Update Kokkos library in LAMMPS to v3.7.0

This commit is contained in:
Stan Gerald Moore
2022-10-04 14:04:40 -06:00
parent dd072f7e08
commit f9f9e44f2d
653 changed files with 41432 additions and 33597 deletions

View File

@ -0,0 +1,428 @@
/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 3.0
// Copyright (2020) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Christian R. Trott (crtrott@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_SIMD_COMMON_HPP
#define KOKKOS_SIMD_COMMON_HPP
#include <cmath>
#include <cstring>
#include <Kokkos_Core.hpp>
namespace Kokkos {
namespace Experimental {
template <class To, class From>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION constexpr To bit_cast(
From const& src) {
To dst;
std::memcpy(&dst, &src, sizeof(To));
return dst;
}
template <class T, class Abi>
class simd;
template <class T, class Abi>
class simd_mask;
struct element_aligned_tag {};
// class template declarations for const_where_expression and where_expression
template <class M, class T>
class const_where_expression {
protected:
T& m_value;
M const& m_mask;
public:
const_where_expression(M const& mask_arg, T const& value_arg)
: m_value(const_cast<T&>(value_arg)), m_mask(mask_arg) {}
KOKKOS_FORCEINLINE_FUNCTION T const& value() const { return this->m_value; }
};
template <class M, class T>
class where_expression : public const_where_expression<M, T> {
using base_type = const_where_expression<M, T>;
public:
where_expression(M const& mask_arg, T& value_arg)
: base_type(mask_arg, value_arg) {}
KOKKOS_FORCEINLINE_FUNCTION T& value() { return this->m_value; }
};
// specializations of where expression templates for the case when the
// mask type is bool, to allow generic code to use where() on both
// SIMD types and non-SIMD builtin arithmetic types
template <class T>
class const_where_expression<bool, T> {
protected:
T& m_value;
bool m_mask;
public:
KOKKOS_FORCEINLINE_FUNCTION
const_where_expression(bool mask_arg, T const& value_arg)
: m_value(const_cast<T&>(value_arg)), m_mask(mask_arg) {}
KOKKOS_FORCEINLINE_FUNCTION T const& value() const { return this->m_value; }
};
template <class T>
class where_expression<bool, T> : public const_where_expression<bool, T> {
using base_type = const_where_expression<bool, T>;
public:
KOKKOS_FORCEINLINE_FUNCTION
where_expression(bool mask_arg, T& value_arg)
: base_type(mask_arg, value_arg) {}
KOKKOS_FORCEINLINE_FUNCTION T& value() { return this->m_value; }
template <class U,
std::enable_if_t<std::is_convertible_v<U, T>, bool> = false>
KOKKOS_FORCEINLINE_FUNCTION void operator=(U const& x) {
if (this->m_mask) this->m_value = x;
}
};
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION
where_expression<simd_mask<T, Abi>, simd<T, Abi>>
where(typename simd<T, Abi>::mask_type const& mask, simd<T, Abi>& value) {
return where_expression(mask, value);
}
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION
const_where_expression<simd_mask<T, Abi>, simd<T, Abi>>
where(typename simd<T, Abi>::mask_type const& mask,
simd<T, Abi> const& value) {
return const_where_expression(mask, value);
}
template <class T>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION where_expression<bool, T> where(
bool mask, T& value) {
return where_expression(mask, value);
}
template <class T>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION const_where_expression<bool, T> where(
bool mask, T const& value) {
return const_where_expression(mask, value);
}
// The code below provides:
// operator@(simd<T, Abi>, Arithmetic)
// operator@(Arithmetic, simd<T, Abi>)
// operator@=(simd<T, Abi>&, U&&)
// operator@=(where_expression<M, T>&, U&&)
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator+(
Experimental::simd<T, Abi> const& lhs, U rhs) {
using result_member = decltype(lhs[0] + rhs);
return Experimental::simd<result_member, Abi>(lhs) +
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator+(
U lhs, Experimental::simd<T, Abi> const& rhs) {
