];
yix = x[ix][1] - x[i][1];
zix = x[ix][2] - x[i][2];
xiy = x[iy][0] - x[i][0];
yiy = x[iy][1] - x[i][1];
ziy = x[iy][2] - x[i][2];
vxx += xix*fix[0] + xiy*fiy[0] + xiz*fiz[0];
vxy += 0.5*(yix*fix[0] + yiy*fiy[0] + yiz*fiz[0] +
xix*fix[1] + xiy*fiy[1] + xiz*fiz[1]);
vxz += 0.5*(zix*fix[0] + ziy*fiy[0] + ziz*fiz[0] +
xix*fix[2] + xiy*fiy[2] + xiz*fiz[2]);
vyy += yix*fix[1] + yiy*fiy[1] + yiz*fiz[1];
vyz += 0.5*(zix*fix[1] + ziy*fiy[1] + ziz*fiz[1] +
yix*fix[2] + yiy*fiy[2] + yiz*fiz[2]);
vzz += zix*fix[2] + ziy*fiy[2] + ziz*fiz[2];
}
}
// increment total internal virial tensor components
if (vflag_global) {
virmpole[0] -= vxx;
virmpole[1] -= vyy;
virmpole[2] -= vzz;
virmpole[3] -= vxy;
virmpole[4] -= vxz;
virmpole[5] -= vyz;
}
}
/* ----------------------------------------------------------------------
damppole generates coefficients for the charge penetration
damping function for powers of the interatomic distance
literature references:
L. V. Slipchenko and M. S. Gordon, "Electrostatic Energy in the
Effective Fragment Potential Method: Theory and Application to
the Benzene Dimer", Journal of Computational Chemistry, 28,
276-291 (2007) [Gordon f1 and f2 models]
J. A. Rackers, Q. Wang, C. Liu, J.-P. Piquemal, P. Ren and
J. W. Ponder, "An Optimized Charge Penetration Model for Use with
the AMOEBA Force Field", Physical Chemistry Chemical Physics, 19,
276-291 (2017)
------------------------------------------------------------------------- */
void PairAmoeba::damppole(double r, int rorder, double alphai, double alphak,
double *dmpi, double *dmpk, double *dmpik)
{
double termi,termk;
double termi2,termk2;
double alphai2,alphak2;
double eps,diff;
double expi,expk;
double dampi,dampk;
double dampi2,dampi3;
double dampi4,dampi5;
double dampi6,dampi7;
double dampi8;
double dampk2,dampk3;
double dampk4,dampk5;
double dampk6;
// compute tolerance and exponential damping factors
eps = 0.001;
diff = fabs(alphai-alphak);
dampi = alphai * r;
dampk = alphak * r;
expi = exp(-dampi);
expk = exp(-dampk);
// core-valence charge penetration damping for Gordon f1
dampi2 = dampi * dampi;
dampi3 = dampi * dampi2;
dampi4 = dampi2 * dampi2;
dampi5 = dampi2 * dampi3;
dmpi[0] = 1.0 - (1.0 + 0.5*dampi)*expi;
dmpi[2] = 1.0 - (1.0 + dampi + 0.5*dampi2)*expi;
dmpi[4] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0)*expi;
dmpi[6] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0 + dampi4/30.0)*expi;
dmpi[8] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
4.0*dampi4/105.0 + dampi5/210.0)*expi;
if (diff < eps) {
dmpk[0] = dmpi[0];
dmpk[2] = dmpi[2];
dmpk[4] = dmpi[4];
dmpk[6] = dmpi[6];
dmpk[8] = dmpi[8];
} else {
dampk2 = dampk * dampk;
dampk3 = dampk * dampk2;
dampk4 = dampk2 * dampk2;
dampk5 = dampk2 * dampk3;
dmpk[0] = 1.0 - (1.0 + 0.5*dampk)*expk;
dmpk[2] = 1.0 - (1.0 + dampk + 0.5*dampk2)*expk;
dmpk[4] = 1.0 - (1.0 + dampk + 0.5*dampk2 + dampk3/6.0)*expk;
dmpk[6] = 1.0 - (1.0 + dampk + 0.5*dampk2 + dampk3/6.0 + dampk4/30.0)*expk;
dmpk[8] = 1.0 - (1.0 + dampk + 0.5*dampk2 + dampk3/6.0 +
4.0*dampk4/105.0 + dampk5/210.0)*expk;
}
// valence-valence charge penetration damping for Gordon f1
if (diff < eps) {
dampi6 = dampi3 * dampi3;
dampi7 = dampi3 * dampi4;
dmpik[0] = 1.0 - (1.0 + 11.0*dampi/16.0 + 3.0*dampi2/16.0 +
dampi3/48.0)*expi;
dmpik[2] = 1.0 - (1.0 + dampi + 0.5*dampi2 +
7.0*dampi3/48.0 + dampi4/48.0)*expi;
dmpik[4] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
dampi4/24.0 + dampi5/144.0)*expi;
dmpik[6] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
dampi4/24.0 + dampi5/120.0 + dampi6/720.0)*expi;
dmpik[8] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
dampi4/24.0 + dampi5/120.0 + dampi6/720.0 +
dampi7/5040.0)*expi;
if (rorder >= 11) {
dampi8 = dampi4 * dampi4;
dmpik[10] = 1.0 - (1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
dampi4/24.0 + dampi5/120.0 + dampi6/720.0 +
dampi7/5040.0 + dampi8/45360.0)*expi;
}
} else {
alphai2 = alphai * alphai;
alphak2 = alphak * alphak;
termi = alphak2 / (alphak2-alphai2);
termk = alphai2 / (alphai2-alphak2);
termi2 = termi * termi;
termk2 = termk * termk;
dmpik[0] = 1.0 - termi2*(1.0 + 2.0*termk + 0.5*dampi)*expi -
termk2*(1.0 + 2.0*termi + 0.5*dampk)*expk;
dmpik[2] = 1.0 - termi2*(1.0+dampi+0.5*dampi2)*expi -
termk2*(1.0+dampk+0.5*dampk2)*expk -
2.0*termi2*termk*(1.0+dampi)*expi -
2.0*termk2*termi*(1.0+dampk)*expk;
dmpik[4] = 1.0 - termi2*(1.0 + dampi + 0.5*dampi2 + dampi3/6.0)*expi -
termk2*(1.0 + dampk + 0.5*dampk2 + dampk3/6.0)*expk -
2.0*termi2*termk*(1.0 + dampi + dampi2/3.0)*expi -
2.0*termk2*termi*(1.0 + dampk + dampk2/3.0)*expk;
dmpik[6] = 1.0 - termi2*(1.0 + dampi + 0.5*dampi2 +
dampi3/6.0 + dampi4/30.0)*expi -
termk2*(1.0 + dampk + 0.5*dampk2 + dampk3/6.0 + dampk4/30.0)*expk -
2.0*termi2*termk*(1.0 + dampi + 2.0*dampi2/5.0 + dampi3/15.0)*expi -
2.0*termk2*termi*(1.0 + dampk + 2.0*dampk2/5.0 + dampk3/15.0)*expk;
dmpik[8] = 1.0 - termi2*(1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
4.0*dampi4/105.0 + dampi5/210.0)*expi -
termk2*(1.0 + dampk + 0.5*dampk2 + dampk3/6.0 +
4.0*dampk4/105.0 + dampk5/210.0)*expk -
2.0*termi2*termk*(1.0 + dampi + 3.0*dampi2/7.0 +
2.0*dampi3/21.0 + dampi4/105.0)*expi -
2.0*termk2*termi*(1.0 + dampk + 3.0*dampk2/7.0 +
2.0*dampk3/21.0 + dampk4/105.0)*expk;
if (rorder >= 11) {
dampi6 = dampi3 * dampi3;
dampk6 = dampk3 * dampk3;
dmpik[10] = 1.0 - termi2*(1.0 + dampi + 0.5*dampi2 + dampi3/6.0 +
5.0*dampi4/126.0 + 2.0*dampi5/315.0 +
dampi6/1890.0)*expi -
termk2*(1.0 + dampk + 0.5*dampk2 + dampk3/6.0 + 5.0*dampk4/126.0 +
2.0*dampk5/315.0 + dampk6/1890.0)*expk -
2.0*termi2*termk*(1.0 + dampi + 4.0*dampi2/9.0 + dampi3/9.0 +
dampi4/63.0 + dampi5/945.0)*expi -
2.0*termk2*termi*(1.0 + dampk + 4.0*dampk2/9.0 + dampk3/9.0 +
dampk4/63.0 + dampk5/945.0)*expk;
}
}
}

2161
src/AMOEBA/amoeba_polar.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,569 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_amoeba.h"
#include "atom.h"
#include "comm.h"
#include "memory.h"
#include "neigh_list.h"
#include <cmath>
using namespace LAMMPS_NS;
enum{FIELD,ZRSD,TORQUE,UFLD}; // reverse comm
enum{VDWL,REPULSE,QFER,DISP,MPOLE,POLAR,USOLV,DISP_LONG,MPOLE_LONG,POLAR_LONG};
/* ----------------------------------------------------------------------
repulsion = Pauli repulsion interactions
adapted from Tinker erepel1b() routine
------------------------------------------------------------------------- */
void PairAmoeba::repulsion()
{
int i,j,k,ii,jj,itype,jtype;
int ix,iy,iz;
double e;
double eterm,de;
double xi,yi,zi;
double xr,yr,zr;
double xix,yix,zix;
double xiy,yiy,ziy;
double xiz,yiz,ziz;
double r,r2,r3,r4,r5;
double rr1,rr3,rr5;
double rr7,rr9,rr11;
double dix,diy,diz;
double qixx,qixy,qixz;
double qiyy,qiyz,qizz;
double dkx,dky,dkz;
double qkxx,qkxy,qkxz;
double qkyy,qkyz,qkzz;
double dir,dkr,dik,qik;
double qix,qiy,qiz,qir;
double qkx,qky,qkz,qkr;
double diqk,dkqi,qiqk;
double dirx,diry,dirz;
double dkrx,dkry,dkrz;
double dikx,diky,dikz;
double qirx,qiry,qirz;
double qkrx,qkry,qkrz;
double qikx,qiky,qikz;
double qixk,qiyk,qizk;
double qkxi,qkyi,qkzi;
double qikrx,qikry,qikrz;
double qkirx,qkiry,qkirz;
double diqkx,diqky,diqkz;
double dkqix,dkqiy,dkqiz;
double diqkrx,diqkry,diqkrz;
double dkqirx,dkqiry,dkqirz;
double dqikx,dqiky,dqikz;
double term1,term2,term3;
double term4,term5,term6;
double sizi,sizk,sizik;
double vali,valk;
double dmpi,dmpk;
double frcx,frcy,frcz;
double taper,dtaper;
double vxx,vyy,vzz;
double vxy,vxz,vyz;
double factor_repel;
double ttri[3],ttrk[3];
double fix[3],fiy[3],fiz[3];
double dmpik[11];
int inum,jnum;
int *ilist,*jlist,*numneigh,**firstneigh;
// set cutoffs and taper coeffs
choose(REPULSE);
// owned atoms
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
// zero repulsion torque on owned + ghost atoms
int nall = nlocal + atom->nghost;
for (i = 0; i < nall; i++) {
tq[i][0] = 0.0;
tq[i][1] = 0.0;
tq[i][2] = 0.0;
}
// neigh list
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// double loop over owned atoms and neighbors
// DEBUG
//FILE *fp = fopen("lammps.dat","w");
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = amtype[i];
jlist = firstneigh[i];
jnum = numneigh[i];
xi = x[i][0];
yi = x[i][1];
zi = x[i][2];
sizi = sizpr[itype];
dmpi = dmppr[itype];
vali = elepr[itype];
dix = rpole[i][1];
diy = rpole[i][2];
diz = rpole[i][3];
qixx = rpole[i][4];
qixy = rpole[i][5];
qixz = rpole[i][6];
qiyy = rpole[i][8];
qiyz = rpole[i][9];
qizz = rpole[i][12];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_repel = special_repel[sbmask15(j)];
if (factor_repel == 0.0) continue;
j &= NEIGHMASK15;
xr = x[j][0] - xi;
yr = x[j][1] - yi;
zr = x[j][2] - zi;
r2 = xr*xr + yr*yr + zr*zr;
if (r2 > off2) continue;
jtype = amtype[j];
r = sqrt(r2);
sizk = sizpr[jtype];
dmpk = dmppr[jtype];
valk = elepr[jtype];
dkx = rpole[j][1];
dky = rpole[j][2];
dkz = rpole[j][3];
qkxx = rpole[j][4];
qkxy = rpole[j][5];
qkxz = rpole[j][6];
qkyy = rpole[j][8];
qkyz = rpole[j][9];
qkzz = rpole[j][12];
// intermediates involving moments and separation distance
dir = dix*xr + diy*yr + diz*zr;
qix = qixx*xr + qixy*yr + qixz*zr;
qiy = qixy*xr + qiyy*yr + qiyz*zr;
qiz = qixz*xr + qiyz*yr + qizz*zr;
qir = qix*xr + qiy*yr + qiz*zr;
dkr = dkx*xr + dky*yr + dkz*zr;
qkx = qkxx*xr + qkxy*yr + qkxz*zr;
qky = qkxy*xr + qkyy*yr + qkyz*zr;
qkz = qkxz*xr + qkyz*yr + qkzz*zr;
qkr = qkx*xr + qky*yr + qkz*zr;
dik = dix*dkx + diy*dky + diz*dkz;
qik = qix*qkx + qiy*qky + qiz*qkz;
diqk = dix*qkx + diy*qky + diz*qkz;
dkqi = dkx*qix + dky*qiy + dkz*qiz;
qiqk = 2.0*(qixy*qkxy+qixz*qkxz+qiyz*qkyz) +
qixx*qkxx + qiyy*qkyy + qizz*qkzz;
// additional intermediates involving moments and distance
dirx = diy*zr - diz*yr;
diry = diz*xr - dix*zr;
dirz = dix*yr - diy*xr;
dkrx = dky*zr - dkz*yr;
dkry = dkz*xr - dkx*zr;
dkrz = dkx*yr - dky*xr;
dikx = diy*dkz - diz*dky;
diky = diz*dkx - dix*dkz;
dikz = dix*dky - diy*dkx;
qirx = qiz*yr - qiy*zr;
qiry = qix*zr - qiz*xr;
qirz = qiy*xr - qix*yr;
qkrx = qkz*yr - qky*zr;
qkry = qkx*zr - qkz*xr;
qkrz = qky*xr - qkx*yr;
qikx = qky*qiz - qkz*qiy;
qiky = qkz*qix - qkx*qiz;
qikz = qkx*qiy - qky*qix;
qixk = qixx*qkx + qixy*qky + qixz*qkz;
qiyk = qixy*qkx + qiyy*qky + qiyz*qkz;
qizk = qixz*qkx + qiyz*qky + qizz*qkz;
qkxi = qkxx*qix + qkxy*qiy + qkxz*qiz;
qkyi = qkxy*qix + qkyy*qiy + qkyz*qiz;
qkzi = qkxz*qix + qkyz*qiy + qkzz*qiz;
qikrx = qizk*yr - qiyk*zr;
qikry = qixk*zr - qizk*xr;
qikrz = qiyk*xr - qixk*yr;
qkirx = qkzi*yr - qkyi*zr;
qkiry = qkxi*zr - qkzi*xr;
qkirz = qkyi*xr - qkxi*yr;
diqkx = dix*qkxx + diy*qkxy + diz*qkxz;
diqky = dix*qkxy + diy*qkyy + diz*qkyz;
diqkz = dix*qkxz + diy*qkyz + diz*qkzz;
dkqix = dkx*qixx + dky*qixy + dkz*qixz;
dkqiy = dkx*qixy + dky*qiyy + dkz*qiyz;
dkqiz = dkx*qixz + dky*qiyz + dkz*qizz;
diqkrx = diqkz*yr - diqky*zr;
diqkry = diqkx*zr - diqkz*xr;
diqkrz = diqky*xr - diqkx*yr;
dkqirx = dkqiz*yr - dkqiy*zr;
dkqiry = dkqix*zr - dkqiz*xr;
dkqirz = dkqiy*xr - dkqix*yr;
dqikx = diy*qkz - diz*qky + dky*qiz - dkz*qiy -
2.0*(qixy*qkxz+qiyy*qkyz+qiyz*qkzz-qixz*qkxy-qiyz*qkyy-qizz*qkyz);
dqiky = diz*qkx - dix*qkz + dkz*qix - dkx*qiz -
2.0*(qixz*qkxx+qiyz*qkxy+qizz*qkxz-qixx*qkxz-qixy*qkyz-qixz*qkzz);
dqikz = dix*qky - diy*qkx + dkx*qiy - dky*qix -
2.0*(qixx*qkxy+qixy*qkyy+qixz*qkyz-qixy*qkxx-qiyy*qkxy-qiyz*qkxz);
// get reciprocal distance terms for this interaction
rr1 = 1.0 / r;
rr3 = rr1 / r2;
rr5 = 3.0 * rr3 / r2;
rr7 = 5.0 * rr5 / r2;
rr9 = 7.0 * rr7 / r2;
rr11 = 9.0 * rr9 / r2;
// get damping coefficients for the Pauli repulsion energy
damprep(r,r2,rr1,rr3,rr5,rr7,rr9,rr11,11,dmpi,dmpk,dmpik);
// calculate intermediate terms needed for the energy
term1 = vali*valk;
term2 = valk*dir - vali*dkr + dik;
term3 = vali*qkr + valk*qir - dir*dkr + 2.0*(dkqi-diqk+qiqk);
term4 = dir*qkr - dkr*qir - 4.0*qik;
term5 = qir*qkr;
eterm = term1*dmpik[0] + term2*dmpik[2] +
term3*dmpik[4] + term4*dmpik[6] + term5*dmpik[8];
// compute the Pauli repulsion energy for this interaction
sizik = sizi * sizk * factor_repel;
e = sizik * eterm * rr1;
// calculate intermediate terms for force and torque
de = term1*dmpik[2] + term2*dmpik[4] + term3*dmpik[6] +
term4*dmpik[8] + term5*dmpik[10];
term1 = -valk*dmpik[2] + dkr*dmpik[4] - qkr*dmpik[6];
term2 = vali*dmpik[2] + dir*dmpik[4] + qir*dmpik[6];
term3 = 2.0 * dmpik[4];
term4 = 2.0 * (-valk*dmpik[4] + dkr*dmpik[6] - qkr*dmpik[8]);
term5 = 2.0 * (-vali*dmpik[4] - dir*dmpik[6] - qir*dmpik[8]);
term6 = 4.0 * dmpik[6];
// compute the force components for this interaction
frcx = de*xr + term1*dix + term2*dkx + term3*(diqkx-dkqix) +
term4*qix + term5*qkx + term6*(qixk+qkxi);
frcy = de*yr + term1*diy + term2*dky + term3*(diqky-dkqiy) +
term4*qiy + term5*qky + term6*(qiyk+qkyi);
frcz = de*zr + term1*diz + term2*dkz + term3*(diqkz-dkqiz) +
term4*qiz + term5*qkz + term6*(qizk+qkzi);
frcx = frcx*rr1 + eterm*rr3*xr;
frcy = frcy*rr1 + eterm*rr3*yr;
frcz = frcz*rr1 + eterm*rr3*zr;
frcx = sizik * frcx;
frcy = sizik * frcy;
frcz = sizik * frcz;
// compute the torque components for this interaction
ttri[0] = -dmpik[2]*dikx + term1*dirx + term3*(dqikx+dkqirx) -
term4*qirx - term6*(qikrx+qikx);
ttri[1] = -dmpik[2]*diky + term1*diry + term3*(dqiky+dkqiry) -
term4*qiry - term6*(qikry+qiky);
ttri[2] = -dmpik[2]*dikz + term1*dirz + term3*(dqikz+dkqirz) -
term4*qirz - term6*(qikrz+qikz);
ttrk[0] = dmpik[2]*dikx + term2*dkrx - term3*(dqikx+diqkrx) -
term5*qkrx - term6*(qkirx-qikx);
ttrk[1] = dmpik[2]*diky + term2*dkry - term3*(dqiky+diqkry) -
term5*qkry - term6*(qkiry-qiky);
ttrk[2] = dmpik[2]*dikz + term2*dkrz - term3*(dqikz+diqkrz) -
term5*qkrz - term6*(qkirz-qikz);
ttri[0] = sizik * ttri[0] * rr1;
ttri[1] = sizik * ttri[1] * rr1;
ttri[2] = sizik * ttri[2] * rr1;
ttrk[0] = sizik * ttrk[0] * rr1;
ttrk[1] = sizik * ttrk[1] * rr1;
ttrk[2] = sizik * ttrk[2] * rr1;
// use energy switching if near the cutoff distance
if (r2 > cut2) {
r3 = r2 * r;
r4 = r2 * r2;
r5 = r2 * r3;
taper = c5*r5 + c4*r4 + c3*r3 + c2*r2 + c1*r + c0;
dtaper = 5.0*c5*r4 + 4.0*c4*r3 + 3.0*c3*r2 + 2.0*c2*r + c1;
dtaper *= e * rr1;
e *= taper;
frcx = frcx*taper - dtaper*xr;
frcy = frcy*taper - dtaper*yr;
frcz = frcz*taper - dtaper*zr;
for (k = 0; k < 3; k++) {
ttri[k] *= taper;
ttrk[k] *= taper;
}
}
erepulse += e;
// increment force-based gradient and torque on atom I
f[i][0] -= frcx;
f[i][1] -= frcy;
f[i][2] -= frcz;
tq[i][0] += ttri[0];
tq[i][1] += ttri[1];
tq[i][2] += ttri[2];
// increment force-based gradient and torque on atom J
f[j][0] += frcx;
f[j][1] += frcy;
f[j][2] += frcz;
tq[j][0] += ttrk[0];
tq[j][1] += ttrk[1];
tq[j][2] += ttrk[2];
// increment the virial due to pairwise Cartesian forces
if (vflag_global) {
vxx = -xr * frcx;
vxy = -0.5 * (yr*frcx+xr*frcy);
vxz = -0.5 * (zr*frcx+xr*frcz);
vyy = -yr * frcy;
vyz = -0.5 * (zr*frcy+yr*frcz);
vzz = -zr * frcz;
virrepulse[0] -= vxx;
virrepulse[1] -= vyy;
virrepulse[2] -= vzz;
virrepulse[3] -= vxy;
virrepulse[4] -= vxz;
virrepulse[5] -= vyz;
}
}
}
// reverse comm to sum torque from ghost atoms to owned atoms
crstyle = TORQUE;
comm->reverse_comm(this);
// resolve site torques then increment forces and virial
for (i = 0; i < nlocal; i++) {
torque2force(i,tq[i],fix,fiy,fiz,f);
if (!vflag_global) continue;
iz = zaxis2local[i];
ix = xaxis2local[i];
iy = yaxis2local[i];
xiz = x[iz][0] - x[i][0];
yiz = x[iz][1] - x[i][1];
ziz = x[iz][2] - x[i][2];
xix = x[ix][0] - x[i][0];
yix = x[ix][1] - x[i][1];
zix = x[ix][2] - x[i][2];
xiy = x[iy][0] - x[i][0];
yiy = x[iy][1] - x[i][1];
ziy = x[iy][2] - x[i][2];
vxx = xix*fix[0] + xiy*fiy[0] + xiz*fiz[0];
vyy = yix*fix[1] + yiy*fiy[1] + yiz*fiz[1];
vzz = zix*fix[2] + ziy*fiy[2] + ziz*fiz[2];
vxy = 0.5 * (yix*fix[0] + yiy*fiy[0] + yiz*fiz[0] +
xix*fix[1] + xiy*fiy[1] + xiz*fiz[1]);
vxz = 0.5 * (zix*fix[0] + ziy*fiy[0] + ziz*fiz[0] +
xix*fix[2] + xiy*fiy[2] + xiz*fiz[2]);
vyz = 0.5 * (zix*fix[1] + ziy*fiy[1] + ziz*fiz[1] +
yix*fix[2] + yiy*fiy[2] + yiz*fiz[2]);
virrepulse[0] -= vxx;
virrepulse[1] -= vyy;
virrepulse[2] -= vzz;
virrepulse[3] -= vxy;
virrepulse[4] -= vxz;
virrepulse[5] -= vyz;
}
}
/* ----------------------------------------------------------------------
damprep generates coefficients for the Pauli repulsion
damping function for powers of the interatomic distance
literature reference:
J. A. Rackers and J. W. Ponder, "Classical Pauli Repulsion: An
Anisotropic, Atomic Multipole Model", Journal of Chemical Physics,
150, 084104 (2019)
------------------------------------------------------------------------- */
void PairAmoeba::damprep(double r, double r2, double rr1, double rr3,
double rr5, double rr7, double rr9, double rr11,
int rorder, double dmpi, double dmpk, double *dmpik)
{
double r3,r4;
double r5,r6,r7,r8;
double s,ds,d2s;
double d3s,d4s,d5s;
double dmpi2,dmpk2;
double dmpi22,dmpi23;
double dmpi24,dmpi25;
double dmpi26,dmpi27;
double dmpk22,dmpk23;
double dmpk24,dmpk25;
double dmpk26;
double eps,diff;
double expi,expk;
double dampi,dampk;
double pre,term,tmp;
// compute tolerance value for damping exponents
eps = 0.001;
diff = fabs(dmpi-dmpk);
// treat the case where alpha damping exponents are equal
if (diff < eps) {
r3 = r2 * r;
r4 = r3 * r;
r5 = r4 * r;
r6 = r5 * r;
r7 = r6 * r;
dmpi2 = 0.5 * dmpi;
dampi = dmpi2 * r;
expi = exp(-dampi);
dmpi22 = dmpi2 * dmpi2;
dmpi23 = dmpi22 * dmpi2;
dmpi24 = dmpi23 * dmpi2;
dmpi25 = dmpi24 * dmpi2;
dmpi26 = dmpi25 * dmpi2;
pre = 128.0;
s = (r + dmpi2*r2 + dmpi22*r3/3.0) * expi;
ds = (dmpi22*r3 + dmpi23*r4) * expi / 3.0;
d2s = dmpi24 * expi * r5 / 9.0;
d3s = dmpi25 * expi * r6 / 45.0;
d4s = (dmpi25*r6 + dmpi26*r7) * expi / 315.0;
if (rorder >= 11) {
r8 = r7 * r;
dmpi27 = dmpi2 * dmpi26;
d5s = (dmpi25*r6 + dmpi26*r7 + dmpi27*r8/3.0) * expi / 945.0;
} else d5s = 0.0;
// treat the case where alpha damping exponents are unequal
} else {
r3 = r2 * r;
r4 = r3 * r;
r5 = r4 * r;
dmpi2 = 0.5 * dmpi;
dmpk2 = 0.5 * dmpk;
dampi = dmpi2 * r;
dampk = dmpk2 * r;
expi = exp(-dampi);
expk = exp(-dampk);
dmpi22 = dmpi2 * dmpi2;
dmpi23 = dmpi22 * dmpi2;
dmpi24 = dmpi23 * dmpi2;
dmpi25 = dmpi24 * dmpi2;
dmpk22 = dmpk2 * dmpk2;
dmpk23 = dmpk22 * dmpk2;
dmpk24 = dmpk23 * dmpk2;
dmpk25 = dmpk24 * dmpk2;
term = dmpi22 - dmpk22;
pre = 8192.0 * dmpi23 * dmpk23 / pow(term,4.0);
tmp = 4.0 * dmpi2 * dmpk2 / term;
s = (dampi-tmp)*expk + (dampk+tmp)*expi;
ds = (dmpi2*dmpk2*r2 - 4.0*dmpi2*dmpk22*r/term -
4.0*dmpi2*dmpk2/term) * expk +
(dmpi2*dmpk2*r2 + 4.0*dmpi22*dmpk2*r/term + 4.0*dmpi2*dmpk2/term) * expi;
d2s = (dmpi2*dmpk2*r2/3.0 + dmpi2*dmpk22*r3/3.0 -
(4.0/3.0)*dmpi2*dmpk23*r2/term - 4.0*dmpi2*dmpk22*r/term -
4.0*dmpi2*dmpk2/term) * expk +
(dmpi2*dmpk2*r2/3.0 + dmpi22*dmpk2*r3/3.0 +
(4.0/3.0)*dmpi23*dmpk2*r2/term + 4.0*dmpi22*dmpk2*r/term +
4.0*dmpi2*dmpk2/term) * expi;
d3s = (dmpi2*dmpk23*r4/15.0 + dmpi2*dmpk22*r3/5.0 + dmpi2*dmpk2*r2/5.0 -
(4.0/15.0)*dmpi2*dmpk24*r3/term - (8.0/5.0)*dmpi2*dmpk23*r2/term -
4.0*dmpi2*dmpk22*r/term - 4.0/term*dmpi2*dmpk2) * expk +
(dmpi23*dmpk2*r4/15.0 + dmpi22*dmpk2*r3/5.0 + dmpi2*dmpk2*r2/5.0 +
(4.0/15.0)*dmpi24*dmpk2*r3/term + (8.0/5.0)*dmpi23*dmpk2*r2/term +
4.0*dmpi22*dmpk2*r/term + 4.0/term*dmpi2*dmpk2) * expi;
d4s = (dmpi2*dmpk24*r5/105.0 + (2.0/35.0)*dmpi2*dmpk23*r4 +
dmpi2*dmpk22*r3/7.0 + dmpi2*dmpk2*r2/7.0 -
(4.0/105.0)*dmpi2*dmpk25*r4/term - (8.0/21.0)*dmpi2*dmpk24*r3/term -
(12.0/7.0)*dmpi2*dmpk23*r2/term - 4.0*dmpi2*dmpk22*r/term -
4.0*dmpi2*dmpk2/term) * expk +
(dmpi24*dmpk2*r5/105.0 + (2.0/35.0)*dmpi23*dmpk2*r4 +
dmpi22*dmpk2*r3/7.0 + dmpi2*dmpk2*r2/7.0 +
(4.0/105.0)*dmpi25*dmpk2*r4/term + (8.0/21.0)*dmpi24*dmpk2*r3/term +
(12.0/7.0)*dmpi23*dmpk2*r2/term + 4.0*dmpi22*dmpk2*r/term +
4.0*dmpi2*dmpk2/term) * expi;
if (rorder >= 11) {
r6 = r5 * r;
dmpi26 = dmpi25 * dmpi2;
dmpk26 = dmpk25 * dmpk2;
d5s = (dmpi2*dmpk25*r6/945.0 + (2.0/189.0)*dmpi2*dmpk24*r5 +
dmpi2*dmpk23*r4/21.0 + dmpi2*dmpk22*r3/9.0 + dmpi2*dmpk2*r2/9.0 -
(4.0/945.0)*dmpi2*dmpk26*r5/term -
(4.0/63.0)*dmpi2*dmpk25*r4/term - (4.0/9.0)*dmpi2*dmpk24*r3/term -
(16.0/9.0)*dmpi2*dmpk23*r2/term - 4.0*dmpi2*dmpk22*r/term -
4.0*dmpi2*dmpk2/term) * expk +
(dmpi25*dmpk2*r6/945.0 + (2.0/189.0)*dmpi24*dmpk2*r5 +
dmpi23*dmpk2*r4/21.0 + dmpi22*dmpk2*r3/9.0 + dmpi2*dmpk2*r2/9.0 +
(4.0/945.0)*dmpi26*dmpk2*r5/term + (4.0/63.0)*dmpi25*dmpk2*r4/term +
(4.0/9.0)*dmpi24*dmpk2*r3/term + (16.0/9.0)*dmpi23*dmpk2*r2/term +
4.0*dmpi22*dmpk2*r/term + 4.0*dmpi2*dmpk2/term) * expi;
} else d5s = 0.0;
}
// convert partial derivatives into full derivatives
s = s * rr1;
ds = ds * rr3;
d2s = d2s * rr5;
d3s = d3s * rr7;
d4s = d4s * rr9;
d5s = d5s * rr11;
dmpik[0] = 0.5 * pre * s * s;
dmpik[2] = pre * s * ds;
dmpik[4] = pre * (s*d2s + ds*ds);
dmpik[6] = pre * (s*d3s + 3.0*ds*d2s);
dmpik[8] = pre * (s*d4s + 4.0*ds*d3s + 3.0*d2s*d2s);
if (rorder >= 11) dmpik[10] = pre * (s*d5s + 5.0*ds*d4s + 10.0*d2s*d3s);
}

1135
src/AMOEBA/amoeba_utils.cpp Normal file

File diff suppressed because it is too large Load Diff

866
src/AMOEBA/angle_amoeba.cpp Normal file
View File

@ -0,0 +1,866 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "angle_amoeba.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "neighbor.h"
#include "pair.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleAmoeba::AngleAmoeba(LAMMPS *lmp) : Angle(lmp)
{
pflag = nullptr;
ubflag = nullptr;
theta0 = nullptr;
k2 = nullptr;
k3 = nullptr;
k4 = nullptr;
k5 = nullptr;
k6 = nullptr;
ba_k1 = nullptr;
ba_k2 = nullptr;
ba_r1 = nullptr;
ba_r2 = nullptr;
ub_k = nullptr;
ub_r0 = nullptr;
}
/* ---------------------------------------------------------------------- */
AngleAmoeba::~AngleAmoeba()
{
if (copymode) return;
if (allocated) {
memory->destroy(setflag);
memory->destroy(setflag_a);
memory->destroy(setflag_ba);
memory->destroy(setflag_ub);
memory->destroy(pflag);
memory->destroy(ubflag);
memory->destroy(theta0);
memory->destroy(k2);
memory->destroy(k3);
memory->destroy(k4);
memory->destroy(k5);
memory->destroy(k6);
memory->destroy(ba_k1);
memory->destroy(ba_k2);
memory->destroy(ba_r1);
memory->destroy(ba_r2);
memory->destroy(ub_k);
memory->destroy(ub_r0);
}
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type,tflag,uflag;
int **anglelist = neighbor->anglelist;
int **nspecial = atom->nspecial;
int nanglelist = neighbor->nanglelist;
ev_init(eflag,vflag);
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// tflag = 0 for "angle", 1 for "anglep" in Tinker PRM file
// atom 2 must have exactly 3 bond partners to invoke anglep() variant
if (enable_angle) {
tflag = pflag[type];
if (tflag && nspecial[i2][0] == 3)
tinker_anglep(i1,i2,i3,type,eflag);
else
tinker_angle(i1,i2,i3,type,eflag);
// bondangle = bond-stretch cross term in Tinker
if (ba_k1[type] != 0.0)
tinker_bondangle(i1,i2,i3,type,eflag);
}
// Urey-Bradley H-H bond term within water molecules
if (enable_urey) {
uflag = ubflag[type];
if (uflag) tinker_urey_bradley(i1,i3,type,eflag);
}
}
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::tinker_angle(int i1, int i2, int i3, int type, int eflag)
{
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3];
double dtheta,dtheta2,dtheta3,dtheta4,dtheta5,dtheta6,de_angle;
double rsq1,rsq2,r1,r2,c,s,a;
double a11,a12,a22;
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
// force & energy for angle term
dtheta = acos(c) - theta0[type];
dtheta2 = dtheta*dtheta;
dtheta3 = dtheta2*dtheta;
dtheta4 = dtheta3*dtheta;
dtheta5 = dtheta4*dtheta;
dtheta6 = dtheta5*dtheta;
de_angle = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 +
4.0*k4[type]*dtheta3 + 5.0*k5[type]*dtheta4 + 6.0*k6[type]*dtheta5;
a = -de_angle*s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
eangle = 0.0;
if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 +
k4[type]*dtheta4 + k5[type]*dtheta5 + k6[type]*dtheta6;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::tinker_anglep(int i1, int i2, int i3, int type, int eflag)
{
int i4;
tagint i1tag,i3tag,i4tag;
double xia,yia,zia,xib,yib,zib,xic,yic,zic,xid,yid,zid;
double xad,yad,zad,xbd,ybd,zbd,xcd,ycd,zcd;
double xt,yt,zt,rt2;
double xip,yip,zip,xap,yap,zap,xcp,ycp,zcp;
double rap2,rcp2;
double dtheta,dtheta2,dtheta3,dtheta4,dtheta5,dtheta6;
double xm,ym,zm,rm,dot;
double cosine,eangle,deddt;
double dedxip,dedyip,dedzip,dpdxia,dpdyia,dpdzia,dpdxic,dpdyic,dpdzic;
double delta,delta2,ptrt2,term,terma,termc;
double f1[3],f2[3],f3[3],f4[3];
double **x = atom->x;
double **f = atom->f;
tagint **special = atom->special;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
// i4 = index of third atom that i2 is bonded to
i1tag = atom->tag[i1];
i3tag = atom->tag[i3];
for (int ibond = 0; ibond < 3; ibond++) {
i4tag = special[i2][ibond];
if (i4tag != i1tag && i4tag != i3tag) break;
}
i4 = atom->map(i4tag);
i4 = domain->closest_image(i2,i4);
// anglep out-of-plane calculation from Tinker
xia = x[i1][0];
yia = x[i1][1];
zia = x[i1][2];
xib = x[i2][0];
yib = x[i2][1];
zib = x[i2][2];
xic = x[i3][0];
yic = x[i3][1];
zic = x[i3][2];
xid = x[i4][0];
yid = x[i4][1];
zid = x[i4][2];
xad = xia - xid;
yad = yia - yid;
zad = zia - zid;
xbd = xib - xid;
ybd = yib - yid;
zbd = zib - zid;
xcd = xic - xid;
ycd = yic - yid;
zcd = zic - zid;
xt = yad*zcd - zad*ycd;
yt = zad*xcd - xad*zcd;
zt = xad*ycd - yad*xcd;
rt2 = xt*xt + yt*yt + zt*zt;
delta = -(xt*xbd + yt*ybd + zt*zbd) / rt2;
xip = xib + xt*delta;
yip = yib + yt*delta;
zip = zib + zt*delta;
xap = xia - xip;
yap = yia - yip;
zap = zia - zip;
xcp = xic - xip;
ycp = yic - yip;
zcp = zic - zip;
rap2 = xap*xap + yap*yap + zap*zap;
rcp2 = xcp*xcp + ycp*ycp + zcp*zcp;
// Tinker just skips the computation in either is zero
if (rap2 == 0.0 || rcp2 == 0.0) return;
xm = ycp*zap - zcp*yap;
ym = zcp*xap - xcp*zap;
zm = xcp*yap - ycp*xap;
rm = sqrt(xm*xm + ym*ym + zm*zm);
rm = MAX(rm,0.0001);
dot = xap*xcp + yap*ycp + zap*zcp;
cosine = dot / sqrt(rap2*rcp2);
cosine = MIN(1.0,MAX(-1.0,cosine));
// force & energy for angle term
dtheta = acos(cosine) - theta0[type];
dtheta2 = dtheta*dtheta;
dtheta3 = dtheta2*dtheta;
dtheta4 = dtheta3*dtheta;
dtheta5 = dtheta4*dtheta;
dtheta6 = dtheta5*dtheta;
deddt = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 +
4.0*k4[type]*dtheta3 + 5.0*k5[type]*dtheta4 + 6.0*k6[type]*dtheta5;
eangle = 0.0;
if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 +
k4[type]*dtheta4 + k5[type]*dtheta5 + k6[type]*dtheta6;
// chain rule terms for first derivative components
terma = -deddt / (rap2*rm);
termc = deddt / (rcp2*rm);
f1[0] = terma * (yap*zm-zap*ym);
f1[1] = terma * (zap*xm-xap*zm);
f1[2] = terma * (xap*ym-yap*xm);
f3[0] = termc * (ycp*zm-zcp*ym);
f3[1] = termc * (zcp*xm-xcp*zm);
f3[2] = termc * (xcp*ym-ycp*xm);
dedxip = -f1[0] - f3[0];
dedyip = -f1[1] - f3[1];
dedzip = -f1[2] - f3[2];
// chain rule components for the projection of the central atom
delta2 = 2.0 * delta;
ptrt2 = (dedxip*xt + dedyip*yt + dedzip*zt) / rt2;
term = (zcd*ybd-ycd*zbd) + delta2*(yt*zcd-zt*ycd);
dpdxia = delta*(ycd*dedzip-zcd*dedyip) + term*ptrt2;
term = (xcd*zbd-zcd*xbd) + delta2*(zt*xcd-xt*zcd);
dpdyia = delta*(zcd*dedxip-xcd*dedzip) + term*ptrt2;
term = (ycd*xbd-xcd*ybd) + delta2*(xt*ycd-yt*xcd);
dpdzia = delta*(xcd*dedyip-ycd*dedxip) + term*ptrt2;
term = (yad*zbd-zad*ybd) + delta2*(zt*yad-yt*zad);
dpdxic = delta*(zad*dedyip-yad*dedzip) + term*ptrt2;
term = (zad*xbd-xad*zbd) + delta2*(xt*zad-zt*xad);
dpdyic = delta*(xad*dedzip-zad*dedxip) + term*ptrt2;
term = (xad*ybd-yad*xbd) + delta2*(yt*xad-xt*yad);
dpdzic = delta*(yad*dedxip-xad*dedyip) + term*ptrt2;
// compute derivative components for this interaction
f1[0] += dpdxia;
f1[1] += dpdyia;
f1[2] += dpdzia;
f2[0] = dedxip;
f2[1] = dedyip;
f2[2] = dedzip;
f3[0] += dpdxic;
f3[1] += dpdyic;
f3[2] += dpdzic;
f4[0] = -f1[0] - f2[0] - f3[0];
f4[1] = -f1[1] - f2[1] - f3[1];
f4[2] = -f1[2] - f2[2] - f3[2];
// apply force to each of 4 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] -= f1[0];
f[i1][1] -= f1[1];
f[i1][2] -= f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f2[0];
f[i2][1] -= f2[1];
f[i2][2] -= f2[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] -= f3[0];
f[i3][1] -= f3[1];
f[i3][2] -= f3[2];
}
if (newton_bond || i4 < nlocal) {
f[i4][0] -= f4[0];
f[i4][1] -= f4[1];
f[i4][2] -= f4[2];
}
if (evflag) {
f1[0] = -f1[0]; f1[1] = -f1[1]; f1[2] = -f1[2];
f2[0] = -f2[0]; f2[1] = -f2[1]; f2[2] = -f2[2];
f3[0] = -f3[0]; f3[1] = -f3[1]; f3[2] = -f3[2];
f4[0] = -f4[0]; f4[1] = -f4[1]; f4[2] = -f4[2];
ev_tally4(i1,i2,i3,i4,nlocal,newton_bond,eangle,f1,f2,f3,f4);
}
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::tinker_bondangle(int i1, int i2, int i3, int type, int eflag)
{
double delx1,dely1,delz1,delx2,dely2,delz2;
double rsq1,r1,rsq2,r2,c,s,dtheta;
double dr1,dr2,aa1,aa2,b1,b2;
double aa11,aa12,aa21,aa22;
double vx11,vx12,vy11,vy12,vz11,vz12,vx21,vx22,vy21,vy22,vz21,vz22;
double eangle,f1[3],f3[3];
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
dtheta = acos(c) - theta0[type];
// force & energy for bond-angle term
dr1 = r1 - ba_r1[type];
dr2 = r2 - ba_r2[type];
aa1 = s * dr1 * ba_k1[type];
aa2 = s * dr2 * ba_k2[type];
aa11 = aa1 * c / rsq1;
aa12 = -aa1 / (r1 * r2);
aa21 = aa2 * c / rsq1;
aa22 = -aa2 / (r1 * r2);
vx11 = (aa11 * delx1) + (aa12 * delx2);
vx12 = (aa21 * delx1) + (aa22 * delx2);
vy11 = (aa11 * dely1) + (aa12 * dely2);
vy12 = (aa21 * dely1) + (aa22 * dely2);
vz11 = (aa11 * delz1) + (aa12 * delz2);
vz12 = (aa21 * delz1) + (aa22 * delz2);
aa11 = aa1 * c / rsq2;
aa21 = aa2 * c / rsq2;
vx21 = (aa11 * delx2) + (aa12 * delx1);
vx22 = (aa21 * delx2) + (aa22 * delx1);
vy21 = (aa11 * dely2) + (aa12 * dely1);
vy22 = (aa21 * dely2) + (aa22 * dely1);
vz21 = (aa11 * delz2) + (aa12 * delz1);
vz22 = (aa21 * delz2) + (aa22 * delz1);
b1 = ba_k1[type] * dtheta / r1;
b2 = ba_k2[type] * dtheta / r2;
f1[0] = -(vx11 + b1*delx1 + vx12);
f1[1] = -(vy11 + b1*dely1 + vy12);
f1[2] = -(vz11 + b1*delz1 + vz12);
f3[0] = -(vx21 + b2*delx2 + vx22);
f3[1] = -(vy21 + b2*dely2 + vy22);
f3[2] = -(vz21 + b2*delz2 + vz22);
eangle = 0.0;
if (eflag) eangle = ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::tinker_urey_bradley(int i1, int i2, int type, int eflag)
{
double delx,dely,delz;
double rsq,r,dr,rk;
double fbond,ebond;
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
delx = x[i1][0] - x[i2][0];
dely = x[i1][1] - x[i2][1];
delz = x[i1][2] - x[i2][2];
rsq = delx*delx + dely*dely + delz*delz;
r = sqrt(rsq);
dr = r - ub_r0[type];
rk = ub_k[type] * dr;
// force & energy
if (r > 0.0) fbond = -2.0*rk/r;
else fbond = 0.0;
if (eflag) ebond = rk*dr;
// apply force to each of 2 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += delx*fbond;
f[i1][1] += dely*fbond;
f[i1][2] += delz*fbond;
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= delx*fbond;
f[i2][1] -= dely*fbond;
f[i2][2] -= delz*fbond;
}
if (evflag) ev_tally2(i1,i2,nlocal,newton_bond,ebond,fbond,delx,dely,delz);
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(pflag,n+1,"angle:pflag");
memory->create(ubflag,n+1,"angle:ubflag");
memory->create(theta0,n+1,"angle:theta0");
memory->create(k2,n+1,"angle:k2");
memory->create(k3,n+1,"angle:k3");
memory->create(k4,n+1,"angle:k4");
memory->create(k5,n+1,"angle:k5");
memory->create(k6,n+1,"angle:k6");
memory->create(ba_k1,n+1,"angle:ba_k1");
memory->create(ba_k2,n+1,"angle:ba_k2");
memory->create(ba_r1,n+1,"angle:ba_r1");
memory->create(ba_r2,n+1,"angle:ba_r2");
memory->create(ub_k,n+1,"angle:ub_k");
memory->create(ub_r0,n+1,"angle:ub_r0");
memory->create(setflag,n+1,"angle:setflag");
memory->create(setflag_a,n+1,"angle:setflag_a");
memory->create(setflag_ba,n+1,"angle:setflag_ba");
memory->create(setflag_ub,n+1,"angle:setflag_ub");
for (int i = 1; i <= n; i++)
setflag[i] = setflag_a[i] = setflag_ba[i] = setflag_ub[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleAmoeba::coeff(int narg, char **arg)
{
if (narg < 2) error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
utils::bounds(FLERR,arg[0],1,atom->nangletypes,ilo,ihi,error);
int count = 0;
if (strcmp(arg[1],"ba") == 0) {
if (narg != 6) error->all(FLERR,"Incorrect args for angle coefficients");
double ba_k1_one = utils::numeric(FLERR,arg[2],false,lmp);
double ba_k2_one = utils::numeric(FLERR,arg[3],false,lmp);
double ba_r1_one = utils::numeric(FLERR,arg[4],false,lmp);
double ba_r2_one = utils::numeric(FLERR,arg[5],false,lmp);
for (int i = ilo; i <= ihi; i++) {
ba_k1[i] = ba_k1_one;
ba_k2[i] = ba_k2_one;
ba_r1[i] = ba_r1_one;
ba_r2[i] = ba_r2_one;
setflag_ba[i] = 1;
count++;
}
} else if (strcmp(arg[1],"ub") == 0) {
if (narg != 4) error->all(FLERR,"Incorrect args for angle coefficients");
double ub_k_one = utils::numeric(FLERR,arg[2],false,lmp);
double ub_r0_one = utils::numeric(FLERR,arg[3],false,lmp);
for (int i = ilo; i <= ihi; i++) {
ub_k[i] = ub_k_one;
ub_r0[i] = ub_r0_one;
setflag_ub[i] = 1;
count++;
}
} else {
if (narg != 9) error->all(FLERR,"Incorrect args for angle coefficients");
int pflag_one = utils::inumeric(FLERR,arg[1],false,lmp);
int ubflag_one = utils::inumeric(FLERR,arg[2],false,lmp);
double theta0_one = utils::numeric(FLERR,arg[3],false,lmp);
double k2_one = utils::numeric(FLERR,arg[4],false,lmp);
double k3_one = utils::numeric(FLERR,arg[5],false,lmp);
double k4_one = utils::numeric(FLERR,arg[6],false,lmp);
double k5_one = utils::numeric(FLERR,arg[7],false,lmp);
double k6_one = utils::numeric(FLERR,arg[8],false,lmp);
// convert theta0 from degrees to radians
for (int i = ilo; i <= ihi; i++) {
pflag[i] = pflag_one;
ubflag[i] = ubflag_one;
theta0[i] = theta0_one/180.0 * MY_PI;
k2[i] = k2_one;
k3[i] = k3_one;
k4[i] = k4_one;
k5[i] = k5_one;
k6[i] = k6_one;
setflag_a[i] = 1;
count++;
}
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
for (int i = ilo; i <= ihi; i++)
if (setflag_a[i] == 1 && setflag_ba[i] == 1 && setflag_ub[i])
setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
void AngleAmoeba::init_style()
{
// check if PairAmoeba or PairHippo disabled angle or Urey-Bradley terms
Pair *pair = nullptr;
pair = force->pair_match("amoeba",1,0);
if (!pair) pair = force->pair_match("hippo",1,0);
if (!pair) enable_angle = enable_urey = 1;
else {
int tmp;
enable_angle = *((int *) pair->extract("angle_flag",tmp));
enable_urey = *((int *) pair->extract("urey_flag",tmp));
}
}
/* ---------------------------------------------------------------------- */
double AngleAmoeba::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleAmoeba::write_restart(FILE *fp)
{
fwrite(&pflag[1],sizeof(int),atom->nangletypes,fp);
fwrite(&ubflag[1],sizeof(int),atom->nangletypes,fp);
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k2[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k3[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k4[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k5[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k6[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_k1[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_k2[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_r1[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_r2[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ub_k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ub_r0[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleAmoeba::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
utils::sfread(FLERR,&pflag[1],sizeof(int),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&ubflag[1],sizeof(int),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&theta0[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&k2[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&k3[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&k4[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&k5[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&k6[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&ba_k1[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&ba_k2[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&ba_r1[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&ba_r2[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&ub_k[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
utils::sfread(FLERR,&ub_r0[1],sizeof(double),atom->nangletypes,
fp,nullptr,error);
}
MPI_Bcast(&pflag[1],atom->nangletypes,MPI_INT,0,world);
MPI_Bcast(&ubflag[1],atom->nangletypes,MPI_INT,0,world);
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k2[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k3[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k4[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k5[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k6[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_k1[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_k2[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_r1[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_r2[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ub_k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ub_r0[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleAmoeba::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %d %d %g %g %g %g %g %g\n",
i,pflag[i],ubflag[i],theta0[i]/MY_PI*180.0,
k2[i],k3[i],k4[i],k5[i],k6[i]);
fprintf(fp,"\nBondAngle Coeffs\n\n");
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %g %g %g %g\n",i,ba_k1[i],ba_k2[i],ba_r1[i],ba_r2[i]);
fprintf(fp,"\nUreyBradley Coeffs\n\n");
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %g %g\n",i,ub_k[i],ub_r0[i]);
}
/* ----------------------------------------------------------------------
only computes tinker_angle() and tinker_bondangle()
does not compute tinker_anglep() and tinker_urey_bradley()
---------------------------------------------------------------------- */
double AngleAmoeba::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
double dtheta = acos(c) - theta0[type];
double dtheta2 = dtheta*dtheta;
double dtheta3 = dtheta2*dtheta;
double dtheta4 = dtheta3*dtheta;
double dtheta5 = dtheta4*dtheta;
double dtheta6 = dtheta5*dtheta;
double energy = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4
+ k5[type]*dtheta5 + k6[type]*dtheta6;
double dr1 = r1 - ba_r1[type];
double dr2 = r2 - ba_r2[type];
energy += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta;
return energy;
}

57
src/AMOEBA/angle_amoeba.h Normal file
View File

@ -0,0 +1,57 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef ANGLE_CLASS
// clang-format off
AngleStyle(amoeba,AngleAmoeba);
// clang-format on
#else
#ifndef LMP_ANGLE_AMOEBA_H
#define LMP_ANGLE_AMOEBA_H
#include "angle.h"
namespace LAMMPS_NS {
class AngleAmoeba : public Angle {
public:
AngleAmoeba(class LAMMPS *);
~AngleAmoeba() override;
void compute(int, int) override;
void coeff(int, char **) override;
void init_style() override;
double equilibrium_angle(int) override;
void write_restart(FILE *) override;
void read_restart(FILE *) override;
void write_data(FILE *) override;
double single(int, int, int, int) override;
protected:
int *pflag, *ubflag;
double *theta0, *k2, *k3, *k4, *k5, *k6;
double *ba_k1, *ba_k2, *ba_r1, *ba_r2;
double *ub_k, *ub_r0;
int *setflag_a, *setflag_ba, *setflag_ub;
int enable_angle, enable_urey;
void tinker_angle(int, int, int, int, int);
void tinker_anglep(int, int, int, int, int);
void tinker_bondangle(int, int, int, int, int);
void tinker_urey_bradley(int, int, int, int);
void allocate();
};
} // namespace LAMMPS_NS
#endif
#endif

View File

@ -0,0 +1,226 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "atom_vec_amoeba.h"
#include "atom.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
AtomVecAmoeba::AtomVecAmoeba(LAMMPS *lmp) : AtomVec(lmp)
{
molecular = 1;
bonds_allow = angles_allow = dihedrals_allow = impropers_allow = 1;
mass_type = 1;
atom->molecule_flag = atom->q_flag = 1;
atom->nspecial15_flag = 1;
// strings with peratom variables to include in each AtomVec method
// strings cannot contain fields in corresponding AtomVec default strings
// order of fields in a string does not matter
// except: fields_data_atom & fields_data_vel must match data file
// clang-format off
fields_grow = {"q", "molecule", "num_bond", "bond_type", "bond_atom", "num_angle", "angle_type",
"angle_atom1", "angle_atom2", "angle_atom3", "num_dihedral", "dihedral_type", "dihedral_atom1",
"dihedral_atom2", "dihedral_atom3", "dihedral_atom4", "num_improper", "improper_type",
"improper_atom1", "improper_atom2", "improper_atom3", "improper_atom4", "nspecial", "special",
"nspecial15", "special15"};
fields_copy = {"q", "molecule", "num_bond", "bond_type", "bond_atom", "num_angle", "angle_type",
"angle_atom1", "angle_atom2", "angle_atom3", "num_dihedral", "dihedral_type", "dihedral_atom1",
"dihedral_atom2", "dihedral_atom3", "dihedral_atom4", "num_improper", "improper_type",
"improper_atom1", "improper_atom2", "improper_atom3", "improper_atom4", "nspecial", "special",
"nspecial15", "special15"};
fields_border = {"q", "molecule"};
fields_border_vel = {"q", "molecule"};
fields_exchange = {"q", "molecule", "num_bond", "bond_type", "bond_atom", "num_angle",
"angle_type", "angle_atom1", "angle_atom2", "angle_atom3", "num_dihedral", "dihedral_type",
"dihedral_atom1", "dihedral_atom2", "dihedral_atom3", "dihedral_atom4", "num_improper",
"improper_type", "improper_atom1", "improper_atom2", "improper_atom3", "improper_atom4",
"nspecial", "special", "nspecial15", "special15"};
fields_restart = {"q", "molecule", "num_bond", "bond_type", "bond_atom", "num_angle",
"angle_type", "angle_atom1", "angle_atom2", "angle_atom3", "num_dihedral", "dihedral_type",
"dihedral_atom1", "dihedral_atom2", "dihedral_atom3", "dihedral_atom4", "num_improper",
"improper_type", "improper_atom1", "improper_atom2", "improper_atom3", "improper_atom4"};
fields_create = {"q", "molecule", "num_bond", "num_angle", "num_dihedral", "num_improper",
"nspecial", "nspecial15"};
fields_data_atom = {"id", "molecule", "type", "q", "x"};
fields_data_vel = {"id", "v"};
// clang-format on
setup_fields();
bond_per_atom = angle_per_atom = dihedral_per_atom = improper_per_atom = 0;
bond_negative = angle_negative = dihedral_negative = improper_negative = nullptr;
}
/* ---------------------------------------------------------------------- */
AtomVecAmoeba::~AtomVecAmoeba()
{
delete[] bond_negative;
delete[] angle_negative;
delete[] dihedral_negative;
delete[] improper_negative;
}
/* ----------------------------------------------------------------------
set local copies of all grow ptrs used by this class, except defaults
needed in replicate when 2 atom classes exist and it calls pack_restart()
------------------------------------------------------------------------- */
void AtomVecAmoeba::grow_pointers()
{
num_bond = atom->num_bond;
bond_type = atom->bond_type;
num_angle = atom->num_angle;
angle_type = atom->angle_type;
num_dihedral = atom->num_dihedral;
dihedral_type = atom->dihedral_type;
num_improper = atom->num_improper;
improper_type = atom->improper_type;
nspecial = atom->nspecial;
nspecial15 = atom->nspecial15;
}
/* ----------------------------------------------------------------------
modify values for AtomVec::pack_restart() to pack
------------------------------------------------------------------------- */
void AtomVecAmoeba::pack_restart_pre(int ilocal)
{
// insure negative vectors are needed length
if (bond_per_atom < atom->bond_per_atom) {
delete[] bond_negative;
bond_per_atom = atom->bond_per_atom;
bond_negative = new int[bond_per_atom];
}
if (angle_per_atom < atom->angle_per_atom) {
delete[] angle_negative;
angle_per_atom = atom->angle_per_atom;
angle_negative = new int[angle_per_atom];
}
if (dihedral_per_atom < atom->dihedral_per_atom) {
delete[] dihedral_negative;
dihedral_per_atom = atom->dihedral_per_atom;
dihedral_negative = new int[dihedral_per_atom];
}
if (improper_per_atom < atom->improper_per_atom) {
delete[] improper_negative;
improper_per_atom = atom->improper_per_atom;
improper_negative = new int[improper_per_atom];
}
// flip any negative types to positive and flag which ones
any_bond_negative = 0;
for (int m = 0; m < num_bond[ilocal]; m++) {
if (bond_type[ilocal][m] < 0) {
bond_negative[m] = 1;
bond_type[ilocal][m] = -bond_type[ilocal][m];
any_bond_negative = 1;
} else
bond_negative[m] = 0;
}
any_angle_negative = 0;
for (int m = 0; m < num_angle[ilocal]; m++) {
if (angle_type[ilocal][m] < 0) {
angle_negative[m] = 1;
angle_type[ilocal][m] = -angle_type[ilocal][m];
any_angle_negative = 1;
} else
angle_negative[m] = 0;
}
any_dihedral_negative = 0;
for (int m = 0; m < num_dihedral[ilocal]; m++) {
if (dihedral_type[ilocal][m] < 0) {
dihedral_negative[m] = 1;
dihedral_type[ilocal][m] = -dihedral_type[ilocal][m];
any_dihedral_negative = 1;
} else
dihedral_negative[m] = 0;
}
any_improper_negative = 0;
for (int m = 0; m < num_improper[ilocal]; m++) {
if (improper_type[ilocal][m] < 0) {
improper_negative[m] = 1;
improper_type[ilocal][m] = -improper_type[ilocal][m];
any_improper_negative = 1;
} else
improper_negative[m] = 0;
}
}
/* ----------------------------------------------------------------------
unmodify values packed by AtomVec::pack_restart()
------------------------------------------------------------------------- */
void AtomVecAmoeba::pack_restart_post(int ilocal)
{
// restore the flagged types to their negative values
if (any_bond_negative) {
for (int m = 0; m < num_bond[ilocal]; m++)
if (bond_negative[m]) bond_type[ilocal][m] = -bond_type[ilocal][m];
}
if (any_angle_negative) {
for (int m = 0; m < num_angle[ilocal]; m++)
if (angle_negative[m]) angle_type[ilocal][m] = -angle_type[ilocal][m];
}
if (any_dihedral_negative) {
for (int m = 0; m < num_dihedral[ilocal]; m++)
if (dihedral_negative[m]) dihedral_type[ilocal][m] = -dihedral_type[ilocal][m];
}
if (any_improper_negative) {
for (int m = 0; m < num_improper[ilocal]; m++)
if (improper_negative[m]) improper_type[ilocal][m] = -improper_type[ilocal][m];
}
}
/* ----------------------------------------------------------------------
initialize other atom quantities after AtomVec::unpack_restart()
------------------------------------------------------------------------- */
void AtomVecAmoeba::unpack_restart_init(int ilocal)
{
nspecial[ilocal][0] = 0;
nspecial[ilocal][1] = 0;
nspecial[ilocal][2] = 0;
nspecial15[ilocal] = 0;
}
/* ----------------------------------------------------------------------
modify what AtomVec::data_atom() just unpacked
or initialize other atom quantities
------------------------------------------------------------------------- */
void AtomVecAmoeba::data_atom_post(int ilocal)
{
num_bond[ilocal] = 0;
num_angle[ilocal] = 0;
num_dihedral[ilocal] = 0;
num_improper[ilocal] = 0;
nspecial[ilocal][0] = 0;
nspecial[ilocal][1] = 0;
nspecial[ilocal][2] = 0;
nspecial15[ilocal] = 0;
}

View File

@ -0,0 +1,49 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef ATOM_CLASS
// clang-format off
AtomStyle(amoeba,AtomVecAmoeba);
// clang-format on
#else
#ifndef LMP_ATOM_VEC_AMOEBA_H
#define LMP_ATOM_VEC_AMOEBA_H
#include "atom_vec.h"
namespace LAMMPS_NS {
class AtomVecAmoeba : public AtomVec {
public:
AtomVecAmoeba(class LAMMPS *);
~AtomVecAmoeba() override;
void grow_pointers() override;
void pack_restart_pre(int) override;
void pack_restart_post(int) override;
void unpack_restart_init(int) override;
void data_atom_post(int) override;
private:
int *num_bond, *num_angle, *num_dihedral, *num_improper;
int **bond_type, **angle_type, **dihedral_type, **improper_type;
int **nspecial, *nspecial15;
int any_bond_negative, any_angle_negative, any_dihedral_negative, any_improper_negative;
int bond_per_atom, angle_per_atom, dihedral_per_atom, improper_per_atom;
int *bond_negative, *angle_negative, *dihedral_negative, *improper_negative;
};
} // namespace LAMMPS_NS
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,126 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef FIX_CLASS
// clang-format off
FixStyle(amoeba/bitorsion,FixAmoebaBiTorsion);
// clang-format on
#else
#ifndef LMP_FIX_AMOEBA_BITORSION_H
#define LMP_FIX_AMOEBA_BITORSION_H
#include "fix.h"
namespace LAMMPS_NS {
class FixAmoebaBiTorsion : public Fix {
public:
FixAmoebaBiTorsion(class LAMMPS *, int, char **);
~FixAmoebaBiTorsion() override;
int setmask() override;
void init() override;
void setup(int) override;
void setup_pre_neighbor() override;
void setup_pre_reverse(int, int) override;
void min_setup(int) override;
void pre_neighbor() override;
void pre_reverse(int, int) override;
void post_force(int) override;
void post_force_respa(int, int, int) override;
void min_post_force(int) override;
double compute_scalar() override;
void read_data_header(char *) override;
void read_data_section(char *, int, char *, tagint) override;
bigint read_data_skip_lines(char *) override;
void write_data_header(FILE *, int) override;
void write_data_section_size(int, int &, int &) override;
void write_data_section_pack(int, double **) override;
void write_data_section_keyword(int, FILE *) override;
void write_data_section(int, FILE *, int, double **, int) override;
void write_restart(FILE *) override;
void restart(char *) override;
int pack_restart(int, double *) override;
void unpack_restart(int, int) override;
int size_restart(int) override;
int maxsize_restart() override;
void grow_arrays(int) override;
void copy_arrays(int, int, int) override;
void set_arrays(int) override;
int pack_border(int, int *, double *) override;
int unpack_border(int, int, double *) override;
int pack_exchange(int, double *) override;
int unpack_exchange(int, double *) override;
double memory_usage() override;
private:
int nprocs, me;
int eflag_caller;
int ilevel_respa;
int disable;
bigint nbitorsions; // total count of all bitorsions in system
double ebitorsion;
double onefifth;
// per-atom data for bitorsions stored with each owned atom
int *num_bitorsion;
int **bitorsion_type;
tagint **bitorsion_atom1, **bitorsion_atom2, **bitorsion_atom3;
tagint **bitorsion_atom4, **bitorsion_atom5;
// previous max atoms on this proc before grow() is called
int nmax_previous;
// list of all bitorsions to compute on this proc
int nbitorsion_list;
int max_bitorsion_list;
int **bitorsion_list;
// BiTorsion grid and spline data
int nbitypes;
int *nxgrid, *nygrid;
double **ttx, **tty, **tbf;
double **tbx, **tby, **tbxy;
// data from PairAmoeba
class Pair *pair;
int *amtype, *atomic_num;
// local methods
void read_grid_data(char *);
void create_splines();
void nspline(int, double *, double *, double *, double *, double *, double *, double *, double *,
double *);
void cspline(int, double *, double *, double *, double *, double *, double *, double *, double *,
double *, double *);
void cytsy(int, double *, double *, double *, double *, double *, int &);
void cytsyp(int, double *, double *, double *, int &);
void cytsys(int, double *, double *, double *, double *, double *);
void chkttor(int, int, int, double &, double &, double &);
void bcuint1(double *, double *, double *, double *, double, double, double, double, double,
double, double &, double &, double &);
void bcucof(double *, double *, double *, double *, double, double, double[][4]);
};
} // namespace LAMMPS_NS
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,98 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef FIX_CLASS
// clang-format off
FixStyle(amoeba/pitorsion,FixAmoebaPiTorsion);
// clang-format on
#else
#ifndef LMP_FIX_AMOEBA_PITORSION_H
#define LMP_FIX_AMOEBA_PITORSION_H
#include "fix.h"
namespace LAMMPS_NS {
class FixAmoebaPiTorsion : public Fix {
public:
FixAmoebaPiTorsion(class LAMMPS *, int, char **);
~FixAmoebaPiTorsion() override;
int setmask() override;
void init() override;
void setup(int) override;
void setup_pre_neighbor() override;
void setup_pre_reverse(int, int) override;
void min_setup(int) override;
void pre_neighbor() override;
void pre_reverse(int, int) override;
void post_force(int) override;
void post_force_respa(int, int, int) override;
void min_post_force(int) override;
double compute_scalar() override;
void read_data_header(char *) override;
void read_data_section(char *, int, char *, tagint) override;
bigint read_data_skip_lines(char *) override;
void write_data_header(FILE *, int) override;
void write_data_section_size(int, int &, int &) override;
void write_data_section_pack(int, double **) override;
void write_data_section_keyword(int, FILE *) override;
void write_data_section(int, FILE *, int, double **, int) override;
void write_restart(FILE *) override;
void restart(char *) override;
int pack_restart(int, double *) override;
void unpack_restart(int, int) override;
int size_restart(int) override;
int maxsize_restart() override;
void grow_arrays(int) override;
void copy_arrays(int, int, int) override;
void set_arrays(int) override;
int pack_exchange(int, double *) override;
int unpack_exchange(int, double *) override;
double memory_usage() override;
private:
int nprocs, me;
int eflag_caller;
int ilevel_respa;
int disable;
bigint npitorsions;
int npitorsion_types;
double epitorsion;
double onesixth;
double *kpit;
// per-atom data for pitorsions stored with each owned atom
int *num_pitorsion;
int **pitorsion_type;
tagint **pitorsion_atom1, **pitorsion_atom2, **pitorsion_atom3;
tagint **pitorsion_atom4, **pitorsion_atom5, **pitorsion_atom6;
// previous max atoms on this proc before grow() is called
int nmax_previous;
// list of all pitorsions to compute on this proc
int npitorsion_list;
int max_pitorsion_list;
int **pitorsion_list;
};
} // namespace LAMMPS_NS
#endif
#endif