using result_member = decltype(lhs + rhs[0]);
return Experimental::simd<result_member, Abi>(lhs) +
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi>
KOKKOS_FORCEINLINE_FUNCTION simd<T, Abi>& operator+=(simd<T, Abi>& lhs,
U&& rhs) {
lhs = lhs + std::forward<U>(rhs);
return lhs;
}
template <class M, class T, class U>
KOKKOS_FORCEINLINE_FUNCTION where_expression<M, T>& operator+=(
where_expression<M, T>& lhs, U&& rhs) {
lhs = lhs.value() + std::forward<U>(rhs);
return lhs;
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator-(
Experimental::simd<T, Abi> const& lhs, U rhs) {
using result_member = decltype(lhs[0] - rhs);
return Experimental::simd<result_member, Abi>(lhs) -
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator-(
U lhs, Experimental::simd<T, Abi> const& rhs) {
using result_member = decltype(lhs - rhs[0]);
return Experimental::simd<result_member, Abi>(lhs) -
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi>
KOKKOS_FORCEINLINE_FUNCTION simd<T, Abi>& operator-=(simd<T, Abi>& lhs,
U&& rhs) {
lhs = lhs - std::forward<U>(rhs);
return lhs;
}
template <class M, class T, class U>
KOKKOS_FORCEINLINE_FUNCTION where_expression<M, T>& operator-=(
where_expression<M, T>& lhs, U&& rhs) {
lhs = lhs.value() - std::forward<U>(rhs);
return lhs;
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator*(
Experimental::simd<T, Abi> const& lhs, U rhs) {
using result_member = decltype(lhs[0] * rhs);
return Experimental::simd<result_member, Abi>(lhs) *
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator*(
U lhs, Experimental::simd<T, Abi> const& rhs) {
using result_member = decltype(lhs * rhs[0]);
return Experimental::simd<result_member, Abi>(lhs) *
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi>
KOKKOS_FORCEINLINE_FUNCTION simd<T, Abi>& operator*=(simd<T, Abi>& lhs,
U&& rhs) {
lhs = lhs * std::forward<U>(rhs);
return lhs;
}
template <class M, class T, class U>
KOKKOS_FORCEINLINE_FUNCTION where_expression<M, T>& operator*=(
where_expression<M, T>& lhs, U&& rhs) {
lhs = lhs.value() * std::forward<U>(rhs);
return lhs;
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator/(
Experimental::simd<T, Abi> const& lhs, U rhs) {
using result_member = decltype(lhs[0] / rhs);
return Experimental::simd<result_member, Abi>(lhs) /
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi,
std::enable_if_t<std::is_arithmetic_v<U>, bool> = false>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION auto operator/(
U lhs, Experimental::simd<T, Abi> const& rhs) {
using result_member = decltype(lhs / rhs[0]);
return Experimental::simd<result_member, Abi>(lhs) /
Experimental::simd<result_member, Abi>(rhs);
}
template <class T, class U, class Abi>
KOKKOS_FORCEINLINE_FUNCTION simd<T, Abi>& operator/=(simd<T, Abi>& lhs,
U&& rhs) {
lhs = lhs / std::forward<U>(rhs);
return lhs;
}
template <class M, class T, class U>
KOKKOS_FORCEINLINE_FUNCTION where_expression<M, T>& operator/=(
where_expression<M, T>& lhs, U&& rhs) {
lhs = lhs.value() / std::forward<U>(rhs);
return lhs;
}
// implement mask reductions for type bool to allow generic code to accept
// both simd<double, Abi> and just double
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION constexpr bool all_of(bool a) {
return a;
}
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION constexpr bool any_of(bool a) {
return a;
}
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION constexpr bool none_of(bool a) {
return !a;
}
// fallback implementations of reductions across simd_mask:
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION bool all_of(
simd_mask<T, Abi> const& a) {
return a == simd_mask<T, Abi>(true);
}
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION bool any_of(
simd_mask<T, Abi> const& a) {
return a != simd_mask<T, Abi>(false);
}
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION bool none_of(
simd_mask<T, Abi> const& a) {
return a == simd_mask<T, Abi>(false);