View File

@ -0,0 +1,338 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "improper_amoeba.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "neighbor.h"
#include "pair.h"
#include "update.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace MathConst;
#define TOLERANCE 0.05
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
ImproperAmoeba::ImproperAmoeba(LAMMPS *lmp) : Improper(lmp)
{
writedata = 1;
}
/* ---------------------------------------------------------------------- */
ImproperAmoeba::~ImproperAmoeba()
{
if (allocated && !copymode) {
memory->destroy(setflag);
memory->destroy(k);
}
}
/* ---------------------------------------------------------------------- */
void ImproperAmoeba::compute(int eflag, int vflag)
{
if (disable) return;
int ia,ib,ic,id,n,type;
double xia,yia,zia,xib,yib,zib,xic,yic,zic,xid,yid,zid;
double xab,yab,zab,xcb,ycb,zcb,xdb,ydb,zdb,xad,yad,zad,xcd,ycd,zcd;
double rad2,rcd2,rdb2,dot,cc,ee;
double sine,angle;
double dt,dt2,dt3,dt4,e;
double deddt,sign,dedcos,term;
double dccdxia,dccdyia,dccdzia,dccdxic,dccdyic,dccdzic;
double dccdxid,dccdyid,dccdzid;
double deedxia,deedyia,deedzia,deedxic,deedyic,deedzic;
double deedxid,deedyid,deedzid;
double fa[3],fb[3],fc[3],fd[3];
ev_init(eflag,vflag);
double **x = atom->x;
double **f = atom->f;
int **improperlist = neighbor->improperlist;
int nimproperlist = neighbor->nimproperlist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
// conversion factors for radians to degrees and vice versa
double rad2degree = 180.0/MY_PI;
double eprefactor = 1.0 / (rad2degree*rad2degree);
double fprefactor = 1.0 / rad2degree;
for (n = 0; n < nimproperlist; n++) {
// in Tinker code, atom1 = D, atom2 = B, atom3 = A, atom4 = C
// for Alligner angle:
// atoms A,C,D form a plane, B is out-of-plane
// angle is between plane and the vector from D to B
id = improperlist[n][0];
ib = improperlist[n][1];
ia = improperlist[n][2];
ic = improperlist[n][3];
type = improperlist[n][4];
// coordinates of the atoms at trigonal center
xia = x[ia][0];
yia = x[ia][1];
zia = x[ia][2];
xib = x[ib][0];
yib = x[ib][1];
zib = x[ib][2];
xic = x[ic][0];
yic = x[ic][1];
zic = x[ic][2];
xid = x[id][0];
yid = x[id][1];
zid = x[id][2];
// compute the out-of-plane bending angle
xab = xia - xib;
yab = yia - yib;
zab = zia - zib;
xcb = xic - xib;
ycb = yic - yib;
zcb = zic - zib;
xdb = xid - xib;
ydb = yid - yib;
zdb = zid - zib;
xad = xia - xid;
yad = yia - yid;
zad = zia - zid;
xcd = xic - xid;
ycd = yic - yid;
zcd = zic - zid;
// Allinger angle between A-C-D plane and D-B vector for D-B < AC
rad2 = xad*xad + yad*yad + zad*zad;
rcd2 = xcd*xcd + ycd*ycd + zcd*zcd;
dot = xad*xcd + yad*ycd + zad*zcd;
cc = rad2*rcd2 - dot*dot;
// find the out-of-plane angle bending energy
ee = xdb*(yab*zcb-zab*ycb) + ydb*(zab*xcb-xab*zcb) + zdb*(xab*ycb-yab*xcb);
rdb2 = xdb*xdb + ydb*ydb + zdb*zdb;
if (rdb2 == 0.0 || cc == 0.0) continue;
sine = fabs(ee) / sqrt(cc*rdb2);
sine = MIN(1.0,sine);
// angle needs to be in degrees for Tinker formulas
// b/c opbend_3456 coeffs are in mixed units
angle = rad2degree * asin(sine);
dt = angle;
dt2 = dt * dt;
dt3 = dt2 * dt;
dt4 = dt2 * dt2;
e = eprefactor * k[type] * dt2 *
(1.0 + opbend_cubic*dt + opbend_quartic*dt2 +
opbend_pentic*dt3 + opbend_sextic*dt4);
deddt = fprefactor * k[type] * dt *
(2.0 + 3.0*opbend_cubic*dt + 4.0*opbend_quartic*dt2 +
5.0*opbend_pentic*dt3 + 6.0*opbend_sextic*dt4);
sign = (ee >= 0.0) ? 1.0 : -1.0;
dedcos = -deddt * sign / sqrt(cc*rdb2 - ee*ee);
// chain rule terms for first derivative components
term = ee / cc;
dccdxia = (xad*rcd2-xcd*dot) * term;
dccdyia = (yad*rcd2-ycd*dot) * term;
dccdzia = (zad*rcd2-zcd*dot) * term;
dccdxic = (xcd*rad2-xad*dot) * term;
dccdyic = (ycd*rad2-yad*dot) * term;
dccdzic = (zcd*rad2-zad*dot) * term;
dccdxid = -dccdxia - dccdxic;
dccdyid = -dccdyia - dccdyic;
dccdzid = -dccdzia - dccdzic;
term = ee / rdb2;
deedxia = ydb*zcb - zdb*ycb;
deedyia = zdb*xcb - xdb*zcb;
deedzia = xdb*ycb - ydb*xcb;
deedxic = yab*zdb - zab*ydb;
deedyic = zab*xdb - xab*zdb;
deedzic = xab*ydb - yab*xdb;
deedxid = ycb*zab - zcb*yab + xdb*term;
deedyid = zcb*xab - xcb*zab + ydb*term;
deedzid = xcb*yab - ycb*xab + zdb*term;
// compute first derivative components for this angle
fa[0] = dedcos * (dccdxia+deedxia);
fa[1] = dedcos * (dccdyia+deedyia);
fa[2] = dedcos * (dccdzia+deedzia);
fc[0] = dedcos * (dccdxic+deedxic);
fc[1] = dedcos * (dccdyic+deedyic);
fc[2] = dedcos * (dccdzic+deedzic);
fd[0] = dedcos * (dccdxid+deedxid);
fd[1] = dedcos * (dccdyid+deedyid);
fd[2] = dedcos * (dccdzid+deedzid);
fb[0] = -fa[0] - fc[0] - fd[0];
fb[1] = -fa[1] - fc[1] - fd[1];
fb[2] = -fa[2] - fc[2] - fd[2];
// apply force to each of 4 atoms
if (newton_bond || id < nlocal) {
f[id][0] -= fd[0];
f[id][1] -= fd[1];
f[id][2] -= fd[2];
}
if (newton_bond || ib < nlocal) {
f[ib][0] -= fb[0];
f[ib][1] -= fb[1];
f[ib][2] -= fb[2];
}
if (newton_bond || ia < nlocal) {
f[ia][0] -= fa[0];
f[ia][1] -= fa[1];
f[ia][2] -= fa[2];
}
if (newton_bond || ic < nlocal) {
f[ic][0] -= fc[0];
f[ic][1] -= fc[1];
f[ic][2] -= fc[2];
}
if (evflag) {
fd[0] = -fd[0]; fd[1] = -fd[1]; fd[2] = -fd[2];
fa[0] = -fa[0]; fa[1] = -fa[1]; fa[2] = -fa[2];
fc[0] = -fc[0]; fc[1] = -fc[1]; fc[2] = -fc[2];
ev_tally(id,ib,ia,ic,nlocal,newton_bond,e,fd,fa,fc,
xdb,ydb,zdb,xab,yab,zab,xic-xia,yic-yia,zic-zia);
}
}
}
/* ---------------------------------------------------------------------- */
void ImproperAmoeba::allocate()
{
allocated = 1;
int n = atom->nimpropertypes;
memory->create(k,n+1,"improper:k");
memory->create(setflag,n+1,"improper:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void ImproperAmoeba::coeff(int narg, char **arg)
{
if (narg != 2) error->all(FLERR,"Incorrect args for improper coefficients");
if (!allocated) allocate();
int ilo,ihi;
utils::bounds(FLERR,arg[0],1,atom->nimpropertypes,ilo,ihi,error);
double k_one = utils::numeric(FLERR,arg[1],false,lmp);
// convert chi from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for improper coefficients");
}
/* ----------------------------------------------------------------------
set opbend higher-order term weights from PairAmoeba
------------------------------------------------------------------------- */
void ImproperAmoeba::init_style()
{
// check if PairAmoeba disabled improper terms
Pair *pair = nullptr;
pair = force->pair_match("amoeba",1,0);
if (!pair) pair = force->pair_match("hippo",1,0);
if (!pair) error->all(FLERR,"Improper amoeba could not find pair amoeba/hippo");
int tmp;
int flag = *((int *) pair->extract("improper_flag",tmp));
disable = flag ? 0 : 1;
// also extract opbend params
int dim;
opbend_cubic = *(double *) pair->extract("opbend_cubic",dim);
opbend_quartic = *(double *) pair->extract("opbend_quartic",dim);
opbend_pentic = *(double *) pair->extract("opbend_pentic",dim);
opbend_sextic = *(double *) pair->extract("opbend_sextic",dim);
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void ImproperAmoeba::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nimpropertypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void ImproperAmoeba::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0)
utils::sfread(FLERR,&k[1],sizeof(double),atom->nimpropertypes,fp,nullptr,error);
MPI_Bcast(&k[1],atom->nimpropertypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nimpropertypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void ImproperAmoeba::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nimpropertypes; i++)
fprintf(fp,"%d %g\n",i,k[i]);
}

View File

@ -0,0 +1,47 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef IMPROPER_CLASS
// clang-format off
ImproperStyle(amoeba,ImproperAmoeba);
// clang-format on
#else
#ifndef LMP_IMPROPER_AMOEBA_H
#define LMP_IMPROPER_AMOEBA_H
#include "improper.h"
namespace LAMMPS_NS {
class ImproperAmoeba : public Improper {
public:
ImproperAmoeba(class LAMMPS *);
~ImproperAmoeba() override;
void compute(int, int) override;
void coeff(int, char **) override;
void init_style() override;
void write_restart(FILE *) override;
void read_restart(FILE *) override;
void write_data(FILE *) override;
protected:
int disable;
double opbend_cubic, opbend_quartic, opbend_pentic, opbend_sextic;
double *k;
virtual void allocate();
};
} // namespace LAMMPS_NS
#endif
#endif

2330
src/AMOEBA/pair_amoeba.cpp Normal file

File diff suppressed because it is too large Load Diff

480
src/AMOEBA/pair_amoeba.h Normal file
View File

@ -0,0 +1,480 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
// clang-format off
PairStyle(amoeba,PairAmoeba);
// clang-format on
#else
#ifndef LMP_PAIR_AMOEBA_H
#define LMP_PAIR_AMOEBA_H
#include "lmpfftsettings.h"
#include "pair.h"
namespace LAMMPS_NS {
#define SBBITS15 29
#define NEIGHMASK15 0x1FFFFFFF
class PairAmoeba : public Pair {
public:
PairAmoeba(class LAMMPS *);
~PairAmoeba() override;
void compute(int, int) override;
void settings(int, char **) override;
void coeff(int, char **) override;
void init_style() override;
double init_one(int, int) override;
void finish() override;
int pack_forward_comm(int, int *, double *, int, int *) override;
void unpack_forward_comm(int, int, double *) override;
int pack_reverse_comm(int, int, double *) override;
void unpack_reverse_comm(int, int *, double *) override;
void pack_forward_grid(int, void *, int, int *) override;
void unpack_forward_grid(int, void *, int, int *) override;
void pack_reverse_grid(int, void *, int, int *) override;
void unpack_reverse_grid(int, void *, int, int *) override;
void *extract(const char *, int &) override;
double memory_usage() override;
protected:
int nmax; // allocation for owned+ghost
int cfstyle, crstyle; // style of forward/reverse comm operations
int nualt;
double electric;
double rotate[3][3]; // rotation matrix
bool amoeba; // which force field: amoeba == true, hippo == false
std::string mystyle; // text label for style
int first_flag; // 1 before first init_style()
int first_flag_compute; // 1 before first call to compute()
int optlevel;
// turn on/off components of force field
int hal_flag, repulse_flag, qxfer_flag;
int disp_rspace_flag, disp_kspace_flag;
int polar_rspace_flag, polar_kspace_flag;
int mpole_rspace_flag, mpole_kspace_flag;
int bond_flag, angle_flag, dihedral_flag, improper_flag;
int urey_flag, pitorsion_flag, bitorsion_flag;
// DEBUG timers
double time_init, time_hal, time_repulse, time_disp;
double time_mpole, time_induce, time_polar, time_qxfer;
// energy/virial components
double ehal, erepulse, edisp, epolar, empole, eqxfer;
double virhal[6], virrepulse[6], virdisp[6], virpolar[6], virmpole[6], virqxfer[6];
// scalar values defined in force-field file
char *forcefield; // FF name
double am_dielectric;
int opbendtype, vdwtype;
int radius_rule, radius_type, radius_size, epsilon_rule;
double bond_cubic, bond_quartic;
double angle_cubic, angle_quartic, angle_pentic, angle_sextic;
double opbend_cubic, opbend_quartic, opbend_pentic, opbend_sextic;
double torsion_unit;
int poltyp;
double special_hal[5];
double special_repel[5];
double special_disp[5];
double special_mpole[5];
double special_polar_pscale[5];
double special_polar_piscale[5];
double special_polar_wscale[5];
double polar_dscale, polar_uscale;
// scalar values defined in keyfile
double dhal, ghal;
double vdwcut, vdwtaper;
double repcut, reptaper;
double dispcut, disptaper;
double mpolecut, mpoletaper;
double ctrncut, ctrntaper;
double ewaldcut;
double dewaldcut;
double usolvcut;
int use_ewald, use_dewald;
int use_pred;
int politer, polpred;
int pcgprec, pcgguess;
double pcgpeek;
int tcgnab, optorder;
int maxualt;
double poleps;
double udiag;
int aeewald_key, apewald_key, adewald_key;
int pmegrid_key, dpmegrid_key;
// types and classes
int n_amtype; // # of defined AMOEBA types, 1-N
int n_amclass; // # of defined AMOEBA classes, 1-N
int max_amtype; // allocation length of per-type data
int max_amclass; // allocation length of per-class data
int *amtype_defined; // 1 if type was defined in FF file
int *amclass_defined; // 1 if class was defined in FF file
int *amtype2class; // amt2c[i] = class which type I belongs to
// static per-atom properties, must persist as atoms migrate
int index_amtype, index_amgroup, index_redID;
int index_xyzaxis, index_polaxe, index_pval;
int *amtype; // AMOEBA type, 1 to N_amtype
int *amgroup; // AMOEBA polarization group, 1 to Ngroup
char *id_pole, *id_udalt, *id_upalt;
class FixStore *fixpole; // stores pole = multipole components
class FixStore *fixudalt; // stores udalt = induced dipole history
class FixStore *fixupalt; // stores upalt = induced dipole history
// static per-type properties defined in force-field file
int *atomic_num; // atomic number
int *valence; // valence (# of possible bonds)
double *am_mass; // atomic weight
double *am_q; // charge
double **am_mu; // dipole moment
double *polarity; // for polar
double *pdamp; // for polar
double *thole; // for polar
double *dirdamp; // for polar
int *npolgroup; // # of other types in polarization group, per-type
int **polgroup; // list of other types in polarization group, per-type
double *sizpr, *dmppr, *elepr;
// multipole frame info for each amtype, read from PRM file
int *nmultiframe; // # of frames for each type
int **mpaxis; // polaxe values
int **xpole, **ypole, **zpole; // other types in xyz dirs for multipole frame
double ***fpole; // 13 values from file
// 0 = monopole, same as q
// 1,2,3 = 3 dipole components
// 4-12 = 9 quadrupole components
// static per-class properties defined in force-field file
double *vdwl_eps; // Vdwl epsilon for each class of atom
double *vdwl_sigma; // Vdwl sigma for each class of atom
double *kred; // fraction that H atoms move towards bonded atom
// used in Vdwl, 0.0 if not H atom
double *csix, *adisp; // used in dispersion
double *chgct, *dmpct; // used in charge transfer
double *pcore, *palpha; // for multipole
int **vdwl_class_pair; // Vdwl iclass/jclass for pair of classes
double *vdwl_eps_pair; // Vdwl epsilon for pair of classes
double *vdwl_sigma_pair; // Vdwl sigma for pair of classes
int nvdwl_pair; // # of pairwise Vdwl entries in file
int max_vdwl_pair; // size of allocated data for pairwise Vdwl
// vectors and arrays of small size
double *copt, *copm; // 0:optorder in length
double *gear, *aspc;
double *a_ualt, *ap_ualt; // maxualt*(maxualt+1)/2 in length
double *b_ualt, *bp_ualt; // maxualt in length
double **c_ualt, **cp_ualt; // maxualt x maxualt in size
// indices NOT flipped vs Fortran
double *bpred, *bpredp, *bpreds, *bpredps; // maxualt in length
double vmsave[6]; // multipole virial saved to use in polar
double csixpr; // square of csix for all atoms
// params common to pairwise terms
double off2, cut2;
double c0, c1, c2, c3, c4, c5;
// Vdwl hal params - only for AMOEBA
double **radmin, **epsilon;
double **radmin4, **epsilon4;
// peratom values computed each step
// none of them persist with atoms
// some of them need communication to ghosts
double **rpole; // multipole, comm to ghosts
int *xaxis2local, *yaxis2local, *zaxis2local; // xyz axis IDs -> local indices
// just for owned atoms
// set to self if not defined
int *red2local; // local indices of ired IDs, computed for owned and ghost
double **xred; // altered coords for H atoms for Vdwl, comm to ghosts
double **tq; // torque from pairwise multipole, reverse comm from ghosts
double **uind, **uinp; // computed by induce, comm to ghosts
double **udirp;
double **rsd, **rsdp; // used by induce, comm to ghosts
double **field, **fieldp; // used by induce, reverse comm from ghosts
double ***uopt, ***uoptp; // Nlocal x Optorder+1 x 3 arrays
double **ufld, **dufld; // used by polar, reverse comm from ghosts
double **zrsd, **zrsdp; // used by induce, reverse comm from ghosts
double ***uad, ***uap, ***ubd, ***ubp; // used by TCG (not for now)
double ***fopt, ***foptp; // computed in induce, used by polar, if OPT
// Nlocal x optorder x 10
double *poli;
double **conj, **conjp;
double **vec, **vecp;
double **udir, **usum, **usump;
double **fuind, **fuinp;
double **fdip_phi1, **fdip_phi2, **fdip_sum_phi;
double **dipfield1, **dipfield2;
double **fphid, **fphip;
double **fphidp, **cphidp;
// derived local neighbor lists
int *numneigh_dipole; // number of dipole neighs for each atom
int **firstneigh_dipole; // ptr to each atom's dipole neigh indices
MyPage<int> *ipage_dipole; // pages of neighbor indices for dipole neighs
double **firstneigh_dipdip; // ptr to each atom's dip/dip values
MyPage<double> *dpage_dipdip; // pages of dip/dip values for dipole neighs
int *numneigh_precond; // number of precond neighs for each atom
int **firstneigh_precond; // ptr to each atom's precond neigh indices
MyPage<int> *ipage_precond; // pages of neighbor indices for precond neighs
double **firstneigh_pcpc; // ptr to each atom's pc/pc values
MyPage<double> *dpage_pcpc; // pages of pc/pc values for precond neighs
// KSpace data
// in indices = owned portion of grid in spatial decomp
// out indices = in + ghost grid cells
// fft indices = owned portion of grid in FFT decomp
int nefft1, nefft2, nefft3; // for electrostatic PME operations
int ndfft1, ndfft2, ndfft3; // for dispersion PME operations
int bseorder; // for electrostatics
int bsporder; // for polarization
int bsdorder; // for dispersion
int bsordermax; // max of 3 bsorder values
double aewald; // current Ewald alpha
double aeewald; // for electrostatics
double apewald; // for polarization
double adewald; // for dispersion
double *bsmod1, *bsmod2, *bsmod3; // B-spline module along abc axes
// set to max of any nfft1,nfft2,nfft3
double ***thetai1, ***thetai2, ***thetai3; // B-spline coeffs along abc axes
// Nlocal x max bsorder x 4
int **igrid; // grid indices for each owned particle, Nlocal x 3
double **bsbuild; // used internally in bsplgen, max-bsorder x max-bsorder
// indices ARE flipped vs Fortran
// Kspace data for induce and polar
double *qfac; // convoulution pre-factors
double *gridfft1; // copy of p_kspace FFT grid
double **cmp, **fmp; // Cartesian and fractional multipoles
double **cphi, **fphi;
// params for current KSpace solve and FFT being worked on
int nfft1, nfft2, nfft3; // size of FFT
int bsorder; // stencil size
double recip[3][3]; // indices NOT flipped vs Fortran
double ctf[10][10]; // indices NOT flipped vs Fortran
double ftc[10][10]; // indices NOT flipped vs Fortran
class AmoebaConvolution *m_kspace, *p_kspace, *pc_kspace, *d_kspace;
class AmoebaConvolution *i_kspace, *ic_kspace;
// FFT grid size factors
int nfactors; // # of factors
int *factors; // list of possible factors (2,3,5)
// components of force field
void hal();
void repulsion();
void damprep(double, double, double, double, double, double, double, double, int, double, double,
double *);
void dispersion();
void dispersion_real();
void dispersion_kspace();
void multipole();
void multipole_real();
void multipole_kspace();
void polar();
void polar_energy();
void polar_real();
void polar_kspace();
void damppole(double, int, double, double, double *, double *, double *);
void induce();
void ulspred();
void ufield0c(double **, double **);
void uscale0b(int, double **, double **, double **, double **);
void dfield0c(double **, double **);
void umutual1(double **, double **);
void umutual2b(double **, double **);
void udirect1(double **);
void udirect2b(double **, double **);
void dampmut(double, double, double, double *);
void dampdir(double, double, double, double *, double *);
void cholesky(int, double *, double *);
void charge_transfer();
// KSpace methods
void lattice();
void moduli();
void bspline(double, int, double *);
void dftmod(double *, double *, int, int);
void bspline_fill();
void bsplgen(double, double **);
void cmp_to_fmp(double **, double **);
void cart_to_frac();
void fphi_to_cphi(double **, double **);
void frac_to_cart();
void grid_mpole(double **, double ***);
void fphi_mpole(double ***, double **);
void grid_uind(double **, double **, double ****);
void fphi_uind(double ****, double **, double **, double **);
void grid_disp(double ***);
void kewald();
void kewald_parallel(int, int, int, int, int &, int &, int &, int &, int &, int &, int &, int &,
int &, int &, int &, int &, int &, int &, int &, int &, int &, int &);
double ewaldcof(double);
int factorable(int);
// debug methods
FILE *fp_uind;
void dump6(FILE *, const char *, double, double **, double **);
// functions in pair_amoeba.cpp
void allocate();
void print_settings();
void initialize_vdwl();
void allocate_vdwl();
void deallocate_vdwl();
void initialize_smallsize();
void allocate_smallsize();
void deallocate_smallsize();
void assign_groups();
void pbc_xred();
void precond_neigh();
void choose(int);
void mix();
void zero_energy_force_virial();
void grow_local();
// functions in amoeba_utils.cpp
void kmpole();
void chkpole(int);
void rotmat(int);
void rotsite(int);
void add_onefive_neighbors();
void find_hydrogen_neighbors();
void find_multipole_neighbors();
void torque2force(int, double *, double *, double *, double *, double **);
// functions in file_amoeba.cpp
void set_defaults();
void read_prmfile(char *);
void read_keyfile(char *);
void initialize_type_class();
void allocate_type_class(int, int);
void deallocate_type_class();
void file_ffield(const std::vector<std::string> &, int);
void file_literature(const std::vector<std::string> &, int);
void file_atomtype(const std::vector<std::string> &, int);
void file_vdwl(const std::vector<std::string> &, int);
void file_vdwl_pair(const std::vector<std::string> &, int);
void file_bstretch(const std::vector<std::string> &, int);
void file_sbend(const std::vector<std::string> &, int);
void file_abend(const std::vector<std::string> &, int);
void file_pauli(const std::vector<std::string> &, int);
void file_dispersion(const std::vector<std::string> &, int);
void file_ub(const std::vector<std::string> &, int);
void file_outplane(const std::vector<std::string> &, int);
void file_torsion(const std::vector<std::string> &, int);
void file_pitorsion(const std::vector<std::string> &, int);
void file_multipole(const std::vector<std::string> &, int);
void file_charge_penetration(const std::vector<std::string> &, int);
void file_dippolar(const std::vector<std::string> &, int);
void file_charge_transfer(const std::vector<std::string> &, int);
// inline function for neighbor list unmasking
inline int sbmask15(int j) const { return j >> SBBITS15 & 7; }
};
} // namespace LAMMPS_NS
#endif
#endif

24
src/AMOEBA/pair_hippo.cpp Normal file
View File

@ -0,0 +1,24 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_hippo.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
PairHippo::PairHippo(LAMMPS *lmp) : PairAmoeba(lmp)
{
amoeba = false;
mystyle = "hippo";
}

33
src/AMOEBA/pair_hippo.h Normal file
View File

@ -0,0 +1,33 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/ Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
// clang-format off
PairStyle(hippo,PairHippo);
// clang-format on
#else
#ifndef LMP_PAIR_HIPPO_H
#define LMP_PAIR_HIPPO_H
#include "pair_amoeba.h"
namespace LAMMPS_NS {
class PairHippo : public PairAmoeba {
public:
PairHippo(class LAMMPS *);
};
} // namespace LAMMPS_NS
#endif
#endif

View File

@ -284,7 +284,7 @@ FixATC::FixATC(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg),
int me = ATC::LammpsInterface::instance()->comm_rank();
string groupName(arg[1]);
int igroup = group->find(groupName.c_str());
int igroup = group->find(groupName);
int atomCount = group->count(igroup);
try {

View File

@ -24,10 +24,10 @@
#include "neighbor.h"
#include "comm.h"
#include "force.h"
#include "pair.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */

View File

@ -117,7 +117,7 @@ void colvarproxy_lammps::init(const char *conf_file)
if (_lmp->update->ntimestep != 0) {
cvm::log("Setting initial step number from LAMMPS: "+
cvm::to_str(_lmp->update->ntimestep)+"\n");
colvars->it = colvars->it_restart =
colvarmodule::it = colvarmodule::it_restart =
static_cast<cvm::step_number>(_lmp->update->ntimestep);
}
@ -174,7 +174,7 @@ double colvarproxy_lammps::compute()
} else {
// Use the time step number from LAMMPS Update object
if (_lmp->update->ntimestep - previous_step == 1) {
colvars->it++;
colvarmodule::it++;
b_simulation_continuing = false;
} else {
// Cases covered by this condition:
@ -209,7 +209,7 @@ double colvarproxy_lammps::compute()
if (cvm::debug()) {
cvm::log(std::string(cvm::line_marker)+
"colvarproxy_lammps, step no. "+cvm::to_str(colvars->it)+"\n"+
"colvarproxy_lammps, step no. "+cvm::to_str(colvarmodule::it)+"\n"+
"Updating internal data.\n");
}
@ -269,7 +269,7 @@ cvm::rvector colvarproxy_lammps::position_distance(cvm::atom_pos const &pos1,
double ytmp = pos2.y - pos1.y;
double ztmp = pos2.z - pos1.z;
_lmp->domain->minimum_image(xtmp,ytmp,ztmp);
return cvm::rvector(xtmp, ytmp, ztmp);
return {xtmp, ytmp, ztmp};
}

View File

@ -135,8 +135,6 @@ static void rebuild_table_int(inthash_t *tptr) {
/* free memory used by old table */
free(old_bucket);
return;
}
/*
@ -166,8 +164,6 @@ void inthash_init(inthash_t *tptr, int buckets) {
/* allocate memory for table */
tptr->bucket=(inthash_node_t **) calloc(tptr->size, sizeof(inthash_node_t *));
return;
}
/*
@ -847,7 +843,6 @@ void FixColvars::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
/* only process colvar forces on the outmost RESPA level. */
if (ilevel == nlevels_respa-1) post_force(vflag);
return;
}
/* ---------------------------------------------------------------------- */
@ -939,7 +934,7 @@ void FixColvars::end_of_step()
void FixColvars::write_restart(FILE *fp)
{
if (me == 0) {
std::string rest_text("");
std::string rest_text;
proxy->serialize_status(rest_text);
// TODO call write_output_files()
const char *cvm_state = rest_text.c_str();

View File

@ -76,7 +76,7 @@ void Ndx2Group::command(int narg, char **arg)
int len;
bigint num;
FILE *fp;
std::string name = "", next;
std::string name, next;
if (narg < 1) error->all(FLERR,"Illegal ndx2group command");
if (atom->tag_enable == 0)

View File

@ -78,9 +78,9 @@ AtomVecDielectric::AtomVecDielectric(LAMMPS *_lmp) : AtomVec(_lmp)
"mu", "area", "ed", "em", "epsilon", "curvature", "q_unscaled"};
fields_create = {"q", "molecule", "num_bond", "num_angle", "num_dihedral", "num_improper",
"nspecial", "mu", "area", "ed", "em", "epsilon", "curvature", "q_unscaled"};
fields_data_atom = { "id", "molecule", "type", "q", "x", "mu3", "area", "ed", "em", "epsilon",
fields_data_atom = {"id", "molecule", "type", "q", "x", "mu3", "area", "ed", "em", "epsilon",
"curvature"};
fields_data_vel = {"id v"};
fields_data_vel = {"id", "v"};
// clang-format on
setup_fields();

View File

@ -58,6 +58,9 @@ PPPMDielectric::PPPMDielectric(LAMMPS *_lmp) : PPPM(_lmp)
phi = nullptr;
potflag = 0;
// no warnings about non-neutral systems from qsum_qsq()
warn_nonneutral = 2;
avec = dynamic_cast<AtomVecDielectric *>( atom->style_match("dielectric"));
if (!avec) error->all(FLERR,"pppm/dielectric requires atom style dielectric");
}
@ -463,25 +466,3 @@ void PPPMDielectric::slabcorr()
efield[i][2] += ffact * eps[i]*(dipole_all - qsum*x[i][2]);
}
}
/* ----------------------------------------------------------------------
compute qsum,qsqsum,q2 and ignore error/warning if not charge neutral
called whenever charges are changed
------------------------------------------------------------------------- */
void PPPMDielectric::qsum_qsq()
{
const double * const q = atom->q;
const int nlocal = atom->nlocal;
double qsum_local(0.0), qsqsum_local(0.0);
for (int i = 0; i < nlocal; i++) {
qsum_local += q[i];
qsqsum_local += q[i]*q[i];
}
MPI_Allreduce(&qsum_local,&qsum,1,MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&qsqsum_local,&qsqsum,1,MPI_DOUBLE,MPI_SUM,world);
q2 = qsqsum * force->qqrd2e;
}

View File

@ -34,8 +34,6 @@ class PPPMDielectric : public PPPM {
double *phi;
int potflag; // 1/0 if per-atom electrostatic potential phi is needed
void qsum_qsq();
protected:
void slabcorr() override;

View File

@ -65,6 +65,9 @@ PPPMDispDielectric::PPPMDispDielectric(LAMMPS *_lmp) : PPPMDisp(_lmp)
mu_flag = 0;
// no warnings about non-neutral systems from qsum_qsq()
warn_nonneutral = 2;
efield = nullptr;
phi = nullptr;
potflag = 0;
@ -837,25 +840,3 @@ double PPPMDispDielectric::memory_usage()
bytes += nmax * sizeof(double);
return bytes;
}
/* ----------------------------------------------------------------------
compute qsum,qsqsum,q2 and give error/warning if not charge neutral
called initially, when particle count changes, when charges are changed
------------------------------------------------------------------------- */
void PPPMDispDielectric::qsum_qsq()
{
const double * const q = atom->q;
const int nlocal = atom->nlocal;
double qsum_local(0.0), qsqsum_local(0.0);
for (int i = 0; i < nlocal; i++) {
qsum_local += q[i];
qsqsum_local += q[i]*q[i];
}
MPI_Allreduce(&qsum_local,&qsum,1,MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&qsqsum_local,&qsqsum,1,MPI_DOUBLE,MPI_SUM,world);
q2 = qsqsum * force->qqrd2e;
}

View File

@ -30,8 +30,7 @@ class PPPMDispDielectric : public PPPMDisp {
~PPPMDispDielectric() override;
double memory_usage() override;
void compute(int, int) override;
void qsum_qsq();
void slabcorr(int);
void slabcorr(int) override;
double **efield;
double *phi;

View File

@ -17,8 +17,8 @@
modified velocity-Verlet (MVV) algorithm.
Setting verlet = 0.5 recovers the standard velocity-Verlet algorithm.
Contributing author: Zhen Li (Brown University)
Email: zhen_li@brown.edu
Contributing author: Zhen Li (Clemson University)
Email: zli7@clemson.edu
------------------------------------------------------------------------- */
#include "fix_mvv_dpd.h"

View File

@ -17,8 +17,8 @@
v and edpd_T) using the modified velocity-Verlet (MVV) algorithm.
Setting verlet = 0.5 recovers the standard velocity-Verlet algorithm.
Contributing author: Zhen Li (Brown University)
Email: zhen_li@brown.edu
Contributing author: Zhen Li (Clemson University)
Email: zli7@clemson.edu
Please cite the related publication:
Z. Li, Y.-H. Tang, H. Lei, B. Caswell and G.E. Karniadakis. "Energy-

View File

@ -17,8 +17,8 @@
v and cc) using the modified velocity-Verlet (MVV) algorithm.
Setting verlet = 0.5 recovers the standard velocity-Verlet algorithm.
Contributing author: Zhen Li (Brown University)
Email: zhen_li@brown.edu
Contributing author: Zhen Li (Clemson University)
Email: zli7@clemson.edu
Please cite the related publication:
Z. Li, A. Yazdani, A. Tartakovsky and G.E. Karniadakis. "Transport

View File

@ -13,8 +13,8 @@
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Zhen Li (Brown University)
Email: zhen_li@brown.edu
Contributing author: Zhen Li (Clemson University)
Email: zli7@clemson.edu
------------------------------------------------------------------------- */
#include "pair_edpd.h"

View File

@ -13,8 +13,8 @@
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Zhen Li (Brown University)
Email: zhen_li@brown.edu
Contributing author: Zhen Li (Clemson University)
Email: zli7@clemson.edu
------------------------------------------------------------------------- */
#include "pair_mdpd.h"

View File

@ -17,7 +17,7 @@
before the force calculation.
The code uses 3D Lucy kernel, it can be modified for other kernels.
Contributing author: Zhen Li (Brown University)
Contributing author: Zhen Li (Clemson University)
------------------------------------------------------------------------- */
#include "pair_mdpd_rhosum.h"

View File

@ -13,8 +13,8 @@
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Zhen Li (Brown University)
Email: zhen_li@brown.edu
Contributing author: Zhen Li (Clemson University)
Email: zli7@clemson.edu
------------------------------------------------------------------------- */
#include "pair_tdpd.h"

View File

@ -44,7 +44,7 @@ static const double sqrt_2_inv = std::sqrt(0.5);
/* ---------------------------------------------------------------------- */
PairSDPDTaitwaterIsothermal::PairSDPDTaitwaterIsothermal (LAMMPS *lmp)
: Pair (lmp) {
: Pair (lmp), random(nullptr) {
restartinfo = 0;
single_enable =0;
}
@ -61,6 +61,7 @@ PairSDPDTaitwaterIsothermal::~PairSDPDTaitwaterIsothermal () {
memory->destroy (soundspeed);
memory->destroy (B);
}
delete random;
}
/* ---------------------------------------------------------------------- */

View File

@ -121,12 +121,17 @@ fi
if (test $1 = "MANYBODY") then
depend ATC
depend GPU
depend INTEL
depend KOKKOS
depend OPT
depend QEQ
depend OPENMP
fi
if (test $1 = "MEAM") then
depend KOKKOS
fi
if (test $1 = "MOLECULE") then
depend EXTRA-MOLECULE
depend GPU