}
} // namespace Experimental
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION Experimental::simd<T, Abi> min(
Experimental::simd<T, Abi> const& a, Experimental::simd<T, Abi> const& b) {
Experimental::simd<T, Abi> result;
for (std::size_t i = 0; i < Experimental::simd<T, Abi>::size(); ++i) {
result[i] = Kokkos::min(a[i], b[i]);
}
return result;
}
template <class T, class Abi>
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION Experimental::simd<T, Abi> max(
Experimental::simd<T, Abi> const& a, Experimental::simd<T, Abi> const& b) {
Experimental::simd<T, Abi> result;
for (std::size_t i = 0; i < Experimental::simd<T, Abi>::size(); ++i) {
result[i] = Kokkos::max(a[i], b[i]);
}
return result;
}
// fallback implementations of <cmath> functions.
// individual Abi types may provide overloads with more efficient
// implementations.
// These are not in the Experimental namespace because their double
// overloads are not either
#define KOKKOS_IMPL_SIMD_UNARY_FUNCTION(FUNC) \
template <class Abi> \
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION Experimental::simd<double, Abi> \
FUNC(Experimental::simd<double, Abi> const& a) { \
Experimental::simd<double, Abi> result; \
for (std::size_t i = 0; i < Experimental::simd<double, Abi>::size(); \
++i) { \
result[i] = Kokkos::FUNC(a[i]); \
} \
return result; \
}
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(abs)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(exp)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(exp2)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(log)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(log10)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(log2)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(sqrt)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(cbrt)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(sin)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(cos)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(tan)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(asin)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(acos)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(atan)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(sinh)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(cosh)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(tanh)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(asinh)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(acosh)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(atanh)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(erf)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(erfc)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(tgamma)
KOKKOS_IMPL_SIMD_UNARY_FUNCTION(lgamma)
#define KOKKOS_IMPL_SIMD_BINARY_FUNCTION(FUNC) \
template <class Abi> \
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION Experimental::simd<double, Abi> \
FUNC(Experimental::simd<double, Abi> const& a, \
Experimental::simd<double, Abi> const& b) { \
Experimental::simd<double, Abi> result; \
for (std::size_t i = 0; i < Experimental::simd<double, Abi>::size(); \
++i) { \
result[i] = Kokkos::FUNC(a[i], b[i]); \
} \
return result; \
}
KOKKOS_IMPL_SIMD_BINARY_FUNCTION(pow)
KOKKOS_IMPL_SIMD_BINARY_FUNCTION(hypot)
KOKKOS_IMPL_SIMD_BINARY_FUNCTION(atan2)
KOKKOS_IMPL_SIMD_BINARY_FUNCTION(copysign)
#define KOKKOS_IMPL_SIMD_TERNARY_FUNCTION(FUNC) \
template <class Abi> \
[[nodiscard]] KOKKOS_FORCEINLINE_FUNCTION Experimental::simd<double, Abi> \
FUNC(Experimental::simd<double, Abi> const& a, \
Experimental::simd<double, Abi> const& b, \
Experimental::simd<double, Abi> const& c) { \
Experimental::simd<double, Abi> result; \
for (std::size_t i = 0; i < Experimental::simd<double, Abi>::size(); \
++i) { \
result[i] = Kokkos::FUNC(a[i], b[i], c[i]); \
} \
return result; \
}
KOKKOS_IMPL_SIMD_TERNARY_FUNCTION(fma)
KOKKOS_IMPL_SIMD_TERNARY_FUNCTION(hypot)
} // namespace Kokkos
#endif