View File

@ -40,7 +40,7 @@ using namespace MathConst;
/* ---------------------------------------------------------------------- */
EwaldElectrode::EwaldElectrode(LAMMPS *lmp) : Ewald(lmp), ElectrodeKSpace()
EwaldElectrode::EwaldElectrode(LAMMPS *lmp) : Ewald(lmp)
{
eikr_step = -1;
}

View File

@ -65,8 +65,7 @@ enum { FORWARD_IK, FORWARD_AD, FORWARD_IK_PERATOM, FORWARD_AD_PERATOM };
/* ---------------------------------------------------------------------- */
PPPMElectrode::PPPMElectrode(LAMMPS *lmp) :
PPPM(lmp), ElectrodeKSpace(), electrolyte_density_brick(nullptr),
electrolyte_density_fft(nullptr)
PPPM(lmp), electrolyte_density_brick(nullptr), electrolyte_density_fft(nullptr)
{
group_group_enable = 0;
electrolyte_density_brick = nullptr;

View File

@ -11,10 +11,15 @@
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#include "compute_ave_sphere_atom.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
@ -98,7 +103,10 @@ void ComputeAveSphereAtom::init()
}
cutsq = cutoff * cutoff;
sphere_vol = 4.0 / 3.0 * MY_PI * cutsq * cutoff;
if (domain->dimension == 3)
volume = 4.0 / 3.0 * MY_PI * cutsq * cutoff;
else
volume = MY_PI * cutsq;
// need an occasional full neighbor list
@ -121,7 +129,7 @@ void ComputeAveSphereAtom::compute_peratom()
double xtmp, ytmp, ztmp, delx, dely, delz, rsq;
int *ilist, *jlist, *numneigh, **firstneigh;
int count;
double vsum[3], vavg[3], vnet[3];
double p[3], vcom[3], vnet[3];
invoked_peratom = update->ntimestep;
@ -152,12 +160,26 @@ void ComputeAveSphereAtom::compute_peratom()
double **x = atom->x;
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
int *mask = atom->mask;
double massone_i, massone_j, totalmass;
double adof = domain->dimension;
double mvv2e = force->mvv2e;
double mv2d = force->mv2d;
double boltz = force->boltz;
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
if (mask[i] & groupbit) {
if (rmass)
massone_i = rmass[i];
else
massone_i = mass[type[i]];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
@ -167,13 +189,18 @@ void ComputeAveSphereAtom::compute_peratom()
// i atom contribution
count = 1;
vsum[0] = v[i][0];
vsum[1] = v[i][1];
vsum[2] = v[i][2];
totalmass = massone_i;
p[0] = v[i][0] * massone_i;
p[1] = v[i][1] * massone_i;
p[2] = v[i][2] * massone_i;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
if (rmass)
massone_j = rmass[j];
else
massone_j = mass[type[j]];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
@ -181,42 +208,45 @@ void ComputeAveSphereAtom::compute_peratom()
rsq = delx * delx + dely * dely + delz * delz;
if (rsq < cutsq) {
count++;
vsum[0] += v[j][0];
vsum[1] += v[j][1];
vsum[2] += v[j][2];
totalmass += massone_j;
p[0] += v[j][0] * massone_j;
p[1] += v[j][1] * massone_j;
p[2] += v[j][2] * massone_j;
}
}
vavg[0] = vsum[0] / count;
vavg[1] = vsum[1] / count;
vavg[2] = vsum[2] / count;
vcom[0] = p[0] / totalmass;
vcom[1] = p[1] / totalmass;
vcom[2] = p[2] / totalmass;
// i atom contribution
count = 1;
vnet[0] = v[i][0] - vavg[0];
vnet[1] = v[i][1] - vavg[1];
vnet[2] = v[i][2] - vavg[2];
double ke_sum = vnet[0] * vnet[0] + vnet[1] * vnet[1] + vnet[2] * vnet[2];
vnet[0] = v[i][0] - vcom[0];
vnet[1] = v[i][1] - vcom[1];
vnet[2] = v[i][2] - vcom[2];
double ke_sum = massone_i * (vnet[0] * vnet[0] + vnet[1] * vnet[1] + vnet[2] * vnet[2]);
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
if (rmass)
massone_j = rmass[j];
else
massone_j = mass[type[j]];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
if (rsq < cutsq) {
count++;
vnet[0] = v[j][0] - vavg[0];
vnet[1] = v[j][1] - vavg[1];
vnet[2] = v[j][2] - vavg[2];
ke_sum += vnet[0] * vnet[0] + vnet[1] * vnet[1] + vnet[2] * vnet[2];
vnet[0] = v[j][0] - vcom[0];
vnet[1] = v[j][1] - vcom[1];
vnet[2] = v[j][2] - vcom[2];
ke_sum += massone_j * (vnet[0] * vnet[0] + vnet[1] * vnet[1] + vnet[2] * vnet[2]);
}
}
double density = count / sphere_vol;
double temp = ke_sum / 3.0 / count;
double density = mv2d * totalmass / volume;
double temp = mvv2e * ke_sum / (adof * count * boltz);
result[i][0] = density;
result[i][1] = temp;
}

View File

@ -37,7 +37,7 @@ class ComputeAveSphereAtom : public Compute {
protected:
int nmax;
double cutoff, cutsq, sphere_vol;
double cutoff, cutsq, volume;
class NeighList *list;
double **result;

View File

@ -80,21 +80,23 @@ ComputeStressCartesian::ComputeStressCartesian(LAMMPS *lmp, int narg, char **arg
dir2 = 0;
bin_width1 = utils::numeric(FLERR, arg[4], false, lmp);
bin_width2 = 0.0;
bin_width2 = domain->boxhi[dir2] - domain->boxlo[dir2];
nbins1 = (int) ((domain->boxhi[dir1] - domain->boxlo[dir1]) / bin_width1);
nbins2 = 1;
// adjust bin width if not a perfect match
invV = (domain->boxhi[dir1] - domain->boxlo[dir1]) / nbins1;
if ((fabs(invV - bin_width1) > SMALL) && (comm->me == 0))
utils::logmesg(lmp, "Adjusting first bin width for compute {} from {:.6f} to {:.6f}\n", style,
bin_width1, invV);
bin_width1 = invV;
double tmp_binwidth = (domain->boxhi[dir1] - domain->boxlo[dir1]) / nbins1;
if ((fabs(tmp_binwidth - bin_width1) > SMALL) && (comm->me == 0))
utils::logmesg(lmp, "Adjusting second bin width for compute {} from {:.6f} to {:.6f}\n", style,
bin_width1, tmp_binwidth);
bin_width1 = tmp_binwidth;
if (bin_width1 <= 0.0)
error->all(FLERR, "Illegal compute stress/cartesian command. Bin width must be > 0");
else if (bin_width1 > domain->boxhi[dir1] - domain->boxlo[dir1])
error->all(FLERR, "Illegal compute stress/cartesian command. Bin width larger than box.");
invV = bin_width1;
if (dims == 2) {
if (strcmp(arg[5], "x") == 0)
dir2 = 0;
@ -107,7 +109,9 @@ ComputeStressCartesian::ComputeStressCartesian(LAMMPS *lmp, int narg, char **arg
bin_width2 = utils::numeric(FLERR, arg[6], false, lmp);
nbins2 = (int) ((domain->boxhi[dir2] - domain->boxlo[dir2]) / bin_width2);
double tmp_binwidth = (domain->boxhi[dir2] - domain->boxlo[dir2]) / nbins2;
// adjust bin width if not a perfect match
tmp_binwidth = (domain->boxhi[dir2] - domain->boxlo[dir2]) / nbins2;
if ((fabs(tmp_binwidth - bin_width2) > SMALL) && (comm->me == 0))
utils::logmesg(lmp, "Adjusting second bin width for compute {} from {:.6f} to {:.6f}\n",
style, bin_width2, tmp_binwidth);
@ -262,7 +266,7 @@ void ComputeStressCartesian::compute_array()
Pair *pair = force->pair;
double **cutsq = force->pair->cutsq;
double xi1, xi2, xj1, xj2;
double xi1, xi2;
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
@ -301,9 +305,6 @@ void ComputeStressCartesian::compute_array()
}
}
}
xj1 = x[j][dir1];
xj2 = x[j][dir2];
delx = x[j][0] - xtmp;
dely = x[j][1] - ytmp;
delz = x[j][2] - ztmp;
@ -314,8 +315,7 @@ void ComputeStressCartesian::compute_array()
// Check if inside cut-off
if (rsq >= cutsq[itype][jtype]) continue;
pair->single(i, j, itype, jtype, rsq, factor_coul, factor_lj, fpair);
if (dims == 1) compute_pressure_1d(fpair, xi1, xj1, delx, dely, delz);
if (dims == 2) compute_pressure_2d(fpair, xi1, xi2, xj1, xj2, delx, dely, delz);
compute_pressure(fpair, xi1, xi2, delx, dely, delz);
}
}
@ -353,107 +353,8 @@ void ComputeStressCartesian::compute_array()
}
}
void ComputeStressCartesian::compute_pressure_1d(double fpair, double xi, double xj, double delx,
double dely, double delz)
{
int bin_s, bin_e, bin_step, bin, bin_limit;
double xa, xb;
if (xi < domain->boxlo[dir1])
xi += (domain->boxhi[dir1] - domain->boxlo[dir1]);
else if (xi > domain->boxhi[dir1])
xi -= (domain->boxhi[dir1] - domain->boxlo[dir1]);
if (xj < domain->boxlo[dir1])
xj += (domain->boxhi[dir1] - domain->boxlo[dir1]);
else if (xj > domain->boxhi[dir1])
xj -= (domain->boxhi[dir1] - domain->boxlo[dir1]);
// Integrating contour from bin_s to bin_e
bin_s = ((int) lround((xi - domain->boxlo[dir1]) / bin_width1)) % nbins1;
bin_e = ((int) lround((xj - domain->boxlo[dir1]) / bin_width1)) % nbins1;
// If not periodic in dir1
if (domain->periodicity[dir1] == 0) {
bin_s = ((int) lround((xi - domain->boxlo[dir1]) / bin_width1));
bin_e = ((int) lround((xj - domain->boxlo[dir1]) / bin_width1));
if (bin_e == nbins1) bin_e--;
if (bin_s == nbins1) bin_s--;
}
bin_step = 1;
if (domain->periodicity[dir1] == 1) {
if (bin_e - bin_s > 0.5 * nbins1)
bin_step = -1;
else if (bin_s - bin_e > 0.5 * nbins1)
bin_step = 1;
else if (bin_s > bin_e)
bin_step = -1;
} else {
if (bin_s > bin_e) bin_step = -1;
}
if (domain->periodicity[dir1] == 1)
bin_limit = (bin_e + bin_step) % nbins1 < 0 ? (bin_e + bin_step) % nbins1 + nbins1
: (bin_e + bin_step) % nbins1;
else
bin_limit = bin_e + bin_step;
bin = bin_s;
// Integrate from bin_s to bin_e with step bin_step.
while (bin < bin_limit) {
// Calculating exit and entry point (xa, xb). Checking if inside current bin.
if (bin == bin_s) {
if (domain->periodicity[dir1] == 1)
xa = fmod(xi, domain->boxhi[dir1]) + domain->boxlo[dir1];
else
xa = xi;
} else
xa = (bin_step == 1) ? bin * bin_width1 : (bin + 1) * bin_width1;
if (bin == bin_e) {
if (domain->periodicity[dir1] == 1)
xb = fmod(xj, domain->boxhi[dir1]) + domain->boxlo[dir1];
else
xb = xj;
} else
xb = (bin_step == 1) ? (bin + 1) * bin_width1 : bin * bin_width1;
if (bin < 0 || bin >= nbins1) error->all(FLERR, "ERROR: Bin outside simulation.");
if (bin_s != bin_e) {
if (dir1 == 0) {
tpcxx[bin] += (fpair * delx * delx) * (xb - xa) / delx;
tpcyy[bin] += (fpair * dely * dely) * (xb - xa) / delx;
tpczz[bin] += (fpair * delz * delz) * (xb - xa) / delx;
} else if (dir1 == 1) {
tpcxx[bin] += (fpair * delx * delx) * (xb - xa) / dely;
tpcyy[bin] += (fpair * dely * dely) * (xb - xa) / dely;
tpczz[bin] += (fpair * delz * delz) * (xb - xa) / dely;
} else if (dir1 == 2) {
tpcxx[bin] += (fpair * delx * delx) * (xb - xa) / delz;
tpcyy[bin] += (fpair * dely * dely) * (xb - xa) / delz;
tpczz[bin] += (fpair * delz * delz) * (xb - xa) / delz;
}
}
// Particle i and j in same bin. Avoiding zero divided by zero.
else {
tpcxx[bin] += fpair * delx * delx;
tpcyy[bin] += fpair * dely * dely;
tpczz[bin] += fpair * delz * delz;
}
// Stepping bin to next bin
if (domain->periodicity[dir1] == 1)
bin = (bin + bin_step) % nbins1 < 0 ? (bin + bin_step) % nbins1 + nbins1
: (bin + bin_step) % nbins1;
else
bin = bin + bin_step;
}
}
void ComputeStressCartesian::compute_pressure_2d(double fpair, double xi, double yi, double /*xj*/,
double /*yj*/, double delx, double dely,
double delz)
void ComputeStressCartesian::compute_pressure(double fpair, double xi, double yi, double delx,
double dely, double delz)
{
int bin1, bin2, next_bin1, next_bin2;
double la = 0.0, lb = 0.0, l_sum = 0.0;

View File

@ -41,8 +41,7 @@ class ComputeStressCartesian : public Compute {
double *dens, *pkxx, *pkyy, *pkzz, *pcxx, *pcyy, *pczz;
double *tdens, *tpkxx, *tpkyy, *tpkzz, *tpcxx, *tpcyy, *tpczz;
class NeighList *list;
void compute_pressure_1d(double, double, double, double, double, double);
void compute_pressure_2d(double, double, double, double, double, double, double, double);
void compute_pressure(double, double, double, double, double, double);
};
} // namespace LAMMPS_NS

View File

@ -433,10 +433,10 @@ int xdropen(XDR *xdrs, const char *filename, const char *type)
return 0;
}
if (*type == 'w' || *type == 'W') {
type = (char *) "w+";
type = (char *) "wb+";
lmode = XDR_ENCODE;
} else {
type = (char *) "r";
type = (char *) "rb";
lmode = XDR_DECODE;
}
xdrfiles[xdrid] = fopen(filename, type);

View File

@ -124,6 +124,12 @@ void DumpYAML::write_data(int n, double *mybuf)
}
fputs("]\n", fp);
}
}
/* ---------------------------------------------------------------------- */
void DumpYAML::write_footer()
{
fputs("...\n", fp);
}

View File

@ -35,6 +35,7 @@ class DumpYAML : public DumpCustom {
void write() override;
void write_header(bigint) override;
void write_data(int, double *) override;
void write_footer() override;
int modify_param(int, char **) override;
};

View File

@ -26,6 +26,7 @@
#include "math_const.h"
#include "memory.h"
#include "neighbor.h"
#include "pair.h"
#include <cmath>
@ -61,7 +62,6 @@ DihedralFourier::~DihedralFourier()
delete [] shift;
delete [] cos_shift;
delete [] sin_shift;
}
}
@ -332,7 +332,6 @@ void DihedralFourier::coeff(int narg, char **arg)
void DihedralFourier::write_restart(FILE *fp)
{
fwrite(&nterms[1],sizeof(int),atom->ndihedraltypes,fp);
for (int i = 1; i <= atom->ndihedraltypes; i++) {
fwrite(k[i],sizeof(double),nterms[i],fp);

View File

@ -116,15 +116,15 @@ void PairCoulSlaterLong::compute(int eflag, int vflag)
if (rsq < cut_coulsq) {
r2inv = 1.0/rsq;
r = sqrt(rsq);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
t = 1.0 / (1.0 + EWALD_P*grij);
erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
slater_term = exp(-2*r/lamda)*(1 + (2*r/lamda*(1+r/lamda)));
prefactor = qqrd2e * scale[itype][jtype] * qtmp*q[j]/r;
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2 - slater_term);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor;
r = sqrt(rsq);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
t = 1.0 / (1.0 + EWALD_P*grij);
erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
slater_term = exp(-2*r/lamda)*(1 + (2*r/lamda*(1+r/lamda)));
prefactor = qqrd2e * scale[itype][jtype] * qtmp*q[j]/r;
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2 - slater_term);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor*(1-slater_term);
fpair = forcecoul * r2inv;
@ -138,8 +138,8 @@ void PairCoulSlaterLong::compute(int eflag, int vflag)
}
if (eflag) {
ecoul = prefactor*(erfc - (1 + r/lamda)*exp(-2*r/lamda));
if (factor_coul < 1.0) ecoul -= (1.0-factor_coul)*prefactor;
ecoul = prefactor*(erfc - (1 + r/lamda)*exp(-2*r/lamda));
if (factor_coul < 1.0) ecoul -= (1.0-factor_coul)*prefactor*(1.0-(1 + r/lamda)*exp(-2*r/lamda));
}
if (evflag) ev_tally(i,j,nlocal,newton_pair,

View File

@ -0,0 +1,44 @@
// clang-format off
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
// Only used for hybrid to generate list for non-intel style. Use
// standard routines.
#ifdef NPAIR_CLASS
// clang-format off
NPairStyle(halffull/newtoff/trim/intel,
NPairHalffullNewtoffTrim,
NP_HALF_FULL | NP_NEWTOFF | NP_NSQ | NP_BIN | NP_MULTI | NP_HALF |
NP_ORTHO | NP_TRI | NP_TRIM | NP_INTEL);
NPairStyle(halffull/newtoff/skip/trim/intel,
NPairHalffullNewtoffTrim,
NP_HALF_FULL | NP_NEWTOFF | NP_NSQ | NP_BIN | NP_MULTI | NP_HALF |
NP_ORTHO | NP_TRI | NP_SKIP | NP_TRIM | NP_INTEL);
NPairStyle(halffull/newtoff/ghost/trim/intel,
NPairHalffullNewtoffTrim,
NP_HALF_FULL | NP_NEWTOFF | NP_NSQ | NP_BIN | NP_MULTI | NP_HALF |
NP_ORTHO | NP_TRI | NP_GHOST | NP_TRIM | NP_INTEL);
NPairStyle(halffull/newtoff/skip/ghost/trim/intel,
NPairHalffullNewtoffTrim,
NP_HALF_FULL | NP_NEWTOFF | NP_NSQ | NP_BIN | NP_MULTI | NP_HALF |
NP_ORTHO | NP_TRI | NP_SKIP | NP_GHOST | NP_TRIM | NP_INTEL);
// clang-format on
#endif

View File

@ -0,0 +1,258 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#include "npair_halffull_newton_trim_intel.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "modify.h"
#include "my_page.h"
#include "neigh_list.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
NPairHalffullNewtonTrimIntel::NPairHalffullNewtonTrimIntel(LAMMPS *lmp) : NPair(lmp) {
_fix = static_cast<FixIntel *>(modify->get_fix_by_id("package_intel"));
if (!_fix) error->all(FLERR, "The 'package intel' command is required for /intel styles");
}
/* ----------------------------------------------------------------------
build half list from full list and trim to shorter cutoff
pair stored once if i,j are both owned and i < j
if j is ghost, only store if j coords are "above and to the right" of i
works if full list is a skip list
------------------------------------------------------------------------- */
template <class flt_t, class acc_t>
void NPairHalffullNewtonTrimIntel::build_t(NeighList *list,
IntelBuffers<flt_t,acc_t> *buffers)
{
const int inum_full = list->listfull->inum;
const int nlocal = atom->nlocal;
const int e_nall = nlocal + atom->nghost;
const ATOM_T * _noalias const x = buffers->get_x();
int * _noalias const ilist = list->ilist;
int * _noalias const numneigh = list->numneigh;
int ** _noalias const firstneigh = list->firstneigh;
const int * _noalias const ilist_full = list->listfull->ilist;
const int * _noalias const numneigh_full = list->listfull->numneigh;
const int ** _noalias const firstneigh_full = (const int ** const)list->listfull->firstneigh; // NOLINT
const flt_t cutsq_custom = cutoff_custom * cutoff_custom;
#if defined(_OPENMP)
#pragma omp parallel
#endif
{
int tid, ifrom, ito;
IP_PRE_omp_range_id(ifrom, ito, tid, inum_full, comm->nthreads);
// each thread has its own page allocator
MyPage<int> &ipage = list->ipage[tid];
ipage.reset();
// loop over parent full list
for (int ii = ifrom; ii < ito; ii++) {
int n = 0;
int *neighptr = ipage.vget();
const int i = ilist_full[ii];
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
// loop over full neighbor list
const int * _noalias const jlist = firstneigh_full[i];
const int jnum = numneigh_full[i];
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
const int joriginal = jlist[jj];
const int j = joriginal & NEIGHMASK;
int addme = 1;
if (j < nlocal) {
if (i > j) addme = 0;
} else {
if (x[j].z < ztmp) addme = 0;
if (x[j].z == ztmp) {
if (x[j].y < ytmp) addme = 0;
if (x[j].y == ytmp && x[j].x < xtmp) addme = 0;
}
}
// trim to shorter cutoff
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutsq_custom) addme = 0;
if (addme)
neighptr[n++] = joriginal;
}
ilist[ii] = i;
firstneigh[i] = neighptr;
numneigh[i] = n;
int pad_end = n;
IP_PRE_neighbor_pad(pad_end, 0);
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma loop_count min=1, max=INTEL_COMPILE_WIDTH-1, \
avg=INTEL_COMPILE_WIDTH/2
#endif
for ( ; n < pad_end; n++)
neighptr[n] = e_nall;
ipage.vgot(n);
if (ipage.status())
error->one(FLERR,"Neighbor list overflow, boost neigh_modify one");
}
}
list->inum = inum_full;
}
/* ----------------------------------------------------------------------
build half list from full 3-body list and trim to shorter cutoff
half list is already stored as first part of 3-body list
------------------------------------------------------------------------- */
template <class flt_t, class acc_t>
void NPairHalffullNewtonTrimIntel::build_t3(NeighList *list, int *numhalf,
IntelBuffers<flt_t,acc_t> *buffers)
{
const int inum_full = list->listfull->inum;
const int e_nall = atom->nlocal + atom->nghost;
const ATOM_T * _noalias const x = buffers->get_x();
int * _noalias const ilist = list->ilist;
int * _noalias const numneigh = list->numneigh;
int ** _noalias const firstneigh = list->firstneigh;
const int * _noalias const ilist_full = list->listfull->ilist;
const int * _noalias const numneigh_full = numhalf;
const int ** _noalias const firstneigh_full = (const int ** const)list->listfull->firstneigh; // NOLINT
const flt_t cutsq_custom = cutoff_custom * cutoff_custom;
int packthreads = 1;
if (comm->nthreads > INTEL_HTHREADS) packthreads = comm->nthreads;
#if defined(_OPENMP)
#pragma omp parallel if (packthreads > 1)
#endif
{
int tid, ifrom, ito;
IP_PRE_omp_range_id(ifrom, ito, tid, inum_full, packthreads);
// each thread has its own page allocator
MyPage<int> &ipage = list->ipage[tid];
ipage.reset();
// loop over parent full list
for (int ii = ifrom; ii < ito; ii++) {
int n = 0;
int *neighptr = ipage.vget();
const int i = ilist_full[ii];
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
// loop over full neighbor list
const int * _noalias const jlist = firstneigh_full[i];
const int jnum = numneigh_full[ii];
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
const int joriginal = jlist[jj];
const int j = joriginal & NEIGHMASK;
int addme = 1;
// trim to shorter cutoff
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutsq_custom) addme = 0;
if (addme)
neighptr[n++] = joriginal;
}
ilist[ii] = i;
firstneigh[i] = neighptr;
numneigh[i] = n;
int pad_end = n;
IP_PRE_neighbor_pad(pad_end, 0);
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma loop_count min=1, max=INTEL_COMPILE_WIDTH-1, \
avg=INTEL_COMPILE_WIDTH/2
#endif
for ( ; n < pad_end; n++)
neighptr[n] = e_nall;
ipage.vgot(n);
if (ipage.status())
error->one(FLERR,"Neighbor list overflow, boost neigh_modify one");
}
}
list->inum = inum_full;
}
/* ---------------------------------------------------------------------- */
void NPairHalffullNewtonTrimIntel::build(NeighList *list)
{
if (_fix->three_body_neighbor() == 0) {
if (_fix->precision() == FixIntel::PREC_MODE_MIXED)
build_t(list, _fix->get_mixed_buffers());
else if (_fix->precision() == FixIntel::PREC_MODE_DOUBLE)
build_t(list, _fix->get_double_buffers());
else
build_t(list, _fix->get_single_buffers());
} else {
int *nhalf, *cnum;
if (_fix->precision() == FixIntel::PREC_MODE_MIXED) {
_fix->get_mixed_buffers()->get_list_data3(list->listfull, nhalf, cnum);
build_t3<float>(list, nhalf, _fix->get_mixed_buffers());
} else if (_fix->precision() == FixIntel::PREC_MODE_DOUBLE) {
_fix->get_double_buffers()->get_list_data3(list->listfull, nhalf, cnum);
build_t3<double>(list, nhalf, _fix->get_double_buffers());
} else {
_fix->get_single_buffers()->get_list_data3(list->listfull, nhalf, cnum);
build_t3<float>(list, nhalf, _fix->get_single_buffers());
}
}
}

View File

@ -0,0 +1,61 @@
// clang-format off
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#ifdef NPAIR_CLASS
// clang-format off
NPairStyle(halffull/newton/trim/intel,
NPairHalffullNewtonTrimIntel,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI| NP_TRIM | NP_INTEL);
NPairStyle(halffull/newton/skip/trim/intel,
NPairHalffullNewtonTrimIntel,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_TRIM | NP_INTEL);
// clang-format on
#else
#ifndef LMP_NPAIR_HALFFULL_NEWTON_TRIM_INTEL_H
#define LMP_NPAIR_HALFFULL_NEWTON_TRIM_INTEL_H
#include "fix_intel.h"
#include "npair.h"
#if defined(_OPENMP)
#include <omp.h>
#endif
namespace LAMMPS_NS {
class NPairHalffullNewtonTrimIntel : public NPair {
public:
NPairHalffullNewtonTrimIntel(class LAMMPS *);
void build(class NeighList *) override;
protected:
FixIntel *_fix;
template <class flt_t, class acc_t> void build_t(NeighList *, IntelBuffers<flt_t, acc_t> *);
template <class flt_t, class acc_t> void build_t3(NeighList *, int *, IntelBuffers<flt_t, acc_t> *);
};
} // namespace LAMMPS_NS
#endif
#endif

View File

@ -0,0 +1,138 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#include "npair_trim_intel.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "modify.h"
#include "my_page.h"
#include "neigh_list.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
NPairTrimIntel::NPairTrimIntel(LAMMPS *lmp) : NPair(lmp) {
_fix = static_cast<FixIntel *>(modify->get_fix_by_id("package_intel"));
if (!_fix) error->all(FLERR, "The 'package intel' command is required for /intel styles");
}
/* ----------------------------------------------------------------------
trim from copy list to shorter cutoff
------------------------------------------------------------------------- */
template <class flt_t, class acc_t>
void NPairTrimIntel::build_t(NeighList *list,
IntelBuffers<flt_t,acc_t> *buffers)
{
const int inum_copy = list->listcopy->inum;
const int nlocal = atom->nlocal;
const int e_nall = nlocal + atom->nghost;
const ATOM_T * _noalias const x = buffers->get_x();
int * _noalias const ilist = list->ilist;
int * _noalias const numneigh = list->numneigh;
int ** _noalias const firstneigh = list->firstneigh;
const int * _noalias const ilist_copy = list->listcopy->ilist;
const int * _noalias const numneigh_copy = list->listcopy->numneigh;
const int ** _noalias const firstneigh_copy = (const int ** const)list->listcopy->firstneigh; // NOLINT
const flt_t cutsq_custom = cutoff_custom * cutoff_custom;
#if defined(_OPENMP)
#pragma omp parallel
#endif
{
int tid, ifrom, ito;
IP_PRE_omp_range_id(ifrom, ito, tid, inum_copy, comm->nthreads);
// each thread has its own page allocator
MyPage<int> &ipage = list->ipage[tid];
ipage.reset();
// loop over parent copy list
for (int ii = ifrom; ii < ito; ii++) {
int n = 0;
int *neighptr = ipage.vget();
const int i = ilist_copy[ii];
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
// loop over copy neighbor list
const int * _noalias const jlist = firstneigh_copy[i];
const int jnum = numneigh_copy[i];
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
const int joriginal = jlist[jj];
const int j = joriginal & NEIGHMASK;
int addme = 1;
// trim to shorter cutoff
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutsq_custom) addme = 0;
if (addme)
neighptr[n++] = joriginal;
}
ilist[ii] = i;
firstneigh[i] = neighptr;
numneigh[i] = n;
int pad_end = n;
IP_PRE_neighbor_pad(pad_end, 0);
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma loop_count min=1, max=INTEL_COMPILE_WIDTH-1, \
avg=INTEL_COMPILE_WIDTH/2
#endif
for ( ; n < pad_end; n++)
neighptr[n] = e_nall;
ipage.vgot(n);
if (ipage.status())
error->one(FLERR,"Neighbor list overflow, boost neigh_modify one");
}
}
list->inum = inum_copy;
}
/* ---------------------------------------------------------------------- */
void NPairTrimIntel::build(NeighList *list)
{
if (_fix->precision() == FixIntel::PREC_MODE_MIXED)
build_t(list, _fix->get_mixed_buffers());
else if (_fix->precision() == FixIntel::PREC_MODE_DOUBLE)
build_t(list, _fix->get_double_buffers());
else
build_t(list, _fix->get_single_buffers());
}

View File

@ -0,0 +1,53 @@
// clang-format off
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#ifdef NPAIR_CLASS
// clang-format off
NPairStyle(trim/intel,
NPairTrimIntel,
NP_COPY | NP_TRIM | NP_INTEL);
// clang-format on
#else
#ifndef LMP_NPAIR_TRIM_INTEL_H
#define LMP_NPAIR_TRIM_INTEL_H
#include "fix_intel.h"
#include "npair.h"
#if defined(_OPENMP)
#include <omp.h>
#endif
namespace LAMMPS_NS {
class NPairTrimIntel : public NPair {
public:
NPairTrimIntel(class LAMMPS *);
void build(class NeighList *) override;
protected:
FixIntel *_fix;
template <class flt_t, class acc_t> void build_t(NeighList *, IntelBuffers<flt_t, acc_t> *);
};
} // namespace LAMMPS_NS
#endif
#endif

View File

@ -1101,7 +1101,11 @@ void PairSWIntel::allocate()
void PairSWIntel::init_style()
{
// there is no support for skipping threebody loops (yet)
bool tmp_threebody = skip_threebody_flag;
skip_threebody_flag = false;
PairSW::init_style();
skip_threebody_flag = tmp_threebody;
map[0] = map[1];

View File

@ -483,7 +483,7 @@ void PairILPTMD::calc_normal()
}
}
//############################ For the edge atoms of TMD ################################
else if (cont > 1 && cont < Nnei) {
else if (cont < Nnei) {
if (strcmp(elements[itype], "Mo") == 0 || strcmp(elements[itype], "W") == 0 ||
strcmp(elements[itype], "S") == 0 || strcmp(elements[itype], "Se") == 0) {
// derivatives of Ni[l] respect to the cont neighbors

View File

@ -182,6 +182,13 @@ action kokkos_base.h
action kokkos_base_fft.h fft3d.h
action kokkos_few.h
action kokkos_type.h
action meam_kokkos.h meam.h
action meam_dens_final_kokkos.h meam_dens_final.cpp
action meam_dens_init_kokkos.h meam_dens_init.cpp
action meam_force_kokkos.h meam_force.cpp
action meam_funcs_kokkos.h meam_funcs.cpp
action meam_impl_kokkos.h meam_impl.cpp
action meam_setup_done_kokkos.h meam_setup_done.cpp
action memory_kokkos.h
action modify_kokkos.cpp
action modify_kokkos.h
@ -197,6 +204,8 @@ action npair_halffull_kokkos.cpp
action npair_halffull_kokkos.h
action npair_skip_kokkos.cpp
action npair_skip_kokkos.h
action npair_trim_kokkos.cpp
action npair_trim_kokkos.h
action npair_kokkos.cpp
action npair_kokkos.h
action npair_ssa_kokkos.cpp npair_half_bin_newton_ssa.cpp
@ -287,6 +296,8 @@ action pair_lj_gromacs_kokkos.cpp pair_lj_gromacs.cpp
action pair_lj_gromacs_kokkos.h pair_lj_gromacs.h
action pair_lj_sdk_kokkos.cpp pair_lj_sdk.cpp
action pair_lj_sdk_kokkos.h pair_lj_sdk.h
action pair_meam_kokkos.cpp pair_meam.cpp
action pair_meam_kokkos.h pair_meam.h
action pair_morse_kokkos.cpp
action pair_morse_kokkos.h
action pair_multi_lucy_rx_kokkos.cpp pair_multi_lucy_rx.cpp

View File

@ -1391,6 +1391,9 @@ int AtomVecAngleKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int n
int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,
ExecutionSpace space) {
const size_t elements = 17+atom->maxspecial+2*atom->bond_per_atom+4*atom->angle_per_atom;
while (nlocal + nrecv/elements >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecAngleKokkos_UnpackExchangeFunctor<LMPHostType>

View File

@ -649,6 +649,8 @@ struct AtomVecAtomicKokkos_UnpackExchangeFunctor {
/* ---------------------------------------------------------------------- */
int AtomVecAtomicKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nrecv,int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,ExecutionSpace space) {
while (nlocal + nrecv/11 >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecAtomicKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);

View File

@ -845,6 +845,9 @@ int AtomVecBondKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nr
int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,
ExecutionSpace space) {
const size_t elements = 16+atomKK->maxspecial+atomKK->bond_per_atom+atomKK->bond_per_atom;
while (nlocal + nrecv/elements >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecBondKokkos_UnpackExchangeFunctor<LMPHostType>

View File

@ -774,6 +774,8 @@ struct AtomVecChargeKokkos_UnpackExchangeFunctor {
int AtomVecChargeKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nrecv,
int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,
ExecutionSpace space) {
while (nlocal + nrecv/12 >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecChargeKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);

View File

@ -1505,6 +1505,8 @@ struct AtomVecDPDKokkos_UnpackExchangeFunctor {
/* ---------------------------------------------------------------------- */
int AtomVecDPDKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nrecv,int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,ExecutionSpace space) {
while (nlocal + nrecv/17 >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecDPDKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);

View File

@ -1186,6 +1186,9 @@ int AtomVecFullKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nr
ExecutionSpace space) {
const size_t elements = 20+atom->maxspecial+2*atom->bond_per_atom+4*atom->angle_per_atom+
5*atom->dihedral_per_atom + 5*atom->improper_per_atom;
while (nlocal + nrecv/elements >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecFullKokkos_UnpackExchangeFunctor<LMPHostType>

View File

@ -1594,6 +1594,9 @@ int AtomVecMolecularKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,i
ExecutionSpace space) {
const size_t elements = 19+atom->maxspecial+2*atom->bond_per_atom+4*atom->angle_per_atom+
5*atom->dihedral_per_atom + 5*atom->improper_per_atom;
while (nlocal + nrecv/elements >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecMolecularKokkos_UnpackExchangeFunctor<LMPHostType>

View File

@ -2341,6 +2341,8 @@ struct AtomVecSphereKokkos_UnpackExchangeFunctor {
/* ---------------------------------------------------------------------- */
int AtomVecSphereKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nrecv,int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,ExecutionSpace space) {
while (nlocal + nrecv/16 >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecSphereKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);

View File

@ -863,6 +863,8 @@ struct AtomVecSpinKokkos_UnpackExchangeFunctor {
int AtomVecSpinKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf,int nrecv,
int nlocal,int dim,X_FLOAT lo,X_FLOAT hi,
ExecutionSpace space) {
while (nlocal + nrecv/15 >= nmax) grow(0);
if(space == Host) {
k_count.h_view(0) = nlocal;
AtomVecSpinKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);

View File

@ -109,6 +109,7 @@ void CommKokkos::init()
exchange_comm_classic = lmp->kokkos->exchange_comm_classic;
forward_comm_classic = lmp->kokkos->forward_comm_classic;
forward_pair_comm_classic = lmp->kokkos->forward_pair_comm_classic;
reverse_pair_comm_classic = lmp->kokkos->reverse_pair_comm_classic;
forward_fix_comm_classic = lmp->kokkos->forward_fix_comm_classic;
reverse_comm_classic = lmp->kokkos->reverse_comm_classic;
exchange_comm_on_host = lmp->kokkos->exchange_comm_on_host;
@ -478,12 +479,13 @@ void CommKokkos::forward_comm_device(Pair *pair)
int nsize = pair->comm_forward;
KokkosBase* pairKKBase = dynamic_cast<KokkosBase*>(pair);
int nmax = max_buf_pair;
for (iswap = 0; iswap < nswap; iswap++) {
int n = MAX(max_buf_pair,nsize*sendnum[iswap]);
n = MAX(n,nsize*recvnum[iswap]);
if (n > max_buf_pair)
grow_buf_pair(n);
nmax = MAX(nmax,nsize*sendnum[iswap]);
nmax = MAX(nmax,nsize*recvnum[iswap]);
}
if (nmax > max_buf_pair)
grow_buf_pair(nmax);
for (iswap = 0; iswap < nswap; iswap++) {
@ -545,8 +547,76 @@ void CommKokkos::grow_buf_fix(int n) {
void CommKokkos::reverse_comm(Pair *pair)
{
k_sendlist.sync<LMPHostType>();
CommBrick::reverse_comm(pair);
if (pair->execution_space == Host || !pair->reverse_comm_device || reverse_pair_comm_classic) {
k_sendlist.sync<LMPHostType>();
CommBrick::reverse_comm(pair);
} else {
k_sendlist.sync<LMPDeviceType>();
reverse_comm_device<LMPDeviceType>(pair);
}
}
template<class DeviceType>
void CommKokkos::reverse_comm_device(Pair *pair)
{
int iswap,n;
MPI_Request request;
DAT::tdual_xfloat_1d k_buf_tmp;
KokkosBase* pairKKBase = dynamic_cast<KokkosBase*>(pair);
int nsize = MAX(pair->comm_reverse,pair->comm_reverse_off);
int nmax = max_buf_pair;
for (iswap = 0; iswap < nswap; iswap++) {
nmax = MAX(nmax,nsize*sendnum[iswap]);
nmax = MAX(nmax,nsize*recvnum[iswap]);
}
if (nmax > max_buf_pair)
grow_buf_pair(nmax);
for (iswap = nswap-1; iswap >= 0; iswap--) {
// pack buffer
n = pairKKBase->pack_reverse_comm_kokkos(recvnum[iswap],firstrecv[iswap],k_buf_send_pair);
DeviceType().fence();
// exchange with another proc
// if self, set recv buffer to send buffer
double* buf_send_pair;
double* buf_recv_pair;
if (lmp->kokkos->gpu_aware_flag) {
buf_send_pair = k_buf_send_pair.view<DeviceType>().data();
buf_recv_pair = k_buf_recv_pair.view<DeviceType>().data();
} else {
k_buf_send_pair.modify<DeviceType>();
k_buf_send_pair.sync<LMPHostType>();
buf_send_pair = k_buf_send_pair.h_view.data();
buf_recv_pair = k_buf_recv_pair.h_view.data();
}
if (sendproc[iswap] != me) {
if (sendnum[iswap])
MPI_Irecv(buf_recv_pair,nsize*sendnum[iswap],MPI_DOUBLE,sendproc[iswap],0,world,&request);
if (recvnum[iswap])
MPI_Send(buf_send_pair,n,MPI_DOUBLE,recvproc[iswap],0,world);
if (sendnum[iswap]) MPI_Wait(&request,MPI_STATUS_IGNORE);
if (!lmp->kokkos->gpu_aware_flag) {
k_buf_recv_pair.modify<LMPHostType>();
k_buf_recv_pair.sync<DeviceType>();
}
k_buf_tmp = k_buf_recv_pair;
} else k_buf_tmp = k_buf_send_pair;
// unpack buffer
pairKKBase->unpack_reverse_comm_kokkos(sendnum[iswap],k_sendlist,
iswap,k_buf_tmp);
DeviceType().fence();
}
}
void CommKokkos::forward_comm(Dump *dump)

View File

@ -27,6 +27,7 @@ class CommKokkos : public CommBrick {
bool exchange_comm_classic;
bool forward_comm_classic;
bool forward_pair_comm_classic;
bool reverse_pair_comm_classic;
bool forward_fix_comm_classic;
bool reverse_comm_classic;
bool exchange_comm_on_host;
@ -58,6 +59,7 @@ class CommKokkos : public CommBrick {
template<class DeviceType> void forward_comm_device(int dummy);
template<class DeviceType> void reverse_comm_device();
template<class DeviceType> void forward_comm_device(Pair *pair);
template<class DeviceType> void reverse_comm_device(Pair *pair);
template<class DeviceType> void forward_comm_device(Fix *fix, int size=0);
template<class DeviceType> void exchange_device();
template<class DeviceType> void borders_device();

View File

@ -11,11 +11,16 @@
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#include "compute_ave_sphere_atom_kokkos.h"
#include "atom_kokkos.h"
#include "atom_masks.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "memory_kokkos.h"
@ -105,11 +110,19 @@ void ComputeAveSphereAtomKokkos<DeviceType>::compute_peratom()
// compute properties for each atom in group
// use full neighbor list to count atoms less than cutoff
atomKK->sync(execution_space,X_MASK|V_MASK|TYPE_MASK|MASK_MASK);
atomKK->sync(execution_space,X_MASK|V_MASK|RMASS_MASK|TYPE_MASK|MASK_MASK);
x = atomKK->k_x.view<DeviceType>();
v = atomKK->k_v.view<DeviceType>();
rmass = atomKK->k_rmass.view<DeviceType>();
mass = atomKK->k_mass.view<DeviceType>();
type = atomKK->k_type.view<DeviceType>();
mask = atomKK->k_mask.view<DeviceType>();
adof = domain->dimension;
mvv2e = force->mvv2e;
mv2d = force->mv2d;
boltz = force->boltz;
Kokkos::deep_copy(d_result,0.0);
copymode = 1;
@ -125,8 +138,13 @@ template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void ComputeAveSphereAtomKokkos<DeviceType>::operator()(TagComputeAveSphereAtom, const int &ii) const
{
double massone_i,massone_j;
const int i = d_ilist[ii];
if (mask[i] & groupbit) {
if (rmass.data()) massone_i = rmass[i];
else massone_i = mass[type[i]];
const X_FLOAT xtmp = x(i,0);
const X_FLOAT ytmp = x(i,1);
const X_FLOAT ztmp = x(i,2);
@ -135,14 +153,17 @@ void ComputeAveSphereAtomKokkos<DeviceType>::operator()(TagComputeAveSphereAtom,
// i atom contribution
int count = 1;
double vsum[3];
vsum[0] = v(i,0);
vsum[1] = v(i,1);
vsum[2] = v(i,2);
double totalmass = massone_i;
double p[3];
p[0] = v(i,0)*massone_i;
p[1] = v(i,1)*massone_i;
p[2] = v(i,2)*massone_i;
for (int jj = 0; jj < jnum; jj++) {
int j = d_neighbors(i,jj);
j &= NEIGHMASK;
if (rmass.data()) massone_j = rmass[j];
else massone_j = mass[type[j]];
const F_FLOAT delx = x(j,0) - xtmp;
const F_FLOAT dely = x(j,1) - ytmp;
@ -150,44 +171,45 @@ void ComputeAveSphereAtomKokkos<DeviceType>::operator()(TagComputeAveSphereAtom,
const F_FLOAT rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutsq) {
count++;
vsum[0] += v(j,0);
vsum[1] += v(j,1);
vsum[2] += v(j,2);
totalmass += massone_j;
p[0] += v(j,0)*massone_j;
p[1] += v(j,1)*massone_j;
p[2] += v(j,2)*massone_j;
}
}
double vavg[3];
vavg[0] = vsum[0]/count;
vavg[1] = vsum[1]/count;
vavg[2] = vsum[2]/count;
double vcom[3];
vcom[0] = p[0]/totalmass;
vcom[1] = p[1]/totalmass;
vcom[2] = p[2]/totalmass;
// i atom contribution
count = 1;
double vnet[3];
vnet[0] = v(i,0) - vavg[0];
vnet[1] = v(i,1) - vavg[1];
vnet[2] = v(i,2) - vavg[2];
double ke_sum = vnet[0]*vnet[0] + vnet[1]*vnet[1] + vnet[2]*vnet[2];
vnet[0] = v(i,0) - vcom[0];
vnet[1] = v(i,1) - vcom[1];
vnet[2] = v(i,2) - vcom[2];
double ke_sum = massone_i * (vnet[0]*vnet[0] + vnet[1]*vnet[1] + vnet[2]*vnet[2]);
for (int jj = 0; jj < jnum; jj++) {
int j = d_neighbors(i,jj);
j &= NEIGHMASK;
if (rmass.data()) massone_j = rmass[j];
else massone_j = mass[type[j]];
const F_FLOAT delx = x(j,0) - xtmp;
const F_FLOAT dely = x(j,1) - ytmp;
const F_FLOAT delz = x(j,2) - ztmp;
const F_FLOAT rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutsq) {
count++;
vnet[0] = v(j,0) - vavg[0];
vnet[1] = v(j,1) - vavg[1];
vnet[2] = v(j,2) - vavg[2];
ke_sum += vnet[0]*vnet[0] + vnet[1]*vnet[1] + vnet[2]*vnet[2];
vnet[0] = v(j,0) - vcom[0];
vnet[1] = v(j,1) - vcom[1];
vnet[2] = v(j,2) - vcom[2];
ke_sum += massone_j * (vnet[0]*vnet[0] + vnet[1]*vnet[1] + vnet[2]*vnet[2]);
}
}
double density = count/sphere_vol;
double temp = ke_sum/3.0/count;
double density = mv2d*totalmass/volume;
double temp = mvv2e*ke_sum/(adof*count*boltz);
d_result(i,0) = density;
d_result(i,1) = temp;
}

View File

@ -46,13 +46,18 @@ template <class DeviceType> class ComputeAveSphereAtomKokkos : public ComputeAve
void operator()(TagComputeAveSphereAtom, const int &) const;
private:
typename AT::t_x_array_randomread x;
typename AT::t_v_array_randomread v;
double adof,mvv2e,mv2d,boltz;
typename AT::t_x_array x;
typename AT::t_v_array v;
typename ArrayTypes<DeviceType>::t_float_1d rmass;
typename ArrayTypes<DeviceType>::t_float_1d mass;
typename ArrayTypes<DeviceType>::t_int_1d type;
typename ArrayTypes<DeviceType>::t_int_1d mask;
typename AT::t_neighbors_2d d_neighbors;
typename AT::t_int_1d_randomread d_ilist;
typename AT::t_int_1d_randomread d_numneigh;
typename AT::t_int_1d d_ilist;
typename AT::t_int_1d d_numneigh;
DAT::tdual_float_2d k_result;
typename AT::t_float_2d d_result;

View File

@ -91,6 +91,7 @@ KokkosLMP::KokkosLMP(LAMMPS *lmp, int narg, char **arg) : Pointers(lmp)
exchange_comm_changed = 0;
forward_comm_changed = 0;
forward_pair_comm_changed = 0;
reverse_pair_comm_changed = 0;
forward_fix_comm_changed = 0;
reverse_comm_changed = 0;
@ -239,7 +240,7 @@ KokkosLMP::KokkosLMP(LAMMPS *lmp, int narg, char **arg) : Pointers(lmp)
newtonflag = 0;
exchange_comm_classic = forward_comm_classic = reverse_comm_classic = 0;
forward_pair_comm_classic = forward_fix_comm_classic = 0;
forward_pair_comm_classic = reverse_pair_comm_classic = forward_fix_comm_classic = 0;
exchange_comm_on_host = forward_comm_on_host = reverse_comm_on_host = 0;
} else {
@ -253,7 +254,7 @@ KokkosLMP::KokkosLMP(LAMMPS *lmp, int narg, char **arg) : Pointers(lmp)
newtonflag = 1;
exchange_comm_classic = forward_comm_classic = reverse_comm_classic = 1;
forward_pair_comm_classic = forward_fix_comm_classic = 1;
forward_pair_comm_classic = reverse_pair_comm_classic = forward_fix_comm_classic = 1;
exchange_comm_on_host = forward_comm_on_host = reverse_comm_on_host = 0;
}
@ -394,17 +395,17 @@ void KokkosLMP::accelerator(int narg, char **arg)
if (iarg+2 > narg) error->all(FLERR,"Illegal package kokkos command");
if (strcmp(arg[iarg+1],"no") == 0) {
exchange_comm_classic = forward_comm_classic = reverse_comm_classic = 1;
forward_pair_comm_classic = forward_fix_comm_classic = 1;
forward_pair_comm_classic = reverse_pair_comm_classic = forward_fix_comm_classic = 1;
exchange_comm_on_host = forward_comm_on_host = reverse_comm_on_host = 0;
} else if (strcmp(arg[iarg+1],"host") == 0) {
exchange_comm_classic = forward_comm_classic = reverse_comm_classic = 0;
forward_pair_comm_classic = forward_fix_comm_classic = 1;
forward_pair_comm_classic = reverse_pair_comm_classic = forward_fix_comm_classic = 1;
exchange_comm_on_host = forward_comm_on_host = reverse_comm_on_host = 1;
} else if (strcmp(arg[iarg+1],"device") == 0) {
exchange_comm_classic = forward_comm_classic = reverse_comm_classic = 0;
forward_pair_comm_classic = forward_fix_comm_classic = 0;
forward_pair_comm_classic = reverse_pair_comm_classic = forward_fix_comm_classic = 0;
exchange_comm_on_host = forward_comm_on_host = reverse_comm_on_host = 0;
} else error->all(FLERR,"Illegal package kokkos command");
@ -441,6 +442,14 @@ void KokkosLMP::accelerator(int narg, char **arg)
else error->all(FLERR,"Illegal package kokkos command");
forward_pair_comm_changed = 0;
iarg += 2;
} else if (strcmp(arg[iarg],"comm/pair/reverse") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal package kokkos command");
if (strcmp(arg[iarg+1],"no") == 0) reverse_pair_comm_classic = 1;
else if (strcmp(arg[iarg+1],"host") == 0) reverse_pair_comm_classic = 1;
else if (strcmp(arg[iarg+1],"device") == 0) reverse_pair_comm_classic = 0;
else error->all(FLERR,"Illegal package kokkos command");
reverse_pair_comm_changed = 0;
iarg += 2;
} else if (strcmp(arg[iarg],"comm/fix/forward") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal package kokkos command");
if (strcmp(arg[iarg+1],"no") == 0) forward_fix_comm_classic = 1;
@ -515,6 +524,10 @@ void KokkosLMP::accelerator(int narg, char **arg)
forward_pair_comm_classic = 1;
forward_pair_comm_changed = 1;
}
if (reverse_pair_comm_classic == 0) {
reverse_pair_comm_classic = 1;
reverse_pair_comm_changed = 1;
}
if (forward_fix_comm_classic == 0) {
forward_fix_comm_classic = 1;
forward_fix_comm_changed = 1;
@ -540,6 +553,10 @@ void KokkosLMP::accelerator(int narg, char **arg)
forward_pair_comm_classic = 0;
forward_pair_comm_changed = 0;
}
if (reverse_pair_comm_changed) {
reverse_pair_comm_classic = 0;
reverse_pair_comm_changed = 0;
}
if (forward_fix_comm_changed) {
forward_fix_comm_classic = 0;
forward_fix_comm_changed = 0;

View File

@ -30,6 +30,7 @@ class KokkosLMP : protected Pointers {
int exchange_comm_classic;
int forward_comm_classic;
int forward_pair_comm_classic;
int reverse_pair_comm_classic;
int forward_fix_comm_classic;
int reverse_comm_classic;
int exchange_comm_on_host;
@ -38,6 +39,7 @@ class KokkosLMP : protected Pointers {
int exchange_comm_changed;
int forward_comm_changed;
int forward_pair_comm_changed;
int reverse_pair_comm_changed;
int forward_fix_comm_changed;
int reverse_comm_changed;
int nthreads,ngpus;

View File

@ -29,6 +29,10 @@ class KokkosBase {
int, int *) {return 0;};
virtual void unpack_forward_comm_kokkos(int, int, DAT::tdual_xfloat_1d &) {}
virtual int pack_reverse_comm_kokkos(int, int, DAT::tdual_xfloat_1d &) {return 0;};
virtual void unpack_reverse_comm_kokkos(int, DAT::tdual_int_2d,
int, DAT::tdual_xfloat_1d &) {}
// Fix
virtual int pack_forward_comm_fix_kokkos(int, DAT::tdual_int_2d,
int, DAT::tdual_xfloat_1d &,

View File

@ -477,59 +477,3 @@ double MathSpecialKokkos::erfcx_y100(const double y100)
return 1.0;
} /* erfcx_y100 */
/* optimizer friendly implementation of exp2(x).
*
* strategy:
*
* split argument into an integer part and a fraction:
* ipart = floor(x+0.5);
* fpart = x - ipart;
*
* compute exp2(ipart) from setting the ieee754 exponent
* compute exp2(fpart) using a pade' approximation for x in [-0.5;0.5[
*
* the result becomes: exp2(x) = exp2(ipart) * exp2(fpart)
*/
/* IEEE 754 double precision floating point data manipulation */
typedef union
{
double f;
uint64_t u;
struct {int32_t i0,i1;} s;
} udi_t;
static const double fm_exp2_q[] = {
/* 1.00000000000000000000e0, */
2.33184211722314911771e2,
4.36821166879210612817e3
};
static const double fm_exp2_p[] = {
2.30933477057345225087e-2,
2.02020656693165307700e1,
1.51390680115615096133e3
};
double MathSpecialKokkos::exp2_x86(double x)
{
double ipart, fpart, px, qx;
udi_t epart;
ipart = floor(x+0.5);
fpart = x - ipart;
epart.s.i0 = 0;
epart.s.i1 = (((int) ipart) + 1023) << 20;
x = fpart*fpart;
px = fm_exp2_p[0];
px = px*x + fm_exp2_p[1];
qx = x + fm_exp2_q[0];
px = px*x + fm_exp2_p[2];
qx = qx*x + fm_exp2_q[1];
px = px * fpart;
x = 1.0 + 2.0*(px/(qx-px));
return epart.f*x;
}

View File

@ -22,79 +22,233 @@ namespace LAMMPS_NS {
namespace MathSpecialKokkos {
/*! Fast tabulated factorial function
*
* This function looks up pre-computed factorial values for arguments of n = 0
* to a maximum of 167, which is the maximal value representable by a double
* precision floating point number. For other values of n a NaN value is returned.
*
* \param n argument (valid: 0 <= n <= 167)
* \return value of n! as double precision number or NaN */
extern double factorial(const int n);
/* optimizer friendly implementation of exp2(x).
*
* strategy:
*
* split argument into an integer part and a fraction:
* ipart = floor(x+0.5);
* fpart = x - ipart;
*
* compute exp2(ipart) from setting the ieee754 exponent
* compute exp2(fpart) using a pade' approximation for x in [-0.5;0.5[
*
* the result becomes: exp2(x) = exp2(ipart) * exp2(fpart)
*/
/* IEEE 754 double precision floating point data manipulation */
typedef union
{
double f;
uint64_t u;
struct {int32_t i0,i1;} s;
} udi_t;
/* double precision constants */
#define FM_DOUBLE_LOG2OFE 1.4426950408889634074
/*! Fast implementation of 2^x without argument checks for little endian CPUs
*
* This function implements an optimized version of pow(2.0, x) that does not
* check for valid arguments and thus may only be used where arguments are well
* behaved. The implementation makes assumptions about the layout of double
* precision floating point numbers in memory and thus will only work on little
* endian CPUs. If little endian cannot be safely detected, the result of
* calling pow(2.0, x) will be returned. This function also is the basis for
* the fast exponential fm_exp(x).
*
* \param x argument
* \return value of 2^x as double precision number */
KOKKOS_INLINE_FUNCTION
static double exp2_x86(double x)
{
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
double ipart, fpart, px, qx;
udi_t epart;
const double fm_exp2_q[2] = {
/* 1.00000000000000000000e0, */
2.33184211722314911771e2,
4.36821166879210612817e3
};
const double fm_exp2_p[3] = {
2.30933477057345225087e-2,
2.02020656693165307700e1,
1.51390680115615096133e3
};
ipart = floor(x+0.5);
fpart = x - ipart;
epart.s.i0 = 0;
epart.s.i1 = (((int) ipart) + 1023) << 20;
x = fpart*fpart;
px = fm_exp2_p[0];
px = px*x + fm_exp2_p[1];
qx = x + fm_exp2_q[0];
px = px*x + fm_exp2_p[2];
qx = qx*x + fm_exp2_q[1];
px = px * fpart;
x = 1.0 + 2.0*(px/(qx-px));
return epart.f*x;
#else
return pow(2.0, x);
#endif
}
/*! Fast implementation of exp(x) for little endian CPUs
*
* This function implements an optimized version of exp(x) for little endian CPUs.
* It calls the exp2_x86(x) function with a suitable prefactor to x to return exp(x).
* The implementation makes assumptions about the layout of double
* precision floating point numbers in memory and thus will only work on little
* endian CPUs. If little endian cannot be safely detected, the result of
* calling the exp(x) implementation in the standard math library will be returned.
*
* \param x argument
* \return value of e^x as double precision number */
KOKKOS_INLINE_FUNCTION
static double fm_exp(double x)
{
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
if (x < -1022.0/FM_DOUBLE_LOG2OFE) return 0;
if (x > 1023.0/FM_DOUBLE_LOG2OFE) return INFINITY;
return exp2_x86(FM_DOUBLE_LOG2OFE * x);
#else
return ::exp(x);
#endif
}
// support function for scaled error function complement
extern double erfcx_y100(const double y100);
// fast 2**x function without argument checks for little endian CPUs
extern double exp2_x86(double x);
// scaled error function complement exp(x*x)*erfc(x) for coul/long styles
/*! Fast scaled error function complement exp(x*x)*erfc(x) for coul/long styles
*
* This is a portable fast implementation of exp(x*x)*erfc(x) that can be used
* in coul/long pair styles as a replacement for the polynomial expansion that
* is/was widely used. Unlike the polynomial expansion, that is only accurate
* at the level of single precision floating point it provides full double precision
* accuracy, but at comparable speed (unlike the erfc() implementation shipped
* with GNU standard math library).
*
* \param x argument
* \return value of e^(x*x)*erfc(x) */
static inline double my_erfcx(const double x)
{
if (x >= 0.0) return erfcx_y100(400.0/(4.0+x));
else return 2.0*exp(x*x) - erfcx_y100(400.0/(4.0-x));
if (x >= 0.0)
return erfcx_y100(400.0 / (4.0 + x));
else
return 2.0 * exp(x * x) - erfcx_y100(400.0 / (4.0 - x));
}
// exp(-x*x) for coul/long styles
/*! Fast implementation of exp(-x*x) for little endian CPUs for coul/long styles
*
* This function implements an optimized version of exp(-x*x) based on exp2_x86()
* for use with little endian CPUs. If little endian cannot be safely detected,
* the result of calling the exp(-x*x) implementation in the standard math
* library will be returned.
*
* \param x argument
* \return value of e^(-x*x) as double precision number */
static inline double expmsq(double x)
{
x *= x;
x *= 1.4426950408889634074; // log_2(e)
#if defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#if defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return (x < 1023.0) ? exp2_x86(-x) : 0.0;
#else
return (x < 1023.0) ? exp2(-x) : 0.0;
#endif
}
// x**2, use instead of pow(x,2.0)
KOKKOS_INLINE_FUNCTION
static double square(const double &x) { return x*x; }
/*! Fast inline version of pow(x, 2.0)
*
* \param x argument
* \return x*x */
// x**3, use instead of pow(x,3.0)
KOKKOS_INLINE_FUNCTION
static double cube(const double &x) { return x*x*x; }
static double square(const double &x) { return x * x; }
/*! Fast inline version of pow(x, 3.0)
*
* \param x argument
* \return x*x */
KOKKOS_INLINE_FUNCTION
static double cube(const double &x) { return x * x * x; }
/* Fast inline version of pow(-1.0, n)
*
* \param n argument (integer)
* \return -1 if n is odd, 1.0 if n is even */
// return -1.0 for odd n, 1.0 for even n, like pow(-1.0,n)
KOKKOS_INLINE_FUNCTION
static double powsign(const int n) { return (n & 1) ? -1.0 : 1.0; }
// optimized version of pow(x,n) with n being integer
// up to 10x faster than pow(x,y)
/* Fast inline version of pow(x,n) for integer n
*
* This is a version of pow(x,n) optimized for n being integer.
* Speedups of up to 10x faster than pow(x,y) have been measured.
*
* \param n argument (integer)
* \return value of x^n */
KOKKOS_INLINE_FUNCTION
static double powint(const double &x, const int n) {
double yy,ww;
static double powint(const double &x, const int n)
{
double yy, ww;
if (x == 0.0) return 0.0;
int nn = (n > 0) ? n : -n;
ww = x;
for (yy = 1.0; nn != 0; nn >>= 1, ww *=ww)
for (yy = 1.0; nn != 0; nn >>= 1, ww *= ww)
if (nn & 1) yy *= ww;
return (n > 0) ? yy : 1.0/yy;
return (n > 0) ? yy : 1.0 / yy;
}
// optimized version of (sin(x)/x)**n with n being a _positive_ integer
/* Fast inline version of (sin(x)/x)^n as used by PPPM kspace styles
*
* This is an optimized function to compute (sin(x)/x)^n as frequently used by PPPM.
*
* \param n argument (integer). Expected to be positive.
* \return value of (sin(x)/x)^n */
KOKKOS_INLINE_FUNCTION
static double powsinxx(const double &x, int n) {
double yy,ww;
static double powsinxx(const double &x, int n)
{
double yy, ww;
if (x == 0.0) return 1.0;
ww = sin(x)/x;
ww = sin(x) / x;
for (yy = 1.0; n != 0; n >>= 1, ww *=ww)
for (yy = 1.0; n != 0; n >>= 1, ww *= ww)
if (n & 1) yy *= ww;
return yy;
}
}
}
} // namespace MathSpecialKokkos
} // namespace LAMMPS_NS
#endif

View File

@ -0,0 +1,164 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "meam_kokkos.h"
#include "math_special.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void
MEAMKokkos<DeviceType>::meam_dens_final(int nlocal, int eflag_either, int eflag_global, int eflag_atom,
typename ArrayTypes<DeviceType>::t_efloat_1d eatom, int ntype, typename AT::t_int_1d type, typename AT::t_int_1d d_map, typename AT::t_int_2d d_scale, int& errorflag, EV_FLOAT &ev_all)
{
EV_FLOAT ev;
this->eflag_either = eflag_either;
this->eflag_global = eflag_global;
this->eflag_atom = eflag_atom;
this->d_eatom = eatom;
this->ntype = ntype;
this->type = type;
this->d_map = d_map;
this->d_scale = d_scale;
Kokkos::deep_copy(d_errorflag,0);
// Complete the calculation of density
copymode = 1;
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagMEAMDensFinal>(0,nlocal),*this,ev);
ev_all.evdwl += ev.evdwl;
copymode = 0;
auto h_errorflag = Kokkos::create_mirror_view_and_copy(LMPHostType(),d_errorflag);
errorflag = h_errorflag();
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void MEAMKokkos<DeviceType>::operator()(TagMEAMDensFinal, const int &i, EV_FLOAT& ev) const {
F_FLOAT rhob, G, dG, Gbar, dGbar, gam, shp[3], Z;
F_FLOAT denom, rho_bkgd, Fl;
double scaleii;
int elti = d_map[type[i]];
if (elti >= 0) {
scaleii = d_scale(type[i],type[i]);
d_rho1[i] = 0.0;
d_rho2[i] = -1.0 / 3.0 * d_arho2b[i] * d_arho2b[i];
d_rho3[i] = 0.0;
for (int m = 0; m < 3; m++) {
d_rho1[i] += d_arho1(i,m) * d_arho1(i,m);
d_rho3[i] -= 3.0 / 5.0 * d_arho3b(i,m) * d_arho3b(i,m);
}
for (int m = 0; m < 6; m++)
d_rho2[i] += v2D[m] * d_arho2(i,m) * d_arho2(i,m);
for (int m = 0; m < 10; m++)
d_rho3[i] += v3D[m] * d_arho3(i,m) * d_arho3(i,m);
if (d_rho0[i] > 0.0) {
if (ialloy == 1) {
d_t_ave(i,0) = fdiv_zero_kk(d_t_ave(i,0), d_tsq_ave(i,0));
d_t_ave(i,1) = fdiv_zero_kk(d_t_ave(i,1), d_tsq_ave(i,1));
d_t_ave(i,2) = fdiv_zero_kk(d_t_ave(i,2), d_tsq_ave(i,2));
} else if (ialloy == 2) {
d_t_ave(i,0) = t1_meam[elti];
d_t_ave(i,1) = t2_meam[elti];
d_t_ave(i,2) = t3_meam[elti];
} else {
d_t_ave(i,0) /= d_rho0[i];
d_t_ave(i,1) /= d_rho0[i];
d_t_ave(i,2) /= d_rho0[i];
}
}
d_gamma[i] = d_t_ave(i,0) * d_rho1[i] + d_t_ave(i,1) * d_rho2[i] + d_t_ave(i,2) * d_rho3[i];
if (d_rho0[i] > 0.0)
d_gamma[i] /= (d_rho0[i] * d_rho0[i]);
Z = get_Zij(lattce_meam[elti][elti]);
G = G_gam(d_gamma[i], ibar_meam[elti], d_errorflag());
if (d_errorflag() != 0)
return;
get_shpfcn(lattce_meam[elti][elti], stheta_meam[elti][elti], ctheta_meam[elti][elti], shp);
if (ibar_meam[elti] <= 0) {
Gbar = 1.0;
dGbar = 0.0;
} else {
if (mix_ref_t == 1)
gam = (d_t_ave(i,0) * shp[0] + d_t_ave(i,1) * shp[1] + d_t_ave(i,2) * shp[2]) / (Z * Z);
else
gam = (t1_meam[elti] * shp[0] + t2_meam[elti] * shp[1] + t3_meam[elti] * shp[2]) /
(Z * Z);
Gbar = G_gam(gam, ibar_meam[elti], d_errorflag());
}
d_rho[i] = d_rho0[i] * G;
if (mix_ref_t == 1) {
if (ibar_meam[elti] <= 0) {
Gbar = 1.0;
dGbar = 0.0;
} else {
gam = (d_t_ave(i,0) * shp[0] + d_t_ave(i,1) * shp[1] + d_t_ave(i,2) * shp[2]) / (Z * Z);
Gbar = dG_gam(gam, ibar_meam[elti], dGbar);
}
rho_bkgd = rho0_meam[elti] * Z * Gbar;
} else {
if (bkgd_dyn == 1)
rho_bkgd = rho0_meam[elti] * Z;
else
rho_bkgd = rho_ref_meam[elti];
}
rhob = d_rho[i] / rho_bkgd;
denom = 1.0 / rho_bkgd;
G = dG_gam(d_gamma[i], ibar_meam[elti], dG);
d_dgamma1[i] = (G - 2 * dG * d_gamma[i]) * denom;
if (!iszero_kk(d_rho0[i]))
d_dgamma2[i] = (dG / d_rho0[i]) * denom;
else
d_dgamma2[i] = 0.0;
// dgamma3 is nonzero only if we are using the "mixed" rule for
// computing t in the reference system (which is not correct, but
// included for backward compatibility
if (mix_ref_t == 1)
d_dgamma3[i] = d_rho0[i] * G * dGbar / (Gbar * Z * Z) * denom;
else
d_dgamma3[i] = 0.0;
Fl = embedding(A_meam[elti], Ec_meam[elti][elti], rhob, d_frhop[i]);
if (eflag_either) {
Fl *= scaleii;
if (eflag_global) {
ev.evdwl += Fl;
}
if (eflag_atom) {
d_eatom[i] += Fl;
}
}
}
}

View File

@ -0,0 +1,602 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "meam_kokkos.h"
#include "math_special_kokkos.h"
using namespace LAMMPS_NS;
using namespace MathSpecialKokkos;
/* ---------------------------------------------------------------------- */
template<class DeviceType>
template<int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION
void MEAMKokkos<DeviceType>::operator()(TagMEAMDensInit<NEIGHFLAG>, const int &i) const {
int ii, offsetval;
ii = d_ilist_half[i];
offsetval = d_offset[i];
// compute screening function and derivatives
this->template getscreen<NEIGHFLAG>(ii, offsetval, x, d_numneigh_half,
d_numneigh_full, ntype, type, d_map);
// calculate intermediate density terms to be communicated
this->template calc_rho1<NEIGHFLAG>(ii, ntype, type, d_map, x, d_numneigh_half, offsetval);
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void MEAMKokkos<DeviceType>::operator()(TagMEAMZero, const int &i) const {
d_rho0[i] = 0.0;
d_arho2b[i] = 0.0;
d_arho1(i,0) = d_arho1(i,1) = d_arho1(i,2) = 0.0;
for (int j = 0; j < 6; j++)
d_arho2(i,j) = 0.0;
for (int j = 0; j < 10; j++)
d_arho3(i,j) = 0.0;
d_arho3b(i,0) = d_arho3b(i,1) = d_arho3b(i,2) = 0.0;
d_t_ave(i,0) = d_t_ave(i,1) = d_t_ave(i,2) = 0.0;
d_tsq_ave(i,0) = d_tsq_ave(i,1) = d_tsq_ave(i,2) = 0.0;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void
MEAMKokkos<DeviceType>::meam_dens_setup(int atom_nmax, int nall, int n_neigh)
{
MemoryKokkos *memoryKK = (MemoryKokkos *)memory;
// grow local arrays if necessary
if (atom_nmax > nmax) {
memoryKK->destroy_kokkos(k_rho,rho);
memoryKK->destroy_kokkos(k_rho0,rho0);
memoryKK->destroy_kokkos(k_rho1,rho1);
memoryKK->destroy_kokkos(k_rho2,rho2);
memoryKK->destroy_kokkos(k_rho3,rho3);
memoryKK->destroy_kokkos(k_frhop,frhop);
memoryKK->destroy_kokkos(k_gamma,gamma);
memoryKK->destroy_kokkos(k_dgamma1,dgamma1);
memoryKK->destroy_kokkos(k_dgamma2,dgamma2);
memoryKK->destroy_kokkos(k_dgamma3,dgamma3);
memoryKK->destroy_kokkos(k_arho2b,arho2b);
memoryKK->destroy_kokkos(k_arho1,arho1);
memoryKK->destroy_kokkos(k_arho2,arho2);
memoryKK->destroy_kokkos(k_arho3,arho3);
memoryKK->destroy_kokkos(k_arho3b,arho3b);
memoryKK->destroy_kokkos(k_t_ave,t_ave);
memoryKK->destroy_kokkos(k_tsq_ave,tsq_ave);
nmax = atom_nmax;
// memory->create(rho, nmax, "pair:rho");
k_rho = DAT::tdual_ffloat_1d("pair:rho",nmax);
d_rho = k_rho.template view<DeviceType>();
h_rho = k_rho.h_view;
// memory->create(rho0, nmax, "pair:rho0");
k_rho0 = DAT::tdual_ffloat_1d("pair:rho0",nmax);
d_rho0 = k_rho0.template view<DeviceType>();
h_rho0 = k_rho0.h_view;
//memory->create(rho1, nmax, "pair:rho1");
k_rho1 = DAT::tdual_ffloat_1d("pair:rho1",nmax);
d_rho1 = k_rho1.template view<DeviceType>();
h_rho1 = k_rho1.h_view;
//memory->create(rho2, nmax, "pair:rho2");
k_rho2 = DAT::tdual_ffloat_1d("pair:rho2",nmax);
d_rho2 = k_rho2.template view<DeviceType>();
h_rho2 = k_rho2.h_view;
//memory->create(rho3, nmax, "pair:rho3");
k_rho3 = DAT::tdual_ffloat_1d("pair:rho3",nmax);
d_rho3 = k_rho3.template view<DeviceType>();
h_rho3 = k_rho3.h_view;
//memory->create(frhop, nmax, "pair:frhop");
k_frhop = DAT::tdual_ffloat_1d("pair:frhop",nmax);
d_frhop = k_frhop.template view<DeviceType>();
h_frhop = k_frhop.h_view;
//memory->create(gamma, nmax, "pair:gamma");
k_gamma = DAT::tdual_ffloat_1d("pair:gamma",nmax);
d_gamma = k_gamma.template view<DeviceType>();
h_gamma = k_gamma.h_view;
//memory->create(dgamma1, nmax, "pair:dgamma1");
k_dgamma1 = DAT::tdual_ffloat_1d("pair:dgamma1",nmax);
d_dgamma1 = k_dgamma1.template view<DeviceType>();
h_dgamma1 = k_dgamma1.h_view;
//memory->create(dgamma2, nmax, "pair:dgamma2");
k_dgamma2 = DAT::tdual_ffloat_1d("pair:dgamma2",nmax);
d_dgamma2 = k_dgamma2.template view<DeviceType>();
h_dgamma2 = k_dgamma2.h_view;
//memory->create(dgamma3, nmax, "pair:dgamma3");
k_dgamma3 = DAT::tdual_ffloat_1d("pair:dgamma3",nmax);
d_dgamma3 = k_dgamma3.template view<DeviceType>();
h_dgamma3 = k_dgamma3.h_view;
//memory->create(arho2b, nmax, "pair:arho2b");
k_arho2b = DAT::tdual_ffloat_1d("pair:arho2b",nmax);
d_arho2b = k_arho2b.template view<DeviceType>();
h_arho2b = k_arho2b.h_view;
//memory->create(arho1, nmax, 3, "pair:arho1");
k_arho1 = DAT::tdual_ffloat_2d("pair:arho1",nmax, 3);
d_arho1 = k_arho1.template view<DeviceType>();
h_arho1 = k_arho1.h_view;
//memory->create(arho2, nmax, 6, "pair:arho2");
k_arho2 = DAT::tdual_ffloat_2d("pair:arho2",nmax, 6);
d_arho2 = k_arho2.template view<DeviceType>();
h_arho2 = k_arho2.h_view;
//memory->create(arho3, nmax, 10, "pair:arho3");
k_arho3 = DAT::tdual_ffloat_2d("pair:arho3",nmax, 10);
d_arho3 = k_arho3.template view<DeviceType>();
h_arho3 = k_arho3.h_view;
//memory->create(arho3b, nmax, 3, "pair:arho3b");
k_arho3b = DAT::tdual_ffloat_2d("pair:arho3b",nmax, 3);
d_arho3b = k_arho3b.template view<DeviceType>();
h_arho3b = k_arho3b.h_view;
//memory->create(t_ave, nmax, 3, "pair:t_ave");
k_t_ave = DAT::tdual_ffloat_2d("pair:t_ave",nmax, 3);
d_t_ave = k_t_ave.template view<DeviceType>();
h_t_ave = k_t_ave.h_view;
//memory->create(tsq_ave, nmax, 3, "pair:tsq_ave");
k_tsq_ave = DAT::tdual_ffloat_2d("pair:tsq_ave",nmax, 3);
d_tsq_ave = k_tsq_ave.template view<DeviceType>();
h_tsq_ave = k_tsq_ave.h_view;
}
if (n_neigh > maxneigh) {
memoryKK->destroy_kokkos(k_scrfcn,scrfcn);
memoryKK->destroy_kokkos(k_dscrfcn,dscrfcn);
memoryKK->destroy_kokkos(k_fcpair,fcpair);
maxneigh = n_neigh;
// memory->create(scrfcn, maxneigh, "pair:scrfcn");
k_scrfcn = DAT::tdual_ffloat_1d("pair:scrfcn", maxneigh);
d_scrfcn = k_scrfcn.template view<DeviceType>();
h_scrfcn = k_scrfcn.h_view;
//memory->create(dscrfcn, maxneigh, "pair:dscrfcn");
k_dscrfcn = DAT::tdual_ffloat_1d("pair:dscrfcn", maxneigh);
d_dscrfcn = k_dscrfcn.template view<DeviceType>();
h_dscrfcn = k_dscrfcn.h_view;
//memory->create(fcpair, maxneigh, "pair:fcpair");
k_fcpair = DAT::tdual_ffloat_1d("pair:fcpair", maxneigh);
d_fcpair = k_fcpair.template view<DeviceType>();
h_fcpair = k_fcpair.h_view;
}
// zero out local arrays
copymode = 1;
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagMEAMZero>(0, nall),*this);
copymode = 0;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void
MEAMKokkos<DeviceType>::meam_dens_init(int inum_half, int ntype, typename AT::t_int_1d type, typename AT::t_int_1d d_map, typename AT::t_x_array x, typename AT::t_int_1d d_numneigh_half, typename AT::t_int_1d d_numneigh_full,
typename AT::t_int_1d d_ilist_half, typename AT::t_neighbors_2d d_neighbors_half, typename AT::t_neighbors_2d d_neighbors_full, typename AT::t_int_1d d_offset, int neighflag, int need_dup)
{
this->ntype = ntype;
this->type = type;
this->d_map = d_map;
this->x = x;
this->d_numneigh_half = d_numneigh_half;
this->d_numneigh_full = d_numneigh_full;
this->d_ilist_half = d_ilist_half;
this->d_neighbors_half = d_neighbors_half;
this->d_neighbors_full = d_neighbors_full;
this->d_offset = d_offset;
this->nlocal = nlocal;
if (need_dup) {
dup_rho0 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_rho0);
dup_arho2b = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_arho2b);
dup_arho1 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_arho1);
dup_arho2 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_arho2);
dup_arho3 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_arho3);
dup_arho3b = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_arho3b);
dup_t_ave = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_t_ave);
dup_tsq_ave = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_tsq_ave);
} else {
ndup_rho0 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_rho0);
ndup_arho2b = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_arho2b);
ndup_arho1 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_arho1);
ndup_arho2 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_arho2);
ndup_arho3 = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_arho3);
ndup_arho3b = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_arho3b);
ndup_t_ave = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_t_ave);
ndup_tsq_ave = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_tsq_ave);
}
copymode = 1;
if (neighflag == HALF)
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagMEAMDensInit<HALF> >(0,inum_half),*this);
else if (neighflag == HALFTHREAD)
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagMEAMDensInit<HALFTHREAD> >(0,inum_half),*this);
copymode = 0;
if (need_dup) {
Kokkos::Experimental::contribute(d_rho0, dup_rho0);
Kokkos::Experimental::contribute(d_arho2b, dup_arho2b);
Kokkos::Experimental::contribute(d_arho1, dup_arho1);
Kokkos::Experimental::contribute(d_arho2, dup_arho2);
Kokkos::Experimental::contribute(d_arho3, dup_arho3);
Kokkos::Experimental::contribute(d_arho3b, dup_arho3b);
Kokkos::Experimental::contribute(d_t_ave, dup_t_ave);
Kokkos::Experimental::contribute(d_tsq_ave, dup_tsq_ave);
// free duplicated memory
dup_rho0 = decltype(dup_rho0)();
dup_arho2b = decltype(dup_arho2b)();
dup_arho1 = decltype(dup_arho1)();
dup_arho2 = decltype(dup_arho2)();
dup_arho3 = decltype(dup_arho3)();
dup_arho3b = decltype(dup_arho3b)();
dup_t_ave = decltype(dup_t_ave)();
dup_tsq_ave = decltype(dup_tsq_ave)();
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
template<int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION
void
MEAMKokkos<DeviceType>::getscreen(int i, int offset, typename AT::t_x_array x, typename AT::t_int_1d d_numneigh_half,
typename AT::t_int_1d d_numneigh_full, int /*ntype*/, typename AT::t_int_1d type, typename AT::t_int_1d d_map)
const {
const double drinv = 1.0 / delr_meam;
const int elti = d_map[type[i]];
if (elti < 0) return;
const double xitmp = x(i,0);
const double yitmp = x(i,1);
const double zitmp = x(i,2);
for (int jn = 0; jn < d_numneigh_half[i]; jn++) {
const int j = d_neighbors_half(i,jn);
const int eltj = d_map[type[j]];
if (eltj < 0) continue;
// First compute screening function itself, sij
const double xjtmp = x(j,0);
const double yjtmp = x(j,1);
const double zjtmp = x(j,2);
const double delxij = xjtmp - xitmp;
const double delyij = yjtmp - yitmp;
const double delzij = zjtmp - zitmp;
const double rij2 = delxij * delxij + delyij * delyij + delzij * delzij;
if (rij2 > cutforcesq) {
d_dscrfcn[offset+jn] = 0.0;
d_scrfcn[offset+jn] = 0.0;
d_fcpair[offset+jn] = 0.0;
continue;
}
// Now compute derivatives
const double rbound = ebound_meam[elti][eltj] * rij2;
const double rij = sqrt(rij2);
const double rnorm = (cutforce - rij) * drinv;
double sij = 1.0;
// if rjk2 > ebound*rijsq, atom k is definitely outside the ellipse
for (int kn = 0; kn < d_numneigh_full[i]; kn++) {
int k = d_neighbors_full(i,kn);
if (k == j) continue;
int eltk = d_map[type[k]];
if (eltk < 0) continue;
const double xktmp = x(k,0);
const double yktmp = x(k,1);
const double zktmp = x(k,2);
const double delxjk = xktmp - xjtmp;
const double delyjk = yktmp - yjtmp;
const double delzjk = zktmp - zjtmp;
const double rjk2 = delxjk * delxjk + delyjk * delyjk + delzjk * delzjk;
if (rjk2 > rbound) continue;
const double delxik = xktmp - xitmp;
const double delyik = yktmp - yitmp;
const double delzik = zktmp - zitmp;
const double rik2 = delxik * delxik + delyik * delyik + delzik * delzik;
if (rik2 > rbound) continue;
const double xik = rik2 / rij2;
const double xjk = rjk2 / rij2;
const double a = 1 - (xik - xjk) * (xik - xjk);
// if a < 0, then ellipse equation doesn't describe this case and
// atom k can't possibly screen i-j
if (a <= 0.0) continue;
double cikj = (2.0 * (xik + xjk) + a - 2.0) / a;
const double Cmax = Cmax_meam[elti][eltj][eltk];
const double Cmin = Cmin_meam[elti][eltj][eltk];
double sikj;
if (cikj >= Cmax) continue;
// note that cikj may be slightly negative (within numerical
// tolerance) if atoms are colinear, so don't reject that case here
// (other negative cikj cases were handled by the test on "a" above)
else if (cikj <= Cmin) {
sij = 0.0;
break;
} else {
const double delc = Cmax - Cmin;
cikj = (cikj - Cmin) / delc;
sikj = fcut(cikj);
}
sij *= sikj;
}
double dfc;
const double fc = dfcut(rnorm, dfc);
const double fcij = fc;
const double dfcij = dfc * drinv;
// Now compute derivatives
d_dscrfcn[offset+jn] = 0.0;
const double sfcij = sij * fcij;
if (!iszero_kk(sfcij) && !isone_kk(sfcij)) {
for (int kn = 0; kn < d_numneigh_full[i]; kn++) {
const int k = d_neighbors_full(i,kn);
if (k == j) continue;
const int eltk = d_map[type[k]];
if (eltk < 0) continue;
const double delxjk = x(k,0) - xjtmp;
const double delyjk = x(k,1) - yjtmp;
const double delzjk = x(k,2) - zjtmp;
const double rjk2 = delxjk * delxjk + delyjk * delyjk + delzjk * delzjk;
if (rjk2 > rbound) continue;
const double delxik = x(k,0) - xitmp;
const double delyik = x(k,1) - yitmp;
const double delzik = x(k,2) - zitmp;
const double rik2 = delxik * delxik + delyik * delyik + delzik * delzik;
if (rik2 > rbound) continue;
const double xik = rik2 / rij2;
const double xjk = rjk2 / rij2;
const double a = 1 - (xik - xjk) * (xik - xjk);
// if a < 0, then ellipse equation doesn't describe this case and
// atom k can't possibly screen i-j
if (a <= 0.0) continue;
double cikj = (2.0 * (xik + xjk) + a - 2.0) / a;
const double Cmax = Cmax_meam[elti][eltj][eltk];
const double Cmin = Cmin_meam[elti][eltj][eltk];
if (cikj >= Cmax) {
continue;
// Note that cikj may be slightly negative (within numerical
// tolerance) if atoms are colinear, so don't reject that case
// here
// (other negative cikj cases were handled by the test on "a"
// above)
// Note that we never have 0<cikj<Cmin here, else sij=0
// (rejected above)
} else {
const double delc = Cmax - Cmin;
cikj = (cikj - Cmin) / delc;
double dfikj;
const double sikj = dfcut(cikj, dfikj);
const double coef1 = dfikj / (delc * sikj);
const double dCikj = dCfunc(rij2, rik2, rjk2);
d_dscrfcn[offset+jn] += coef1 * dCikj;
}
}
const double coef1 = sfcij;
const double coef2 = sij * dfcij / rij;
d_dscrfcn[offset+jn] = d_dscrfcn[offset+jn] * coef1 - coef2;
}
d_scrfcn[offset+jn] = sij;
d_fcpair[offset+jn] = fcij;
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
template<int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION
void
MEAMKokkos<DeviceType>::calc_rho1(int i, int /*ntype*/, typename AT::t_int_1d type, typename AT::t_int_1d d_map, typename AT::t_x_array x, typename AT::t_int_1d d_numneigh,
int offset) const
{
// The rho0, etc. arrays are duplicated for OpenMP, atomic for CUDA, and neither for Serial
auto v_rho0 = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_rho0),decltype(ndup_rho0)>::get(dup_rho0,ndup_rho0);
auto a_rho0 = v_rho0.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_arho2b = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_arho2b),decltype(ndup_arho2b)>::get(dup_arho2b,ndup_arho2b);
auto a_arho2b = v_arho2b.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_arho1 = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_arho1),decltype(ndup_arho1)>::get(dup_arho1,ndup_arho1);
auto a_arho1 = v_arho1.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_arho2 = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_arho2),decltype(ndup_arho2)>::get(dup_arho2,ndup_arho2);
auto a_arho2 = v_arho2.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_arho3 = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_arho3),decltype(ndup_arho3)>::get(dup_arho3,ndup_arho3);
auto a_arho3 = v_arho3.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_arho3b = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_arho3b),decltype(ndup_arho3b)>::get(dup_arho3b,ndup_arho3b);
auto a_arho3b = v_arho3b.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_t_ave = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_t_ave),decltype(ndup_t_ave)>::get(dup_t_ave,ndup_t_ave);
auto a_t_ave = v_t_ave.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
auto v_tsq_ave = ScatterViewHelper<NeedDup_v<NEIGHFLAG,DeviceType>,decltype(dup_tsq_ave),decltype(ndup_tsq_ave)>::get(dup_tsq_ave,ndup_tsq_ave);
auto a_tsq_ave = v_tsq_ave.template access<AtomicDup_v<NEIGHFLAG,DeviceType>>();
const int elti = d_map[type[i]];
const double xtmp = x(i,0);
const double ytmp = x(i,1);
const double ztmp = x(i,2);
for (int jn = 0; jn < d_numneigh[i]; jn++) {
if (!iszero_kk(d_scrfcn[offset+jn])) {
const int j = d_neighbors_half(i,jn);
const double sij = d_scrfcn[offset+jn] * d_fcpair[offset+jn];
double delij[3];
delij[0] = x(j,0) - xtmp;
delij[1] = x(j,1) - ytmp;
delij[2] = x(j,2) - ztmp;
const double rij2 = delij[0] * delij[0] + delij[1] * delij[1] + delij[2] * delij[2];
if (rij2 < cutforcesq) {
const int eltj = d_map[type[j]];
const double rij = sqrt(rij2);
const double ai = rij / re_meam[elti][elti] - 1.0;
const double aj = rij / re_meam[eltj][eltj] - 1.0;
const double ro0i = rho0_meam[elti];
const double ro0j = rho0_meam[eltj];
const double rhoa0j = ro0j * MathSpecialKokkos::fm_exp(-beta0_meam[eltj] * aj) * sij;
double rhoa1j = ro0j * MathSpecialKokkos::fm_exp(-beta1_meam[eltj] * aj) * sij;
double rhoa2j = ro0j * MathSpecialKokkos::fm_exp(-beta2_meam[eltj] * aj) * sij;
double rhoa3j = ro0j * MathSpecialKokkos::fm_exp(-beta3_meam[eltj] * aj) * sij;
const double rhoa0i = ro0i * MathSpecialKokkos::fm_exp(-beta0_meam[elti] * ai) * sij;
double rhoa1i = ro0i * MathSpecialKokkos::fm_exp(-beta1_meam[elti] * ai) * sij;
double rhoa2i = ro0i * MathSpecialKokkos::fm_exp(-beta2_meam[elti] * ai) * sij;
double rhoa3i = ro0i * MathSpecialKokkos::fm_exp(-beta3_meam[elti] * ai) * sij;
if (ialloy == 1) {
rhoa1j *= t1_meam[eltj];
rhoa2j *= t2_meam[eltj];
rhoa3j *= t3_meam[eltj];
rhoa1i *= t1_meam[elti];
rhoa2i *= t2_meam[elti];
rhoa3i *= t3_meam[elti];
}
a_rho0[i] += rhoa0j;
a_rho0[j] += rhoa0i;
// For ialloy = 2, use single-element value (not average)
if (ialloy != 2) {
a_t_ave(i,0) += t1_meam[eltj] * rhoa0j;
a_t_ave(i,1) += t2_meam[eltj] * rhoa0j;
a_t_ave(i,2) += t3_meam[eltj] * rhoa0j;
a_t_ave(j,0) += t1_meam[elti] * rhoa0i;
a_t_ave(j,1) += t2_meam[elti] * rhoa0i;
a_t_ave(j,2) += t3_meam[elti] * rhoa0i;
}
if (ialloy == 1) {
a_tsq_ave(i,0) += t1_meam[eltj] * t1_meam[eltj] * rhoa0j;
a_tsq_ave(i,1) += t2_meam[eltj] * t2_meam[eltj] * rhoa0j;
a_tsq_ave(i,2) += t3_meam[eltj] * t3_meam[eltj] * rhoa0j;
a_tsq_ave(j,0) += t1_meam[elti] * t1_meam[elti] * rhoa0i;
a_tsq_ave(j,1) += t2_meam[elti] * t2_meam[elti] * rhoa0i;
a_tsq_ave(j,2) += t3_meam[elti] * t3_meam[elti] * rhoa0i;
}
a_arho2b[i] += rhoa2j;
a_arho2b[j] += rhoa2i;
const double A1j = rhoa1j / rij;
const double A2j = rhoa2j / rij2;
const double A3j = rhoa3j / (rij2 * rij);
const double A1i = rhoa1i / rij;
const double A2i = rhoa2i / rij2;
const double A3i = rhoa3i / (rij2 * rij);
int nv2 = 0;
int nv3 = 0;
for (int m = 0; m < 3; m++) {
a_arho1(i,m) += A1j * delij[m];
a_arho1(j,m) += -A1i * delij[m];
a_arho3b(i,m) += rhoa3j * delij[m] / rij;
a_arho3b(j,m) += -rhoa3i * delij[m] / rij;
for (int n = m; n < 3; n++) {
a_arho2(i,nv2) += A2j * delij[m] * delij[n];
a_arho2(j,nv2) += A2i * delij[m] * delij[n];
nv2++;
for (int p = n; p < 3; p++) {
a_arho3(i,nv3) += A3j * delij[m] * delij[n] * delij[p];
a_arho3(j,nv3) += -A3i * delij[m] * delij[n] * delij[p];
nv3++;
}
}
}
}
}
}
}
/* ---------------------------------------------------------------------- */
//Cutoff function and derivative
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::dfcut(const double xi, double& dfc) const
{
if (xi >= 1.0) {
dfc = 0.0;
return 1.0;
} else if (xi <= 0.0) {
dfc = 0.0;
return 0.0;
} else {
const double a = 1.0 - xi;
const double a3 = a * a * a;
const double a4 = a * a3;
const double a1m4 = 1.0 - a4;
dfc = 8 * a1m4 * a3;
return a1m4*a1m4;
}
}
//-----------------------------------------------------------------------------
// Derivative of Cikj w.r.t. rij
// Inputs: rij,rij2,rik2,rjk2
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::dCfunc(const double rij2, const double rik2, const double rjk2) const
{
const double rij4 = rij2 * rij2;
const double a = rik2 - rjk2;
const double b = rik2 + rjk2;
const double asq = a*a;
double denom = rij4 - asq;
denom = denom * denom;
return -4 * (-2 * rij2 * asq + rij4 * b + asq * b) / denom;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void MEAMKokkos<DeviceType>::dCfunc2(const double rij2, const double rik2, const double rjk2, double& dCikj1, double& dCikj2) const
{
const double rij4 = rij2 * rij2;
const double rik4 = rik2 * rik2;
const double rjk4 = rjk2 * rjk2;
const double a = rik2 - rjk2;
double denom = rij4 - a * a;
denom = denom * denom;
dCikj1 = 4 * rij2 * (rij4 + rik4 + 2 * rik2 * rjk2 - 3 * rjk4 - 2 * rij2 * a) / denom;
dCikj2 = 4 * rij2 * (rij4 - 3 * rik4 + 2 * rik2 * rjk2 + rjk4 + 2 * rij2 * a) / denom;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::fcut(const double xi) const
{
double a;
if (xi >= 1.0)
return 1.0;
else if (xi <= 0.0)
return 0.0;
else {
// ( 1.d0 - (1.d0 - xi)**4 )**2, but with better codegen
a = 1.0 - xi;
a *= a; a *= a;
a = 1.0 - a;
return a * a;
}
}

View File

@ -0,0 +1,613 @@
#include "math_special_kokkos.h"
#include "meam_kokkos.h"
#include <algorithm>
using namespace LAMMPS_NS;
using namespace MathSpecialKokkos;
template <class DeviceType>
void MEAMKokkos<DeviceType>::meam_force(
int inum_half, int eflag_global, int eflag_atom, int vflag_global, int vflag_atom,
typename ArrayTypes<DeviceType>::t_efloat_1d eatom, int ntype, typename AT::t_int_1d type,
typename AT::t_int_1d d_map, typename AT::t_x_array x, typename AT::t_int_1d numneigh,
typename AT::t_int_1d numneigh_full, typename AT::t_f_array f,
typename ArrayTypes<DeviceType>::t_virial_array vatom, typename AT::t_int_1d d_ilist_half,
typename AT::t_int_1d d_offset, typename AT::t_neighbors_2d d_neighbors_half,
typename AT::t_neighbors_2d d_neighbors_full, int neighflag, int need_dup, EV_FLOAT &ev_all)
{
EV_FLOAT ev;
this->eflag_either = eflag_either;
this->eflag_global = eflag_global;
this->eflag_atom = eflag_atom;
this->vflag_global = vflag_global;
this->vflag_atom = vflag_atom;
eflag_either = eflag_atom || eflag_global;
vflag_either = vflag_atom || vflag_global;
this->d_eatom = eatom;
this->ntype = ntype;
this->type = type;
this->d_map = d_map;
this->x = x;
this->d_numneigh_half = numneigh;
this->d_numneigh_full = numneigh_full;
this->d_neighbors_half = d_neighbors_half;
this->d_neighbors_full = d_neighbors_full;
this->f = f;
this->d_vatom = vatom;
this->d_ilist_half = d_ilist_half;
this->d_offset = d_offset;
if (need_dup) {
dup_f = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum,
Kokkos::Experimental::ScatterDuplicated>(f);
if (eflag_atom)
dup_eatom = Kokkos::Experimental::create_scatter_view<
Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_eatom);
if (vflag_atom)
dup_vatom = Kokkos::Experimental::create_scatter_view<
Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_vatom);
} else {
ndup_f =
Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum,
Kokkos::Experimental::ScatterNonDuplicated>(f);
if (eflag_atom)
ndup_eatom = Kokkos::Experimental::create_scatter_view<
Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_eatom);
if (vflag_atom)
ndup_vatom = Kokkos::Experimental::create_scatter_view<
Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_vatom);
}
copymode = 1;
if (neighflag == HALF)
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagMEAMForce<HALF>>(0, inum_half),
*this, ev);
else if (neighflag == HALFTHREAD)
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagMEAMForce<HALFTHREAD>>(0, inum_half),
*this, ev);
ev_all += ev;
copymode = 0;
if (need_dup) {
Kokkos::Experimental::contribute(f, dup_f);
if (eflag_atom) Kokkos::Experimental::contribute(d_eatom, dup_eatom);
if (vflag_atom) Kokkos::Experimental::contribute(d_vatom, dup_vatom);
// free duplicated memory
dup_f = decltype(dup_f)();
if (eflag_atom) dup_eatom = decltype(dup_eatom)();
if (vflag_atom) dup_vatom = decltype(dup_vatom)();
}
}
template <class DeviceType>
template <int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION void MEAMKokkos<DeviceType>::operator()(TagMEAMForce<NEIGHFLAG>,
const int &ii, EV_FLOAT &ev) const
{
int i, j, jn, k, kn, kk, m, n, p, q;
int nv2, nv3, elti, eltj, eltk, ind;
X_FLOAT xitmp, yitmp, zitmp, delij[3];
double rij2, rij, rij3;
double v[6], fi[3], fj[3];
double third, sixth;
double pp, dUdrij, dUdsij, dUdrijm[3], force, forcem;
double recip, phi, phip;
double sij;
double a1, a1i, a1j, a2, a2i, a2j;
double a3i, a3j;
double shpi[3], shpj[3];
double ai, aj, ro0i, ro0j, invrei, invrej;
double rhoa0j, drhoa0j, rhoa0i, drhoa0i;
double rhoa1j, drhoa1j, rhoa1i, drhoa1i;
double rhoa2j, drhoa2j, rhoa2i, drhoa2i;
double a3, a3a, rhoa3j, drhoa3j, rhoa3i, drhoa3i;
double drho0dr1, drho0dr2, drho0ds1, drho0ds2;
double drho1dr1, drho1dr2, drho1ds1, drho1ds2;
double drho1drm1[3], drho1drm2[3];
double drho2dr1, drho2dr2, drho2ds1, drho2ds2;
double drho2drm1[3], drho2drm2[3];
double drho3dr1, drho3dr2, drho3ds1, drho3ds2;
double drho3drm1[3], drho3drm2[3];
double dt1dr1, dt1dr2, dt1ds1, dt1ds2;
double dt2dr1, dt2dr2, dt2ds1, dt2ds2;
double dt3dr1, dt3dr2, dt3ds1, dt3ds2;
double drhodr1, drhodr2, drhods1, drhods2, drhodrm1[3], drhodrm2[3];
double arg;
double arg1i1, arg1j1, arg1i2, arg1j2, arg1i3, arg1j3, arg3i3, arg3j3;
double dsij1, dsij2, force1, force2;
double t1i, t2i, t3i, t1j, t2j, t3j;
int fnoffset;
// The f, etc. arrays are duplicated for OpenMP, atomic for CUDA, and neither for Serial
auto v_f =
ScatterViewHelper<NeedDup_v<NEIGHFLAG, DeviceType>, decltype(dup_f), decltype(ndup_f)>::get(
dup_f, ndup_f);
auto a_f = v_f.template access<AtomicDup_v<NEIGHFLAG, DeviceType>>();
auto v_eatom = ScatterViewHelper<NeedDup_v<NEIGHFLAG, DeviceType>, decltype(dup_eatom),
decltype(ndup_eatom)>::get(dup_eatom, ndup_eatom);
auto a_eatom = v_eatom.template access<AtomicDup_v<NEIGHFLAG, DeviceType>>();
auto v_vatom = ScatterViewHelper<NeedDup_v<NEIGHFLAG, DeviceType>, decltype(dup_vatom),
decltype(ndup_vatom)>::get(dup_vatom, ndup_vatom);
auto a_vatom = v_vatom.template access<AtomicDup_v<NEIGHFLAG, DeviceType>>();
i = d_ilist_half[ii];
fnoffset = d_offset[i];
third = 1.0 / 3.0;
sixth = 1.0 / 6.0;
elti = d_map[type[i]];
if (elti < 0) return;
xitmp = x(i, 0);
yitmp = x(i, 1);
zitmp = x(i, 2);
// Treat each pair
for (jn = 0; jn < d_numneigh_half[i]; jn++) {
j = d_neighbors_half(i, jn);
eltj = d_map[type[j]];
if (!iszero_kk(d_scrfcn[fnoffset + jn]) && eltj >= 0) {
sij = d_scrfcn[fnoffset + jn] * d_fcpair[fnoffset + jn];
delij[0] = x(j, 0) - xitmp;
delij[1] = x(j, 1) - yitmp;
delij[2] = x(j, 2) - zitmp;
rij2 = delij[0] * delij[0] + delij[1] * delij[1] + delij[2] * delij[2];
if (rij2 < cutforcesq) {
rij = sqrt(rij2);
recip = 1.0 / rij;
// Compute phi and phip
ind = eltind[elti][eltj];
pp = rij * rdrar;
kk = (int) pp;
kk = (kk <= (nrar - 2)) ? kk : nrar - 2;
pp = pp - kk;
pp = (pp <= 1.0) ? pp : 1.0;
phi = ((d_phirar3(ind, kk) * pp + d_phirar2(ind, kk)) * pp + d_phirar1(ind, kk)) * pp +
d_phirar(ind, kk);
phip = (d_phirar6(ind, kk) * pp + d_phirar5(ind, kk)) * pp + d_phirar4(ind, kk);
if (eflag_either) {
double scaleij = d_scale(type[i], type[i]);
double phi_sc = phi * scaleij;
if (eflag_global) ev.evdwl += phi_sc * sij;
if (eflag_atom) {
a_eatom[i] += 0.5 * phi * sij;
a_eatom[j] += 0.5 * phi * sij;
}
}
// write(1,*) "force_meamf: phi: ",phi
// write(1,*) "force_meamf: phip: ",phip
// Compute pair densities and derivatives
invrei = 1.0 / re_meam[elti][elti];
ai = rij * invrei - 1.0;
ro0i = rho0_meam[elti];
rhoa0i = ro0i * MathSpecialKokkos::fm_exp(-beta0_meam[elti] * ai);
drhoa0i = -beta0_meam[elti] * invrei * rhoa0i;
rhoa1i = ro0i * MathSpecialKokkos::fm_exp(-beta1_meam[elti] * ai);
drhoa1i = -beta1_meam[elti] * invrei * rhoa1i;
rhoa2i = ro0i * MathSpecialKokkos::fm_exp(-beta2_meam[elti] * ai);
drhoa2i = -beta2_meam[elti] * invrei * rhoa2i;
rhoa3i = ro0i * MathSpecialKokkos::fm_exp(-beta3_meam[elti] * ai);
drhoa3i = -beta3_meam[elti] * invrei * rhoa3i;
if (elti != eltj) {
invrej = 1.0 / re_meam[eltj][eltj];
aj = rij * invrej - 1.0;
ro0j = rho0_meam[eltj];
rhoa0j = ro0j * MathSpecialKokkos::fm_exp(-beta0_meam[eltj] * aj);
drhoa0j = -beta0_meam[eltj] * invrej * rhoa0j;
rhoa1j = ro0j * MathSpecialKokkos::fm_exp(-beta1_meam[eltj] * aj);
drhoa1j = -beta1_meam[eltj] * invrej * rhoa1j;
rhoa2j = ro0j * MathSpecialKokkos::fm_exp(-beta2_meam[eltj] * aj);
drhoa2j = -beta2_meam[eltj] * invrej * rhoa2j;
rhoa3j = ro0j * MathSpecialKokkos::fm_exp(-beta3_meam[eltj] * aj);
drhoa3j = -beta3_meam[eltj] * invrej * rhoa3j;
} else {
rhoa0j = rhoa0i;
drhoa0j = drhoa0i;
rhoa1j = rhoa1i;
drhoa1j = drhoa1i;
rhoa2j = rhoa2i;
drhoa2j = drhoa2i;
rhoa3j = rhoa3i;
drhoa3j = drhoa3i;
}
const double t1mi = t1_meam[elti];
const double t2mi = t2_meam[elti];
const double t3mi = t3_meam[elti];
const double t1mj = t1_meam[eltj];
const double t2mj = t2_meam[eltj];
const double t3mj = t3_meam[eltj];
if (ialloy == 1) {
rhoa1j *= t1mj;
rhoa2j *= t2mj;
rhoa3j *= t3mj;
rhoa1i *= t1mi;
rhoa2i *= t2mi;
rhoa3i *= t3mi;
drhoa1j *= t1mj;
drhoa2j *= t2mj;
drhoa3j *= t3mj;
drhoa1i *= t1mi;
drhoa2i *= t2mi;
drhoa3i *= t3mi;
}
nv2 = 0;
nv3 = 0;
arg1i1 = 0.0;
arg1j1 = 0.0;
arg1i2 = 0.0;
arg1j2 = 0.0;
arg1i3 = 0.0;
arg1j3 = 0.0;
arg3i3 = 0.0;
arg3j3 = 0.0;
for (n = 0; n < 3; n++) {
for (p = n; p < 3; p++) {
for (q = p; q < 3; q++) {
arg = delij[n] * delij[p] * delij[q] * v3D[nv3];
arg1i3 = arg1i3 + d_arho3(i, nv3) * arg;
arg1j3 = arg1j3 - d_arho3(j, nv3) * arg;
nv3 = nv3 + 1;
}
arg = delij[n] * delij[p] * v2D[nv2];
arg1i2 = arg1i2 + d_arho2(i, nv2) * arg;
arg1j2 = arg1j2 + d_arho2(j, nv2) * arg;
nv2 = nv2 + 1;
}
arg1i1 = arg1i1 + d_arho1(i, n) * delij[n];
arg1j1 = arg1j1 - d_arho1(j, n) * delij[n];
arg3i3 = arg3i3 + d_arho3b(i, n) * delij[n];
arg3j3 = arg3j3 - d_arho3b(j, n) * delij[n];
}
// rho0 terms
drho0dr1 = drhoa0j * sij;
drho0dr2 = drhoa0i * sij;
// rho1 terms
a1 = 2 * sij / rij;
drho1dr1 = a1 * (drhoa1j - rhoa1j / rij) * arg1i1;
drho1dr2 = a1 * (drhoa1i - rhoa1i / rij) * arg1j1;
a1 = 2.0 * sij / rij;
for (m = 0; m < 3; m++) {
drho1drm1[m] = a1 * rhoa1j * d_arho1(i, m);
drho1drm2[m] = -a1 * rhoa1i * d_arho1(j, m);
}
// rho2 terms
a2 = 2 * sij / rij2;
drho2dr1 =
a2 * (drhoa2j - 2 * rhoa2j / rij) * arg1i2 - 2.0 / 3.0 * d_arho2b[i] * drhoa2j * sij;
drho2dr2 =
a2 * (drhoa2i - 2 * rhoa2i / rij) * arg1j2 - 2.0 / 3.0 * d_arho2b[j] * drhoa2i * sij;
a2 = 4 * sij / rij2;
for (m = 0; m < 3; m++) {
drho2drm1[m] = 0.0;
drho2drm2[m] = 0.0;
for (n = 0; n < 3; n++) {
drho2drm1[m] = drho2drm1[m] + d_arho2(i, vind2D[m][n]) * delij[n];
drho2drm2[m] = drho2drm2[m] - d_arho2(j, vind2D[m][n]) * delij[n];
}
drho2drm1[m] = a2 * rhoa2j * drho2drm1[m];
drho2drm2[m] = -a2 * rhoa2i * drho2drm2[m];
}
// rho3 terms
rij3 = rij * rij2;
a3 = 2 * sij / rij3;
a3a = 6.0 / 5.0 * sij / rij;
drho3dr1 =
a3 * (drhoa3j - 3 * rhoa3j / rij) * arg1i3 - a3a * (drhoa3j - rhoa3j / rij) * arg3i3;
drho3dr2 =
a3 * (drhoa3i - 3 * rhoa3i / rij) * arg1j3 - a3a * (drhoa3i - rhoa3i / rij) * arg3j3;
a3 = 6 * sij / rij3;
a3a = 6 * sij / (5 * rij);
for (m = 0; m < 3; m++) {
drho3drm1[m] = 0.0;
drho3drm2[m] = 0.0;
nv2 = 0;
for (n = 0; n < 3; n++) {
for (p = n; p < 3; p++) {
arg = delij[n] * delij[p] * v2D[nv2];
drho3drm1[m] = drho3drm1[m] + d_arho3(i, vind3D[m][n][p]) * arg;
drho3drm2[m] = drho3drm2[m] + d_arho3(j, vind3D[m][n][p]) * arg;
nv2 = nv2 + 1;
}
}
drho3drm1[m] = (a3 * drho3drm1[m] - a3a * d_arho3b(i, m)) * rhoa3j;
drho3drm2[m] = (-a3 * drho3drm2[m] + a3a * d_arho3b(j, m)) * rhoa3i;
}
// Compute derivatives of weighting functions t wrt rij
t1i = d_t_ave(i, 0);
t2i = d_t_ave(i, 1);
t3i = d_t_ave(i, 2);
t1j = d_t_ave(j, 0);
t2j = d_t_ave(j, 1);
t3j = d_t_ave(j, 2);
if (ialloy == 1) {
a1i = fdiv_zero_kk(drhoa0j * sij, d_tsq_ave(i, 0));
a1j = fdiv_zero_kk(drhoa0i * sij, d_tsq_ave(j, 0));
a2i = fdiv_zero_kk(drhoa0j * sij, d_tsq_ave(i, 1));
a2j = fdiv_zero_kk(drhoa0i * sij, d_tsq_ave(j, 1));
a3i = fdiv_zero_kk(drhoa0j * sij, d_tsq_ave(i, 2));
a3j = fdiv_zero_kk(drhoa0i * sij, d_tsq_ave(j, 2));
dt1dr1 = a1i * (t1mj - t1i * MathSpecialKokkos::square(t1mj));
dt1dr2 = a1j * (t1mi - t1j * MathSpecialKokkos::square(t1mi));
dt2dr1 = a2i * (t2mj - t2i * MathSpecialKokkos::square(t2mj));
dt2dr2 = a2j * (t2mi - t2j * MathSpecialKokkos::square(t2mi));
dt3dr1 = a3i * (t3mj - t3i * MathSpecialKokkos::square(t3mj));
dt3dr2 = a3j * (t3mi - t3j * MathSpecialKokkos::square(t3mi));
} else if (ialloy == 2) {
dt1dr1 = 0.0;
dt1dr2 = 0.0;
dt2dr1 = 0.0;
dt2dr2 = 0.0;
dt3dr1 = 0.0;
dt3dr2 = 0.0;
} else {
ai = 0.0;
if (!iszero_kk(d_rho0[i])) ai = drhoa0j * sij / d_rho0[i];
aj = 0.0;
if (!iszero_kk(d_rho0[j])) aj = drhoa0i * sij / d_rho0[j];
dt1dr1 = ai * (t1mj - t1i);
dt1dr2 = aj * (t1mi - t1j);
dt2dr1 = ai * (t2mj - t2i);
dt2dr2 = aj * (t2mi - t2j);
dt3dr1 = ai * (t3mj - t3i);
dt3dr2 = aj * (t3mi - t3j);
}
// Compute derivatives of total density wrt rij, sij and rij(3)
get_shpfcn(lattce_meam[elti][elti], stheta_meam[elti][elti], ctheta_meam[elti][elti], shpi);
get_shpfcn(lattce_meam[eltj][eltj], stheta_meam[elti][elti], ctheta_meam[elti][elti], shpj);
drhodr1 = d_dgamma1[i] * drho0dr1 +
d_dgamma2[i] *
(dt1dr1 * d_rho1[i] + t1i * drho1dr1 + dt2dr1 * d_rho2[i] + t2i * drho2dr1 +
dt3dr1 * d_rho3[i] + t3i * drho3dr1) -
d_dgamma3[i] * (shpi[0] * dt1dr1 + shpi[1] * dt2dr1 + shpi[2] * dt3dr1);
drhodr2 = d_dgamma1[j] * drho0dr2 +
d_dgamma2[j] *
(dt1dr2 * d_rho1[j] + t1j * drho1dr2 + dt2dr2 * d_rho2[j] + t2j * drho2dr2 +
dt3dr2 * d_rho3[j] + t3j * drho3dr2) -
d_dgamma3[j] * (shpj[0] * dt1dr2 + shpj[1] * dt2dr2 + shpj[2] * dt3dr2);
for (m = 0; m < 3; m++) {
drhodrm1[m] = 0.0;
drhodrm2[m] = 0.0;
drhodrm1[m] =
d_dgamma2[i] * (t1i * drho1drm1[m] + t2i * drho2drm1[m] + t3i * drho3drm1[m]);
drhodrm2[m] =
d_dgamma2[j] * (t1j * drho1drm2[m] + t2j * drho2drm2[m] + t3j * drho3drm2[m]);
}
// Compute derivatives wrt sij, but only if necessary
if (!iszero_kk(d_dscrfcn[fnoffset + jn])) {
drho0ds1 = rhoa0j;
drho0ds2 = rhoa0i;
a1 = 2.0 / rij;
drho1ds1 = a1 * rhoa1j * arg1i1;
drho1ds2 = a1 * rhoa1i * arg1j1;
a2 = 2.0 / rij2;
drho2ds1 = a2 * rhoa2j * arg1i2 - 2.0 / 3.0 * d_arho2b[i] * rhoa2j;
drho2ds2 = a2 * rhoa2i * arg1j2 - 2.0 / 3.0 * d_arho2b[j] * rhoa2i;
a3 = 2.0 / rij3;
a3a = 6.0 / (5.0 * rij);
drho3ds1 = a3 * rhoa3j * arg1i3 - a3a * rhoa3j * arg3i3;
drho3ds2 = a3 * rhoa3i * arg1j3 - a3a * rhoa3i * arg3j3;
if (ialloy == 1) {
a1i = fdiv_zero_kk(rhoa0j, d_tsq_ave(i, 0));
a1j = fdiv_zero_kk(rhoa0i, d_tsq_ave(j, 0));
a2i = fdiv_zero_kk(rhoa0j, d_tsq_ave(i, 1));
a2j = fdiv_zero_kk(rhoa0i, d_tsq_ave(j, 1));
a3i = fdiv_zero_kk(rhoa0j, d_tsq_ave(i, 2));
a3j = fdiv_zero_kk(rhoa0i, d_tsq_ave(j, 2));
dt1ds1 = a1i * (t1mj - t1i * MathSpecialKokkos::square(t1mj));
dt1ds2 = a1j * (t1mi - t1j * MathSpecialKokkos::square(t1mi));
dt2ds1 = a2i * (t2mj - t2i * MathSpecialKokkos::square(t2mj));
dt2ds2 = a2j * (t2mi - t2j * MathSpecialKokkos::square(t2mi));
dt3ds1 = a3i * (t3mj - t3i * MathSpecialKokkos::square(t3mj));
dt3ds2 = a3j * (t3mi - t3j * MathSpecialKokkos::square(t3mi));
} else if (ialloy == 2) {
dt1ds1 = 0.0;
dt1ds2 = 0.0;
dt2ds1 = 0.0;
dt2ds2 = 0.0;
dt3ds1 = 0.0;
dt3ds2 = 0.0;
} else {
ai = 0.0;
if (!iszero_kk(d_rho0[i])) ai = rhoa0j / d_rho0[i];
aj = 0.0;
if (!iszero_kk(d_rho0[j])) aj = rhoa0i / d_rho0[j];
dt1ds1 = ai * (t1mj - t1i);
dt1ds2 = aj * (t1mi - t1j);
dt2ds1 = ai * (t2mj - t2i);
dt2ds2 = aj * (t2mi - t2j);
dt3ds1 = ai * (t3mj - t3i);
dt3ds2 = aj * (t3mi - t3j);
}
drhods1 = d_dgamma1[i] * drho0ds1 +
d_dgamma2[i] *
(dt1ds1 * d_rho1[i] + t1i * drho1ds1 + dt2ds1 * d_rho2[i] + t2i * drho2ds1 +
dt3ds1 * d_rho3[i] + t3i * drho3ds1) -
d_dgamma3[i] * (shpi[0] * dt1ds1 + shpi[1] * dt2ds1 + shpi[2] * dt3ds1);
drhods2 = d_dgamma1[j] * drho0ds2 +
d_dgamma2[j] *
(dt1ds2 * d_rho1[j] + t1j * drho1ds2 + dt2ds2 * d_rho2[j] + t2j * drho2ds2 +
dt3ds2 * d_rho3[j] + t3j * drho3ds2) -
d_dgamma3[j] * (shpj[0] * dt1ds2 + shpj[1] * dt2ds2 + shpj[2] * dt3ds2);
}
// Compute derivatives of energy wrt rij, sij and rij[3]
dUdrij = phip * sij + d_frhop[i] * drhodr1 + d_frhop[j] * drhodr2;
dUdsij = 0.0;
if (!iszero_kk(d_dscrfcn[fnoffset + jn])) {
dUdsij = phi + d_frhop[i] * drhods1 + d_frhop[j] * drhods2;
}
for (m = 0; m < 3; m++) {
dUdrijm[m] = d_frhop[i] * drhodrm1[m] + d_frhop[j] * drhodrm2[m];
}
// Add the part of the force due to dUdrij and dUdsij
force = dUdrij * recip + dUdsij * d_dscrfcn[fnoffset + jn];
for (m = 0; m < 3; m++) {
forcem = delij[m] * force + dUdrijm[m];
a_f(i, m) += forcem;
a_f(j, m) -= forcem;
}
// Tabulate per-atom virial as symmetrized stress tensor
if (vflag_either) {
fi[0] = delij[0] * force + dUdrijm[0];
fi[1] = delij[1] * force + dUdrijm[1];
fi[2] = delij[2] * force + dUdrijm[2];
v[0] = -0.5 * (delij[0] * fi[0]);
v[1] = -0.5 * (delij[1] * fi[1]);
v[2] = -0.5 * (delij[2] * fi[2]);
v[3] = -0.25 * (delij[0] * fi[1] + delij[1] * fi[0]);
v[4] = -0.25 * (delij[0] * fi[2] + delij[2] * fi[0]);
v[5] = -0.25 * (delij[1] * fi[2] + delij[2] * fi[1]);
if (vflag_global)
for (m = 0; m < 6; m++) ev.v[m] += 2.0 * v[m];
if (vflag_atom) {
for (m = 0; m < 6; m++) {
a_vatom(i, m) += v[m];
a_vatom(j, m) += v[m];
}
}
}
// Now compute forces on other atoms k due to change in sij
if (iszero_kk(sij) || isone_kk(sij)) continue; //: cont jn loop
double dxik(0), dyik(0), dzik(0);
double dxjk(0), dyjk(0), dzjk(0);
for (kn = 0; kn < d_numneigh_full[i]; kn++) {
k = d_neighbors_full(i, kn);
eltk = d_map[type[k]];
if (k != j && eltk >= 0) {
double xik, xjk, cikj, sikj, dfc, a;
double dCikj1, dCikj2;
double delc, rik2, rjk2;
sij = d_scrfcn[jn + fnoffset] * d_fcpair[jn + fnoffset];
const double Cmax = Cmax_meam[elti][eltj][eltk];
const double Cmin = Cmin_meam[elti][eltj][eltk];
dsij1 = 0.0;
dsij2 = 0.0;
if (!iszero_kk(sij) && !isone_kk(sij)) {
const double rbound = rij2 * ebound_meam[elti][eltj];
delc = Cmax - Cmin;
dxjk = x(k, 0) - x(j, 0);
dyjk = x(k, 1) - x(j, 1);
dzjk = x(k, 2) - x(j, 2);
rjk2 = dxjk * dxjk + dyjk * dyjk + dzjk * dzjk;
if (rjk2 <= rbound) {
dxik = x(k, 0) - x(i, 0);
dyik = x(k, 1) - x(i, 1);
dzik = x(k, 2) - x(i, 2);
rik2 = dxik * dxik + dyik * dyik + dzik * dzik;
if (rik2 <= rbound) {
xik = rik2 / rij2;
xjk = rjk2 / rij2;
a = 1 - (xik - xjk) * (xik - xjk);
if (!iszero_kk(a)) {
cikj = (2.0 * (xik + xjk) + a - 2.0) / a;
if (cikj >= Cmin && cikj <= Cmax) {
cikj = (cikj - Cmin) / delc;
sikj = dfcut(cikj, dfc);
dCfunc2(rij2, rik2, rjk2, dCikj1, dCikj2);
a = sij / delc * dfc / sikj;
dsij1 = a * dCikj1;
dsij2 = a * dCikj2;
}
}
}
}
}
if (!iszero_kk(dsij1) || !iszero_kk(dsij2)) {
force1 = dUdsij * dsij1;
force2 = dUdsij * dsij2;
a_f(i, 0) += force1 * dxik;
a_f(i, 1) += force1 * dyik;
a_f(i, 2) += force1 * dzik;
a_f(j, 0) += force2 * dxjk;
a_f(j, 1) += force2 * dyjk;
a_f(j, 2) += force2 * dzjk;
a_f(k, 0) -= force1 * dxik + force2 * dxjk;
a_f(k, 1) -= force1 * dyik + force2 * dyjk;
a_f(k, 2) -= force1 * dzik + force2 * dzjk;
// Tabulate per-atom virial as symmetrized stress tensor
if (vflag_either) {
fi[0] = force1 * dxik;
fi[1] = force1 * dyik;
fi[2] = force1 * dzik;
fj[0] = force2 * dxjk;
fj[1] = force2 * dyjk;
fj[2] = force2 * dzjk;
v[0] = -third * (dxik * fi[0] + dxjk * fj[0]);
v[1] = -third * (dyik * fi[1] + dyjk * fj[1]);
v[2] = -third * (dzik * fi[2] + dzjk * fj[2]);
v[3] = -sixth * (dxik * fi[1] + dxjk * fj[1] + dyik * fi[0] + dyjk * fj[0]);
v[4] = -sixth * (dxik * fi[2] + dxjk * fj[2] + dzik * fi[0] + dzjk * fj[0]);
v[5] = -sixth * (dyik * fi[2] + dyjk * fj[2] + dzik * fi[1] + dzjk * fj[1]);
if (vflag_global)
for (m = 0; m < 6; m++) ev.v[m] += 3.0 * v[m];
if (vflag_atom) {
for (m = 0; m < 6; m++) {
a_vatom(i, m) += v[m];
a_vatom(j, m) += v[m];
a_vatom(k, m) += v[m];
}
}
}
}
}
// end of k loop
}
}
}
// end of j loop
}
}

View File

@ -0,0 +1,289 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Naga Vydyanathan (NVIDIA)
------------------------------------------------------------------------- */
#include "math_special_kokkos.h"
#include <cmath>
#include "meam_kokkos.h"
using namespace MathSpecialKokkos;
//-----------------------------------------------------------------------------
// Compute G(gamma) based on selection flag ibar:
// 0 => G = sqrt(1+gamma)
// 1 => G = exp(gamma/2)
// 2 => not implemented
// 3 => G = 2/(1+exp(-gamma))
// 4 => G = sqrt(1+gamma)
// -5 => G = +-sqrt(abs(1+gamma))
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::G_gam(const double gamma, const int ibar, int &errorflag) const
{
double gsmooth_switchpoint;
switch (ibar) {
case 0:
case 4:
gsmooth_switchpoint = -gsmooth_factor / (gsmooth_factor + 1);
if (gamma < gsmooth_switchpoint) {
// e.g. gsmooth_factor is 99, {:
// gsmooth_switchpoint = -0.99
// G = 0.01*(-0.99/gamma)**99
double G = 1 / (gsmooth_factor + 1) * pow((gsmooth_switchpoint / gamma), gsmooth_factor);
return sqrt(G);
} else {
return sqrt(1.0 + gamma);
}
case 1:
return MathSpecialKokkos::fm_exp(gamma / 2.0);
case 3:
return 2.0 / (1.0 + MathSpecialKokkos::fm_exp(-gamma));
case -5:
if ((1.0 + gamma) >= 0) {
return sqrt(1.0 + gamma);
} else {
return -sqrt(-1.0 - gamma);
}
}
errorflag = 1;
return 0.0;
}
//-----------------------------------------------------------------------------
// Compute G(gamma and dG(gamma) based on selection flag ibar:
// 0 => G = sqrt(1+gamma)
// 1 => G = exp(gamma/2)
// 2 => not implemented
// 3 => G = 2/(1+exp(-gamma))
// 4 => G = sqrt(1+gamma)
// -5 => G = +-sqrt(abs(1+gamma))
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::dG_gam(const double gamma, const int ibar, double& dG) const
{
double gsmooth_switchpoint;
double G;
switch (ibar) {
case 0:
case 4:
gsmooth_switchpoint = -gsmooth_factor / (gsmooth_factor + 1);
if (gamma < gsmooth_switchpoint) {
// e.g. gsmooth_factor is 99, {:
// gsmooth_switchpoint = -0.99
// G = 0.01*(-0.99/gamma)**99
G = 1 / (gsmooth_factor + 1) * pow((gsmooth_switchpoint / gamma), gsmooth_factor);
G = sqrt(G);
dG = -gsmooth_factor * G / (2.0 * gamma);
return G;
} else {
G = sqrt(1.0 + gamma);
dG = 1.0 / (2.0 * G);
return G;
}
case 1:
G = MathSpecialKokkos::fm_exp(gamma / 2.0);
dG = G / 2.0;
return G;
case 3:
G = 2.0 / (1.0 + MathSpecialKokkos::fm_exp(-gamma));
dG = G * (2.0 - G) / 2;
return G;
case -5:
if ((1.0 + gamma) >= 0) {
G = sqrt(1.0 + gamma);
dG = 1.0 / (2.0 * G);
return G;
} else {
G = -sqrt(-1.0 - gamma);
dG = -1.0 / (2.0 * G);
return G;
}
}
dG = 1.0;
return 0.0;
}
//-----------------------------------------------------------------------------
// Compute ZBL potential
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::zbl(const double r, const int z1, const int z2) const
{
int i;
const double c[] = { 0.028171, 0.28022, 0.50986, 0.18175 };
const double d[] = { 0.20162, 0.40290, 0.94229, 3.1998 };
const double azero = 0.4685;
const double cc = 14.3997;
double a, x;
// azero = (9pi^2/128)^1/3 (0.529) Angstroms
a = azero / (pow(z1, 0.23) + pow(z2, 0.23));
double result = 0.0;
x = r / a;
for (i = 0; i <= 3; i++) {
result = result + c[i] * MathSpecialKokkos::fm_exp(-d[i] * x);
}
if (r > 0.0)
result = result * z1 * z2 / r * cc;
return result;
}
//-----------------------------------------------------------------------------
// Compute embedding function F(rhobar) and derivative F'(rhobar), eqn I.5
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::embedding(const double A, const double Ec, const double rhobar, double& dF) const
{
const double AEc = A * Ec;
if (rhobar > 0.0) {
const double lrb = log(rhobar);
dF = AEc * (1.0 + lrb);
return AEc * rhobar * lrb;
} else {
if (emb_lin_neg == 0) {
dF = 0.0;
return 0.0;
} else {
dF = - AEc;
return - AEc * rhobar;
}
}
}
//-----------------------------------------------------------------------------
// Compute Rose energy function, I.16
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
double MEAMKokkos<DeviceType>::erose(const double r, const double re, const double alpha, const double Ec, const double repuls,
const double attrac, const int form) const
{
double astar, a3;
double result = 0.0;
if (r > 0.0) {
astar = alpha * (r / re - 1.0);
a3 = 0.0;
if (astar >= 0)
a3 = attrac;
else if (astar < 0)
a3 = repuls;
if (form == 1)
result = -Ec * (1 + astar + (-attrac + repuls / r) * MathSpecialKokkos::cube(astar)) * MathSpecialKokkos::fm_exp(-astar);
else if (form == 2)
result = -Ec * (1 + astar + a3 * MathSpecialKokkos::cube(astar)) * MathSpecialKokkos::fm_exp(-astar);
else
result = -Ec * (1 + astar + a3 * MathSpecialKokkos::cube(astar) / (r / re)) * MathSpecialKokkos::fm_exp(-astar);
}
return result;
}
//-----------------------------------------------------------------------------
// Shape factors for various configurations
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void MEAMKokkos<DeviceType>::get_shpfcn(const lattice_t latt, const double sthe, const double cthe, double (&s)[3]) const
{
switch (latt) {
case FCC:
case BCC:
case B1:
case B2:
s[0] = 0.0;
s[1] = 0.0;
s[2] = 0.0;
break;
case HCP:
s[0] = 0.0;
s[1] = 0.0;
s[2] = 1.0 / 3.0;
break;
case CH4: // CH4 actually needs shape factor for diamond for C, dimer for H
case DIA:
case DIA3:
s[0] = 0.0;
s[1] = 0.0;
s[2] = 32.0 / 9.0;
break;
case DIM:
s[0] = 1.0;
s[1] = 2.0 / 3.0;
// s(4) = 1.d0 // this should be 0.4 unless (1-legendre) is multiplied in the density calc.
s[2] = 0.40; // this is (1-legendre) where legendre = 0.6 in dynamo is accounted.
break;
case LIN: // linear, theta being 180
s[0] = 0.0;
s[1] = 8.0 / 3.0; // 4*(co**4 + si**4 - 1.0/3.0) in zig become 4*(1-1/3)
s[2] = 0.0;
break;
case ZIG: //zig-zag
case TRI: //trimer e.g. H2O
s[0] = 4.0*pow(cthe,2);
s[1] = 4.0*(pow(cthe,4) + pow(sthe,4) - 1.0/3.0);
s[2] = 4.0*(pow(cthe,2) * (3*pow(sthe,4) + pow(cthe,4)));
s[2] = s[2] - 0.6*s[0]; //legend in dyn, 0.6 is default value.
break;
default:
s[0] = 0.0;
// call error('Lattice not defined in get_shpfcn.')
}
}
//-----------------------------------------------------------------------------
// Number of neighbors for the reference structure
//
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
int MEAMKokkos<DeviceType>::get_Zij(const lattice_t latt) const
{
switch (latt) {
case FCC:
return 12;
case BCC:
return 8;
case HCP:
return 12;
case DIA:
case DIA3:
return 4;
case DIM:
return 1;
case B1:
return 6;
case C11:
return 10;
case L12:
return 12;
case B2:
return 8;
case CH4: // DYNAMO currently implemented this way while it needs two Z values, 4 and 1
return 4;
case LIN:
case ZIG:
case TRI:
return 2;
// call error('Lattice not defined in get_Zij.')
}
return 0;
}

View File

@ -0,0 +1,68 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Naga Vydyanathan (NVIDIA), Stan Moore (SNL)
------------------------------------------------------------------------- */
#include "memory_kokkos.h"
#include "meam_kokkos.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
template<class DeviceType>
MEAMKokkos<DeviceType>::MEAMKokkos(Memory *mem) : MEAM(mem)
{
d_errorflag = typename AT::t_int_scalar("meam:errorflag");
}
template<class DeviceType>
MEAMKokkos<DeviceType>::~MEAMKokkos()
{
if (copymode) return;
MemoryKokkos *memoryKK = (MemoryKokkos *)memory;
memoryKK->destroy_kokkos(k_rho,rho);
memoryKK->destroy_kokkos(k_rho0,rho0);
memoryKK->destroy_kokkos(k_rho1,rho1);
memoryKK->destroy_kokkos(k_rho2,rho2);
memoryKK->destroy_kokkos(k_rho3,rho3);
memoryKK->destroy_kokkos(k_frhop,frhop);
memoryKK->destroy_kokkos(k_gamma,gamma);
memoryKK->destroy_kokkos(k_dgamma1,dgamma1);
memoryKK->destroy_kokkos(k_dgamma2,dgamma2);
memoryKK->destroy_kokkos(k_dgamma3,dgamma3);
memoryKK->destroy_kokkos(k_arho2b,arho2b);
memoryKK->destroy_kokkos(k_arho1,arho1);
memoryKK->destroy_kokkos(k_arho2,arho2);
memoryKK->destroy_kokkos(k_arho3,arho3);
memoryKK->destroy_kokkos(k_arho3b,arho3b);
memoryKK->destroy_kokkos(k_t_ave,t_ave);
memoryKK->destroy_kokkos(k_tsq_ave,tsq_ave);
memoryKK->destroy_kokkos(k_scrfcn,scrfcn);
memoryKK->destroy_kokkos(k_dscrfcn,dscrfcn);
memoryKK->destroy_kokkos(k_fcpair,fcpair);
}
#include "meam_setup_done_kokkos.h"
#include "meam_funcs_kokkos.h"
#include "meam_dens_init_kokkos.h"
#include "meam_dens_final_kokkos.h"
#include "meam_force_kokkos.h"

224
src/KOKKOS/meam_kokkos.h Normal file
View File

@ -0,0 +1,224 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifndef LMP_MEAMKOKKOS_H
#define LMP_MEAMKOKKOS_H
#include "kokkos.h"
#include "meam.h"
#include "memory_kokkos.h"
#include "neigh_request.h"
#include "neighbor_kokkos.h"
#include <cmath>
#include <cstdlib>
namespace LAMMPS_NS {
struct TagMEAMDensFinal {};
template <int NEIGHFLAG> struct TagMEAMDensInit {
};
struct TagMEAMZero {};
template <int NEIGHFLAG> struct TagMEAMForce {
};
template <class DeviceType> class MEAMKokkos : public MEAM {
public:
typedef ArrayTypes<DeviceType> AT;
typedef EV_FLOAT value_type;
MEAMKokkos(Memory *mem);
~MEAMKokkos() override;
KOKKOS_INLINE_FUNCTION
void operator()(TagMEAMDensFinal, const int &, EV_FLOAT &) const;
template <int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION void operator()(TagMEAMDensInit<NEIGHFLAG>, const int &) const;
KOKKOS_INLINE_FUNCTION
void operator()(TagMEAMZero, const int &) const;
template <int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION void operator()(TagMEAMForce<NEIGHFLAG>, const int &, EV_FLOAT &) const;
private:
// parameters to meam_dens_init
int ntype, nlocal;
typename AT::t_int_1d type;
typename AT::t_int_1d d_offset;
typename AT::t_int_1d d_map;
typename AT::t_int_2d d_scale;
typename AT::t_x_array x;
typename AT::t_int_1d d_numneigh_half;
typename AT::t_int_1d d_numneigh_full;
typename AT::t_neighbors_2d d_neighbors_half;
typename AT::t_neighbors_2d d_neighbors_full;
typename AT::t_int_1d d_ilist_half;
typename AT::t_f_array f;
typename ArrayTypes<DeviceType>::t_virial_array d_vatom;
// parameters to meam_dens_final
typename AT::t_int_scalar d_errorflag;
int eflag_either, eflag_global, eflag_atom, vflag_either, vflag_global, vflag_atom;
typename ArrayTypes<DeviceType>::t_efloat_1d d_eatom;
public:
void meam_dens_setup(int, int, int) override;
void meam_setup_done(double *) override;
void meam_dens_init(int, int, typename AT::t_int_1d, typename AT::t_int_1d,
typename AT::t_x_array, typename AT::t_int_1d, typename AT::t_int_1d,
typename AT::t_int_1d, typename AT::t_neighbors_2d,
typename AT::t_neighbors_2d, typename AT::t_int_1d, int, int);
void meam_dens_final(int, int, int, int, typename ArrayTypes<DeviceType>::t_efloat_1d, int,
typename AT::t_int_1d, typename AT::t_int_1d, typename AT::t_int_2d, int &,
EV_FLOAT &);
void meam_force(int, int, int, int, int, typename ArrayTypes<DeviceType>::t_efloat_1d, int,
typename AT::t_int_1d, typename AT::t_int_1d, typename AT::t_x_array,
typename AT::t_int_1d, typename AT::t_int_1d, typename AT::t_f_array,
typename ArrayTypes<DeviceType>::t_virial_array, typename AT::t_int_1d,
typename AT::t_int_1d, typename AT::t_neighbors_2d, typename AT::t_neighbors_2d,
int, int, EV_FLOAT &);
template <int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION void getscreen(int, int, typename AT::t_x_array, typename AT::t_int_1d,
typename AT::t_int_1d, int, typename AT::t_int_1d,
typename AT::t_int_1d) const;
template <int NEIGHFLAG>
KOKKOS_INLINE_FUNCTION void calc_rho1(int, int, typename AT::t_int_1d, typename AT::t_int_1d,
typename AT::t_x_array, typename AT::t_int_1d, int) const;
KOKKOS_INLINE_FUNCTION
double fcut(const double xi) const;
KOKKOS_INLINE_FUNCTION
double dfcut(const double xi, double &dfc) const;
KOKKOS_INLINE_FUNCTION
double dCfunc(const double, const double, const double) const;
KOKKOS_INLINE_FUNCTION
void dCfunc2(const double, const double, const double, double &, double &) const;
KOKKOS_INLINE_FUNCTION
double G_gam(const double, const int, int &) const;
KOKKOS_INLINE_FUNCTION
double dG_gam(const double, const int, double &) const;
KOKKOS_INLINE_FUNCTION
double zbl(const double, const int, const int) const;
KOKKOS_INLINE_FUNCTION
double embedding(const double, const double, const double, double &) const;
KOKKOS_INLINE_FUNCTION
double erose(const double, const double, const double, const double, const double, const double,
const int) const;
KOKKOS_INLINE_FUNCTION
void get_shpfcn(const lattice_t latt, const double sthe, const double cthe, double (&s)[3]) const;
KOKKOS_INLINE_FUNCTION
int get_Zij(const lattice_t) const;
public:
DAT::tdual_ffloat_1d k_rho, k_rho0, k_rho1, k_rho2, k_rho3, k_frhop;
typename ArrayTypes<DeviceType>::t_ffloat_1d d_rho, d_rho0, d_rho1, d_rho2, d_rho3, d_frhop;
HAT::t_ffloat_1d h_rho, h_rho0, h_rho1, h_rho2, h_rho3, h_frhop;
DAT::tdual_ffloat_1d k_gamma, k_dgamma1, k_dgamma2, k_dgamma3, k_arho2b;
typename ArrayTypes<DeviceType>::t_ffloat_1d d_gamma, d_dgamma1, d_dgamma2, d_dgamma3, d_arho2b;
HAT::t_ffloat_1d h_gamma, h_dgamma1, h_dgamma2, h_dgamma3, h_arho2b;
DAT::tdual_ffloat_2d k_arho1, k_arho2, k_arho3, k_arho3b, k_t_ave, k_tsq_ave;
typename ArrayTypes<DeviceType>::t_ffloat_2d d_arho1, d_arho2, d_arho3, d_arho3b, d_t_ave,
d_tsq_ave;
HAT::t_ffloat_2d h_arho1, h_arho2, h_arho3, h_arho3b, h_t_ave, h_tsq_ave;
typename ArrayTypes<DeviceType>::t_ffloat_2d d_phir, d_phirar, d_phirar1, d_phirar2, d_phirar3,
d_phirar4, d_phirar5, d_phirar6;
DAT::tdual_ffloat_1d k_scrfcn, k_dscrfcn, k_fcpair;
typename ArrayTypes<DeviceType>::t_ffloat_1d d_scrfcn, d_dscrfcn, d_fcpair;
HAT::t_ffloat_1d h_scrfcn, h_dscrfcn, h_fcpair;
protected:
int need_dup;
using KKDeviceType = typename KKDevice<DeviceType>::value;
template <typename DataType, typename Layout>
using DupScatterView =
KKScatterView<DataType, Layout, KKDeviceType, KKScatterSum, KKScatterDuplicated>;
template <typename DataType, typename Layout>
using NonDupScatterView =
KKScatterView<DataType, Layout, KKDeviceType, KKScatterSum, KKScatterNonDuplicated>;
DupScatterView<typename decltype(d_rho0)::data_type, typename decltype(d_rho0)::array_layout>
dup_rho0;
NonDupScatterView<typename decltype(d_rho0)::data_type, typename decltype(d_rho0)::array_layout>
ndup_rho0;
DupScatterView<typename decltype(d_arho2b)::data_type, typename decltype(d_arho2b)::array_layout>
dup_arho2b;
NonDupScatterView<typename decltype(d_arho2b)::data_type,
typename decltype(d_arho2b)::array_layout>
ndup_arho2b;
DupScatterView<typename decltype(d_arho1)::data_type, typename decltype(d_arho1)::array_layout>
dup_arho1;
NonDupScatterView<typename decltype(d_arho1)::data_type, typename decltype(d_arho1)::array_layout>
ndup_arho1;
DupScatterView<typename decltype(d_arho2)::data_type, typename decltype(d_arho2)::array_layout>
dup_arho2;
NonDupScatterView<typename decltype(d_arho2)::data_type, typename decltype(d_arho2)::array_layout>
ndup_arho2;
DupScatterView<typename decltype(d_arho3)::data_type, typename decltype(d_arho3)::array_layout>
dup_arho3;
NonDupScatterView<typename decltype(d_arho3)::data_type, typename decltype(d_arho3)::array_layout>
ndup_arho3;
DupScatterView<typename decltype(d_arho3b)::data_type, typename decltype(d_arho3b)::array_layout>
dup_arho3b;
NonDupScatterView<typename decltype(d_arho3b)::data_type,
typename decltype(d_arho3b)::array_layout>
ndup_arho3b;
DupScatterView<typename decltype(d_t_ave)::data_type, typename decltype(d_t_ave)::array_layout>
dup_t_ave;
NonDupScatterView<typename decltype(d_t_ave)::data_type, typename decltype(d_t_ave)::array_layout>
ndup_t_ave;
DupScatterView<typename decltype(d_tsq_ave)::data_type,
typename decltype(d_tsq_ave)::array_layout>
dup_tsq_ave;
NonDupScatterView<typename decltype(d_tsq_ave)::data_type,
typename decltype(d_tsq_ave)::array_layout>
ndup_tsq_ave;
DupScatterView<typename decltype(f)::data_type, typename decltype(f)::array_layout> dup_f;
NonDupScatterView<typename decltype(f)::data_type, typename decltype(f)::array_layout> ndup_f;
DupScatterView<typename decltype(d_eatom)::data_type, typename decltype(d_eatom)::array_layout>
dup_eatom;
NonDupScatterView<typename decltype(d_eatom)::data_type, typename decltype(d_eatom)::array_layout>
ndup_eatom;
DupScatterView<typename decltype(d_vatom)::data_type, typename decltype(d_vatom)::array_layout>
dup_vatom;
NonDupScatterView<typename decltype(d_vatom)::data_type, typename decltype(d_vatom)::array_layout>
ndup_vatom;
};
KOKKOS_INLINE_FUNCTION
static bool iszero_kk(const double f)
{
return fabs(f) < 1e-20;
}
KOKKOS_INLINE_FUNCTION
static bool isone_kk(const double f)
{
return fabs(f - 1.0) < 1e-20;
}
KOKKOS_INLINE_FUNCTION
static double fdiv_zero_kk(const double n, const double d)
{
if (iszero_kk(d)) return 0.0;
return n / d;
}
// Functions we need for compat
} // namespace LAMMPS_NS
#include "meam_impl_kokkos.h"
#endif

View File

@ -0,0 +1,60 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "meam_kokkos.h"
template<class DeviceType>
void MEAMKokkos<DeviceType>::meam_setup_done(double* cutmax)
{
MEAM::meam_setup_done(cutmax);
MemKK::realloc_kokkos(d_phir, "pair:phir", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar, "pair:phirar", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar1, "pair:phirar1", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar2, "pair:phirar2", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar3, "pair:phirar3", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar4, "pair:phirar4", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar5, "pair:phirar5", (neltypes * (neltypes + 1)) / 2, nr);
MemKK::realloc_kokkos(d_phirar6, "pair:phirar6", (neltypes * (neltypes + 1)) / 2, nr);
auto h_phir = Kokkos::create_mirror_view(d_phir);
auto h_phirar = Kokkos::create_mirror_view(d_phirar);
auto h_phirar1 = Kokkos::create_mirror_view(d_phirar1);
auto h_phirar2 = Kokkos::create_mirror_view(d_phirar2);
auto h_phirar3 = Kokkos::create_mirror_view(d_phirar3);
auto h_phirar4 = Kokkos::create_mirror_view(d_phirar4);
auto h_phirar5 = Kokkos::create_mirror_view(d_phirar5);
auto h_phirar6 = Kokkos::create_mirror_view(d_phirar6);
for (int i = 0; i <(neltypes * (neltypes + 1)) / 2; i++)
for(int j = 0; j < nr; j++) {
h_phir(i,j) = phir[i][j];
h_phirar(i,j) = phirar[i][j];
h_phirar1(i,j) = phirar1[i][j];
h_phirar2(i,j) = phirar2[i][j];
h_phirar3(i,j) = phirar3[i][j];
h_phirar4(i,j) = phirar4[i][j];
h_phirar5(i,j) = phirar5[i][j];
h_phirar6(i,j) = phirar6[i][j];
}
Kokkos::deep_copy(d_phir,h_phir);
Kokkos::deep_copy(d_phirar,h_phirar);
Kokkos::deep_copy(d_phirar1,h_phirar1);
Kokkos::deep_copy(d_phirar2,h_phirar2);
Kokkos::deep_copy(d_phirar3,h_phirar3);
Kokkos::deep_copy(d_phirar4,h_phirar4);
Kokkos::deep_copy(d_phirar5,h_phirar5);
Kokkos::deep_copy(d_phirar6,h_phirar6);
}

View File

@ -20,6 +20,8 @@
namespace LAMMPS_NS {
typedef MemoryKokkos MemKK;
class MemoryKokkos : public Memory {
public:
MemoryKokkos(class LAMMPS *lmp) : Memory(lmp) {}
@ -278,46 +280,11 @@ void destroy_kokkos(TYPE data, typename TYPE::value_type** &array)
deallocate first to reduce memory use
------------------------------------------------------------------------- */
template <typename TYPE>
void realloc_kokkos(TYPE &data, const char *name, int n1)
template <typename TYPE, typename... Indices>
static void realloc_kokkos(TYPE &data, const char *name, Indices... ns)
{
data = TYPE();
data = TYPE(Kokkos::NoInit(std::string(name)),n1);
}
template <typename TYPE>
void realloc_kokkos(TYPE &data, const char *name, int n1, int n2)
{
data = TYPE();
data = TYPE(Kokkos::NoInit(std::string(name)),n1,n2);
}
template <typename TYPE>
void realloc_kokkos(TYPE &data, const char *name, int n1, int n2, int n3)
{
data = TYPE();
data = TYPE(Kokkos::NoInit(std::string(name)),n1,n2,n3);
}
template <typename TYPE>
void realloc_kokkos(TYPE &data, const char *name, int n1, int n2, int n3, int n4)
{
data = TYPE();
data = TYPE(Kokkos::NoInit(std::string(name)),n1,n2,n3,n4);
}
template <typename TYPE>
void realloc_kokkos(TYPE &data, const char *name, int n1, int n2, int n3, int n4, int n5)
{
data = TYPE();
data = TYPE(Kokkos::NoInit(std::string(name)),n1,n2,n3,n4,n5);
}
template <typename TYPE>
void realloc_kokkos(TYPE &data, const char *name, int n1, int n2, int n3, int n4, int n5, int n6)
{
data = TYPE();
data = TYPE(Kokkos::NoInit(std::string(name)),n1,n2,n3,n4,n5,n6);
data = TYPE(Kokkos::NoInit(std::string(name)), ns...);
}
/* ----------------------------------------------------------------------
@ -325,7 +292,7 @@ void realloc_kokkos(TYPE &data, const char *name, int n1, int n2, int n3, int n4
------------------------------------------------------------------------- */
template <typename TYPE>
double memory_usage(TYPE &data)
static double memory_usage(TYPE &data)
{
return data.span() * sizeof(typename TYPE::value_type);
}

View File

@ -49,6 +49,8 @@ int MinCGKokkos::iterate(int maxiter)
fix_minimize_kk->k_vectors.sync<LMPDeviceType>();
fix_minimize_kk->k_vectors.modify<LMPDeviceType>();
atomKK->sync(Device,F_MASK);
// nlimit = max # of CG iterations before restarting
// set to ndoftotal unless too big

View File

@ -79,6 +79,8 @@ void MinKokkos::setup(int flag)
}
update->setupflag = 1;
lmp->kokkos->auto_sync = 1;
// setup extra global dof due to fixes
// cannot be done in init() b/c update init() is before modify init()
@ -170,7 +172,7 @@ void MinKokkos::setup(int flag)
}
else if (force->pair) force->pair->compute_dummy(eflag,vflag);
if (atomKK->molecular) {
if (atom->molecular != Atom::ATOMIC) {
if (force->bond) {
atomKK->sync(force->bond->execution_space,force->bond->datamask_read);
force->bond->compute(eflag,vflag);
@ -242,6 +244,8 @@ void MinKokkos::setup_minimal(int flag)
// acquire ghosts
// build neighbor lists
lmp->kokkos->auto_sync = 1;
if (flag) {
modify->setup_pre_exchange();
if (triclinic) domain->x2lamda(atom->nlocal);
@ -277,7 +281,7 @@ void MinKokkos::setup_minimal(int flag)
}
else if (force->pair) force->pair->compute_dummy(eflag,vflag);
if (atomKK->molecular) {
if (atom->molecular != Atom::ATOMIC) {
if (force->bond) {
atomKK->sync(force->bond->execution_space,force->bond->datamask_read);
force->bond->compute(eflag,vflag);
@ -495,6 +499,7 @@ double MinKokkos::energy_force(int resetflag)
if (force->newton) {
comm->reverse_comm();
timer->stamp(Timer::COMM);
atomKK->sync(Device,F_MASK);
}
// update per-atom minimization variables stored by pair styles
@ -567,7 +572,7 @@ void MinKokkos::force_clear()
}
});
}
atomKK->modified(Device,F_MASK);
atomKK->modified(Device,F_MASK|TORQUE_MASK);
}
/* ----------------------------------------------------------------------
@ -576,6 +581,7 @@ void MinKokkos::force_clear()
double MinKokkos::fnorm_sqr()
{
atomKK->sync(Device,F_MASK);
double local_norm2_sqr = 0.0;
{
@ -604,6 +610,7 @@ double MinKokkos::fnorm_sqr()
double MinKokkos::fnorm_inf()
{
atomKK->sync(Device,F_MASK);
double local_norm_inf = 0.0;
{
@ -632,6 +639,7 @@ double MinKokkos::fnorm_inf()
double MinKokkos::fnorm_max()
{
atomKK->sync(Device,F_MASK);
double local_norm_max = 0.0;
{

View File

@ -111,9 +111,6 @@ void MinLineSearchKokkos::reset_vectors()
x0 = fix_minimize_kk->request_vector_kokkos(0);
g = fix_minimize_kk->request_vector_kokkos(1);
h = fix_minimize_kk->request_vector_kokkos(2);
auto h_fvec = Kokkos::create_mirror_view(fvec);
Kokkos::deep_copy(h_fvec,fvec);
}
/* ----------------------------------------------------------------------
@ -181,6 +178,8 @@ int MinLineSearchKokkos::linemin_quadratic(double eoriginal, double &alpha)
fix_minimize_kk->k_vectors.sync<LMPDeviceType>();
fix_minimize_kk->k_vectors.modify<LMPDeviceType>();
atomKK->sync(Device,X_MASK|F_MASK);
// fdothall = projection of search dir along downhill gradient
// if search direction is not downhill, exit with error
@ -364,8 +363,8 @@ double MinLineSearchKokkos::alpha_step(double alpha, int resetflag)
// reset to starting point
if (nextra_global) modify->min_step(0.0,hextra);
atomKK->k_x.clear_sync_state(); // ignore if host positions since device
// positions will be reset below
atomKK->k_x.clear_sync_state(); // ignore if host positions modified since
// device positions will be reset below
{
// local variables for lambda capture
@ -409,6 +408,8 @@ double MinLineSearchKokkos::compute_dir_deriv(double &ff)
double dot[2],dotall[2];
double fh;
atomKK->sync(Device,F_MASK);
// compute new fh, alpha, delfh
s_double2 sdot;

View File

@ -26,8 +26,8 @@ using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
template<class DeviceType, int NEWTON>
NPairHalffullKokkos<DeviceType,NEWTON>::NPairHalffullKokkos(LAMMPS *lmp) : NPair(lmp) {
template<class DeviceType, int NEWTON, int TRIM>
NPairHalffullKokkos<DeviceType,NEWTON,TRIM>::NPairHalffullKokkos(LAMMPS *lmp) : NPair(lmp) {
atomKK = (AtomKokkos *) atom;
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;
}
@ -41,15 +41,17 @@ NPairHalffullKokkos<DeviceType,NEWTON>::NPairHalffullKokkos(LAMMPS *lmp) : NPair
if ghost, also store neighbors of ghost atoms & set inum,gnum correctly
------------------------------------------------------------------------- */
template<class DeviceType, int NEWTON>
void NPairHalffullKokkos<DeviceType,NEWTON>::build(NeighList *list)
template<class DeviceType, int NEWTON, int TRIM>
void NPairHalffullKokkos<DeviceType,NEWTON,TRIM>::build(NeighList *list)
{
if (NEWTON) {
if (NEWTON || TRIM) {
x = atomKK->k_x.view<DeviceType>();
atomKK->sync(execution_space,X_MASK);
}
nlocal = atom->nlocal;
cutsq_custom = cutoff_custom*cutoff_custom;
NeighListKokkos<DeviceType>* k_list_full = static_cast<NeighListKokkos<DeviceType>*>(list->listfull);
d_ilist_full = k_list_full->d_ilist;
d_numneigh_full = k_list_full->d_numneigh;
@ -76,14 +78,14 @@ void NPairHalffullKokkos<DeviceType,NEWTON>::build(NeighList *list)
k_list->k_ilist.template modify<DeviceType>();
}
template<class DeviceType, int NEWTON>
template<class DeviceType, int NEWTON, int TRIM>
KOKKOS_INLINE_FUNCTION
void NPairHalffullKokkos<DeviceType,NEWTON>::operator()(TagNPairHalffullCompute, const int &ii) const {
void NPairHalffullKokkos<DeviceType,NEWTON,TRIM>::operator()(TagNPairHalffullCompute, const int &ii) const {
int n = 0;
const int i = d_ilist_full(ii);
F_FLOAT xtmp,ytmp,ztmp;
if (NEWTON) {
if (NEWTON || TRIM) {
xtmp = x(i,0);
ytmp = x(i,1);
ztmp = x(i,2);
@ -108,9 +110,29 @@ void NPairHalffullKokkos<DeviceType,NEWTON>::operator()(TagNPairHalffullCompute,
if (x(j,1) == ytmp && x(j,0) < xtmp) continue;
}
}
if (TRIM) {
const double delx = xtmp - x(j,0);
const double dely = ytmp - x(j,1);
const double delz = ztmp - x(j,2);
const double rsq = delx*delx + dely*dely + delz*delz;
if (rsq > cutsq_custom) continue;
}
neighbors_i(n++) = joriginal;
} else if (j > i) {
if (TRIM) {
const double delx = xtmp - x(j,0);
const double dely = ytmp - x(j,1);
const double delz = ztmp - x(j,2);
const double rsq = delx*delx + dely*dely + delz*delz;
if (rsq > cutsq_custom) continue;
}
neighbors_i(n++) = joriginal;
} else {
if (j > i) neighbors_i(n++) = joriginal;
}
}
@ -119,10 +141,14 @@ void NPairHalffullKokkos<DeviceType,NEWTON>::operator()(TagNPairHalffullCompute,
}
namespace LAMMPS_NS {
template class NPairHalffullKokkos<LMPDeviceType,0>;
template class NPairHalffullKokkos<LMPDeviceType,1>;
template class NPairHalffullKokkos<LMPDeviceType,0,0>;
template class NPairHalffullKokkos<LMPDeviceType,0,1>;
template class NPairHalffullKokkos<LMPDeviceType,1,0>;
template class NPairHalffullKokkos<LMPDeviceType,1,1>;
#ifdef LMP_KOKKOS_GPU
template class NPairHalffullKokkos<LMPHostType,0>;
template class NPairHalffullKokkos<LMPHostType,1>;
template class NPairHalffullKokkos<LMPHostType,0,0>;
template class NPairHalffullKokkos<LMPHostType,0,1>;
template class NPairHalffullKokkos<LMPHostType,1,0>;
template class NPairHalffullKokkos<LMPHostType,1,1>;
#endif
}

View File

@ -13,27 +13,30 @@
#ifdef NPAIR_CLASS
// clang-format off
// Trim off
// Newton
typedef NPairHalffullKokkos<LMPDeviceType,1> NPairKokkosHalffullNewtonDevice;
typedef NPairHalffullKokkos<LMPDeviceType,1,0> NPairKokkosHalffullNewtonDevice;
NPairStyle(halffull/newton/kk/device,
NPairKokkosHalffullNewtonDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1> NPairKokkosHalffullNewtonHost;
typedef NPairHalffullKokkos<LMPHostType,1,0> NPairKokkosHalffullNewtonHost;
NPairStyle(halffull/newton/kk/host,
NPairKokkosHalffullNewtonHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,1> NPairKokkosHalffullNewtonDevice;
typedef NPairHalffullKokkos<LMPDeviceType,1,0> NPairKokkosHalffullNewtonDevice;
NPairStyle(halffull/newton/skip/kk/device,
NPairKokkosHalffullNewtonDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1> NPairKokkosHalffullNewtonHost;
typedef NPairHalffullKokkos<LMPHostType,1,0> NPairKokkosHalffullNewtonHost;
NPairStyle(halffull/newton/skip/kk/host,
NPairKokkosHalffullNewtonHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
@ -41,25 +44,25 @@ NPairStyle(halffull/newton/skip/kk/host,
// Newtoff
typedef NPairHalffullKokkos<LMPDeviceType,0> NPairKokkosHalffullNewtoffDevice;
typedef NPairHalffullKokkos<LMPDeviceType,0,0> NPairKokkosHalffullNewtoffDevice;
NPairStyle(halffull/newtoff/kk/device,
NPairKokkosHalffullNewtoffDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0> NPairKokkosHalffullNewtoffHost;
typedef NPairHalffullKokkos<LMPHostType,0,0> NPairKokkosHalffullNewtoffHost;
NPairStyle(halffull/newtoff/kk/host,
NPairKokkosHalffullNewtoffHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,0> NPairKokkosHalffullNewtoffDevice;
typedef NPairHalffullKokkos<LMPDeviceType,0,0> NPairKokkosHalffullNewtoffDevice;
NPairStyle(halffull/newtoff/skip/kk/device,
NPairKokkosHalffullNewtoffDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0> NPairKokkosHalffullNewtoffHost;
typedef NPairHalffullKokkos<LMPHostType,0,0> NPairKokkosHalffullNewtoffHost;
NPairStyle(halffull/newtoff/skip/kk/host,
NPairKokkosHalffullNewtoffHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
@ -69,25 +72,25 @@ NPairStyle(halffull/newtoff/skip/kk/host,
// Newton
typedef NPairHalffullKokkos<LMPDeviceType,1> NPairKokkosHalffullNewtonGhostDevice;
typedef NPairHalffullKokkos<LMPDeviceType,1,0> NPairKokkosHalffullNewtonGhostDevice;
NPairStyle(halffull/newton/ghost/kk/device,
NPairKokkosHalffullNewtonGhostDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1> NPairKokkosHalffullNewtonHost;
typedef NPairHalffullKokkos<LMPHostType,1,0> NPairKokkosHalffullNewtonHost;
NPairStyle(halffull/newton/ghost/kk/host,
NPairKokkosHalffullNewtonHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,1> NPairKokkosHalffullNewtonGhostDevice;
typedef NPairHalffullKokkos<LMPDeviceType,1,0> NPairKokkosHalffullNewtonGhostDevice;
NPairStyle(halffull/newton/skip/ghost/kk/device,
NPairKokkosHalffullNewtonGhostDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1> NPairKokkosHalffullNewtonHost;
typedef NPairHalffullKokkos<LMPHostType,1,0> NPairKokkosHalffullNewtonHost;
NPairStyle(halffull/newton/skip/ghost/kk/host,
NPairKokkosHalffullNewtonHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
@ -95,29 +98,138 @@ NPairStyle(halffull/newton/skip/ghost/kk/host,
// Newtoff
typedef NPairHalffullKokkos<LMPDeviceType,0> NPairKokkosHalffullNewtoffGhostDevice;
typedef NPairHalffullKokkos<LMPDeviceType,0,0> NPairKokkosHalffullNewtoffGhostDevice;
NPairStyle(halffull/newtoff/ghost/kk/device,
NPairKokkosHalffullNewtoffGhostDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0> NPairKokkosHalffullNewtoffHost;
typedef NPairHalffullKokkos<LMPHostType,0,0> NPairKokkosHalffullNewtoffHost;
NPairStyle(halffull/newtoff/ghost/kk/host,
NPairKokkosHalffullNewtoffHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,0> NPairKokkosHalffullNewtoffGhostDevice;
typedef NPairHalffullKokkos<LMPDeviceType,0,0> NPairKokkosHalffullNewtoffGhostDevice;
NPairStyle(halffull/newtoff/skip/ghost/kk/device,
NPairKokkosHalffullNewtoffGhostDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0> NPairKokkosHalffullNewtoffHost;
typedef NPairHalffullKokkos<LMPHostType,0,0> NPairKokkosHalffullNewtoffHost;
NPairStyle(halffull/newtoff/skip/ghost/kk/host,
NPairKokkosHalffullNewtoffHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_KOKKOS_HOST);
//************ Trim **************
// Newton
typedef NPairHalffullKokkos<LMPDeviceType,1,1> NPairKokkosHalffullNewtonTrimDevice;
NPairStyle(halffull/newton/trim/kk/device,
NPairKokkosHalffullNewtonTrimDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1,1> NPairKokkosHalffullNewtonTrimHost;
NPairStyle(halffull/newton/trim/kk/host,
NPairKokkosHalffullNewtonTrimHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_TRIM | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,1,1> NPairKokkosHalffullNewtonTrimDevice;
NPairStyle(halffull/newton/skip/trim/kk/device,
NPairKokkosHalffullNewtonTrimDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1,1> NPairKokkosHalffullNewtonTrimHost;
NPairStyle(halffull/newton/skip/trim/kk/host,
NPairKokkosHalffullNewtonTrimHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_TRIM | NP_KOKKOS_HOST);
// Newtoff
typedef NPairHalffullKokkos<LMPDeviceType,0,1> NPairKokkosHalffullNewtoffTrimDevice;
NPairStyle(halffull/newtoff/trim/kk/device,
NPairKokkosHalffullNewtoffTrimDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0,1> NPairKokkosHalffullNewtoffTrimHost;
NPairStyle(halffull/newtoff/trim/kk/host,
NPairKokkosHalffullNewtoffTrimHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_TRIM | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,0,1> NPairKokkosHalffullNewtoffTrimDevice;
NPairStyle(halffull/newtoff/skip/trim/kk/device,
NPairKokkosHalffullNewtoffTrimDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0,1> NPairKokkosHalffullNewtoffTrimHost;
NPairStyle(halffull/newtoff/skip/trim/kk/host,
NPairKokkosHalffullNewtoffTrimHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_SKIP | NP_TRIM | NP_KOKKOS_HOST);
//************ Ghost **************
// Newton
typedef NPairHalffullKokkos<LMPDeviceType,1,1> NPairKokkosHalffullNewtonGhostTrimDevice;
NPairStyle(halffull/newton/ghost/trim/kk/device,
NPairKokkosHalffullNewtonGhostTrimDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1,1> NPairKokkosHalffullNewtonTrimHost;
NPairStyle(halffull/newton/ghost/trim/kk/host,
NPairKokkosHalffullNewtonTrimHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_TRIM | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,1,1> NPairKokkosHalffullNewtonGhostTrimDevice;
NPairStyle(halffull/newton/skip/ghost/trim/kk/device,
NPairKokkosHalffullNewtonGhostTrimDevice,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,1,1> NPairKokkosHalffullNewtonTrimHost;
NPairStyle(halffull/newton/skip/ghost/trim/kk/host,
NPairKokkosHalffullNewtonTrimHost,
NP_HALF_FULL | NP_NEWTON | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_TRIM | NP_KOKKOS_HOST);
// Newtoff
typedef NPairHalffullKokkos<LMPDeviceType,0,1> NPairKokkosHalffullNewtoffGhostTrimDevice;
NPairStyle(halffull/newtoff/ghost/trim/kk/device,
NPairKokkosHalffullNewtoffGhostTrimDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0,1> NPairKokkosHalffullNewtoffTrimHost;
NPairStyle(halffull/newtoff/ghost/trim/kk/host,
NPairKokkosHalffullNewtoffTrimHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_TRIM | NP_KOKKOS_HOST);
typedef NPairHalffullKokkos<LMPDeviceType,0,1> NPairKokkosHalffullNewtoffGhostTrimDevice;
NPairStyle(halffull/newtoff/skip/ghost/trim/kk/device,
NPairKokkosHalffullNewtoffGhostTrimDevice,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_TRIM | NP_KOKKOS_DEVICE);
typedef NPairHalffullKokkos<LMPHostType,0,1> NPairKokkosHalffullNewtoffTrimHost;
NPairStyle(halffull/newtoff/skip/ghost/trim/kk/host,
NPairKokkosHalffullNewtoffTrimHost,
NP_HALF_FULL | NP_NEWTOFF | NP_HALF | NP_NSQ | NP_BIN | NP_MULTI |
NP_ORTHO | NP_TRI | NP_GHOST | NP_SKIP | NP_TRIM | NP_KOKKOS_HOST);
// clang-format on
#else
@ -132,7 +244,7 @@ namespace LAMMPS_NS {
struct TagNPairHalffullCompute{};
template<class DeviceType, int NEWTON>
template<class DeviceType, int NEWTON, int TRIM>
class NPairHalffullKokkos : public NPair {
public:
typedef DeviceType device_type;
@ -146,6 +258,7 @@ class NPairHalffullKokkos : public NPair {
private:
int nlocal;
double cutsq_custom;
typename AT::t_x_array_randomread x;

View File

@ -153,6 +153,9 @@ void NPairKokkos<DeviceType,HALF_NEIGH,GHOST,TRI,SIZE>::build(NeighList *list_)
int nall = nlocal;
if (GHOST)
nall += atom->nghost;
if (nall == 0) return;
list->grow(nall);
NeighborKokkosExecute<DeviceType>

View File

@ -0,0 +1,196 @@
// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Trimright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "npair_trim_kokkos.h"
#include "atom_kokkos.h"
#include "atom_masks.h"
#include "neigh_list_kokkos.h"
#include "my_page.h"
#include "error.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
template<class DeviceType>
NPairTrimKokkos<DeviceType>::NPairTrimKokkos(LAMMPS *lmp) : NPair(lmp) {}
/* ----------------------------------------------------------------------
create list which is simply a copy of parent list
------------------------------------------------------------------------- */
template<class DeviceType>
void NPairTrimKokkos<DeviceType>::build(NeighList *list)
{
NeighList *listcopy = list->listcopy;
cutsq_custom = cutoff_custom*cutoff_custom;
if (list->kokkos) {
if (!listcopy->kokkos)
error->all(FLERR,"Cannot trim non-Kokkos neighbor list to Kokkos neighbor list");
trim_to_kokkos(list);
} else {
if (!listcopy->kokkos)
error->all(FLERR,"Missing Kokkos neighbor list for trim");
trim_to_cpu(list);
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void NPairTrimKokkos<DeviceType>::trim_to_kokkos(NeighList *list)
{
x = atomKK->k_x.view<DeviceType>();
atomKK->sync(execution_space,X_MASK);
cutsq_custom = cutoff_custom*cutoff_custom;
NeighListKokkos<DeviceType>* k_list_copy = static_cast<NeighListKokkos<DeviceType>*>(list->listcopy);
d_ilist_copy = k_list_copy->d_ilist;
d_numneigh_copy = k_list_copy->d_numneigh;
d_neighbors_copy = k_list_copy->d_neighbors;
int inum_copy = list->listcopy->inum;
if (list->ghost) inum_copy += list->listcopy->gnum;
NeighListKokkos<DeviceType>* k_list = static_cast<NeighListKokkos<DeviceType>*>(list);
k_list->maxneighs = k_list_copy->maxneighs; // simple, but could be made more memory efficient
k_list->grow(atom->nmax);
d_ilist = k_list->d_ilist;
d_numneigh = k_list->d_numneigh;
d_neighbors = k_list->d_neighbors;
// loop over parent list and trim
copymode = 1;
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagNPairTrim>(0,inum_copy),*this);
copymode = 0;
list->inum = k_list_copy->inum;
list->gnum = k_list_copy->gnum;
k_list->k_ilist.template modify<DeviceType>();
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void NPairTrimKokkos<DeviceType>::operator()(TagNPairTrim, const int &ii) const {
int n = 0;
const int i = d_ilist_copy(ii);
const double xtmp = x(i,0);
const double ytmp = x(i,1);
const double ztmp = x(i,2);
// loop over copy neighbor list
const int jnum = d_numneigh_copy(i);
const AtomNeighbors neighbors_i = AtomNeighbors(&d_neighbors(i,0),d_numneigh(i),
&d_neighbors(i,1)-&d_neighbors(i,0));
for (int jj = 0; jj < jnum; jj++) {
const int joriginal = d_neighbors_copy(i,jj);
const int j = joriginal & NEIGHMASK;
const double delx = xtmp - x(j,0);
const double dely = ytmp - x(j,1);
const double delz = ztmp - x(j,2);
const double rsq = delx*delx + dely*dely + delz*delz;
if (rsq > cutsq_custom) continue;
neighbors_i(n++) = joriginal;
}
d_numneigh(i) = n;
d_ilist(ii) = i;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void NPairTrimKokkos<DeviceType>::trim_to_cpu(NeighList *list)
{
NeighList *listcopy = list->listcopy;
NeighListKokkos<DeviceType>* listcopy_kk = (NeighListKokkos<DeviceType>*) listcopy;
listcopy_kk->k_ilist.template sync<LMPHostType>();
double** x = atom->x;
int inum = listcopy->inum;
int gnum = listcopy->gnum;
int inum_all = inum;
if (list->ghost) inum_all += gnum;
auto h_ilist = listcopy_kk->k_ilist.h_view;
auto h_numneigh = Kokkos::create_mirror_view_and_copy(LMPHostType(),listcopy_kk->d_numneigh);
auto h_neighbors = Kokkos::create_mirror_view_and_copy(LMPHostType(),listcopy_kk->d_neighbors);
list->inum = inum;
list->gnum = gnum;
auto ilist = list->ilist;
auto numneigh = list->numneigh;
// Kokkos neighbor data is stored differently than regular CPU,
// must loop over lists
int *neighptr;
int **firstneigh = list->firstneigh;
MyPage<int> *ipage = list->ipage;
ipage->reset();
for (int ii = 0; ii < inum_all; ii++) {
int n = 0;
neighptr = ipage->vget();
const int i = h_ilist[ii];
ilist[ii] = i;
const double xtmp = x[i][0];
const double ytmp = x[i][1];
const double ztmp = x[i][2];
// loop over Kokkos neighbor list
const int jnum = h_numneigh[i];
for (int jj = 0; jj < jnum; jj++) {
const int joriginal = h_neighbors(i,jj);
const int j = joriginal & NEIGHMASK;
const double delx = xtmp - x[j][0];
const double dely = ytmp - x[j][1];
const double delz = ztmp - x[j][2];
const double rsq = delx*delx + dely*dely + delz*delz;
if (rsq > cutsq_custom) continue;
neighptr[n++] = joriginal;
}
firstneigh[i] = neighptr;
numneigh[i] = n;
ipage->vgot(n);
if (ipage->status())
error->one(FLERR,"Neighbor list overflow, boost neigh_modify one");
}
}
namespace LAMMPS_NS {
template class NPairTrimKokkos<LMPDeviceType>;
#ifdef LMP_KOKKOS_GPU
template class NPairTrimKokkos<LMPHostType>;
#endif
}

View File

@ -0,0 +1,70 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Trimright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef NPAIR_CLASS
// clang-format off
NPairStyle(trim/kk/device,
NPairTrimKokkos<LMPDeviceType>,
NP_COPY | NP_TRIM | NP_KOKKOS_DEVICE);
NPairStyle(trim/kk/host,
NPairTrimKokkos<LMPHostType>,
NP_COPY | NP_TRIM | NP_KOKKOS_HOST);
// clang-format on
#else
// clang-format off
#ifndef LMP_NPAIR_TRIM_KOKKOS_H
#define LMP_NPAIR_TRIM_KOKKOS_H
#include "npair.h"
#include "kokkos_type.h"
namespace LAMMPS_NS {
struct TagNPairTrim{};
template<class DeviceType>
class NPairTrimKokkos : public NPair {
public:
typedef DeviceType device_type;
typedef ArrayTypes<DeviceType> AT;
NPairTrimKokkos(class LAMMPS *);
void build(class NeighList *) override;
KOKKOS_INLINE_FUNCTION
void operator()(TagNPairTrim, const int&) const;
private:
double cutsq_custom;
typename AT::t_x_array_randomread x;
typename AT::t_neighbors_2d_const d_neighbors_copy;
typename AT::t_int_1d_const d_ilist_copy;
typename AT::t_int_1d_const d_numneigh_copy;
typename AT::t_neighbors_2d d_neighbors;
typename AT::t_int_1d d_ilist;
typename AT::t_int_1d d_numneigh;
void trim_to_kokkos(class NeighList *);
void trim_to_cpu(class NeighList *);
};
}
#endif
#endif

Some files were not shown because too many files have changed in this diff Show More