Merge branch 'clean-master2' of github.com:julient31/lammps into pppm_spin
Conflicts: src/SPIN/fix_nve_spin.h
@ -504,7 +504,10 @@ if(PKG_LATTE)
|
||||
URL https://github.com/lanl/LATTE/archive/v1.2.1.tar.gz
|
||||
URL_MD5 85ac414fdada2d04619c8f936344df14
|
||||
SOURCE_SUBDIR cmake
|
||||
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=<INSTALL_DIR> ${CMAKE_REQUEST_PIC} -DBLAS_LIBRARIES=${BLAS_LIBRARIES} -DLAPACK_LIBRARIES=${LAPACK_LIBRARIES}
|
||||
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=<INSTALL_DIR> ${CMAKE_REQUEST_PIC}
|
||||
-DBLAS_LIBRARIES=${BLAS_LIBRARIES} -DLAPACK_LIBRARIES=${LAPACK_LIBRARIES}
|
||||
-DCMAKE_Fortran_COMPILER=${CMAKE_Fortran_COMPILER} -DCMAKE_Fortran_FLAGS=${CMAKE_Fortran_FLAGS}
|
||||
-DCMAKE_Fortran_FLAGS_${BTYPE}=${CMAKE_Fortran_FLAGS_${BTYPE}} -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
|
||||
)
|
||||
ExternalProject_get_property(latte_build INSTALL_DIR)
|
||||
set(LATTE_LIBRARIES ${INSTALL_DIR}/${CMAKE_INSTALL_LIBDIR}/liblatte.a)
|
||||
@ -1124,9 +1127,6 @@ if(PKG_OPT)
|
||||
endif()
|
||||
|
||||
if(PKG_USER-INTEL)
|
||||
if(LAMMPS_SIZES STREQUAL BIGBIG)
|
||||
message(FATAL_ERROR "The USER-INTEL Package is not compatible with -DLAMMPS_BIGBIG")
|
||||
endif()
|
||||
add_definitions(-DLMP_USER_INTEL)
|
||||
|
||||
set(INTEL_ARCH "cpu" CACHE STRING "Architectures used by USER-INTEL (cpu or knl)")
|
||||
@ -1220,8 +1220,7 @@ if(PKG_USER-INTEL)
|
||||
${USER-INTEL_SOURCES_DIR}/fix_nh_intel.cpp
|
||||
${USER-INTEL_SOURCES_DIR}/intel_buffers.cpp
|
||||
${USER-INTEL_SOURCES_DIR}/nbin_intel.cpp
|
||||
${USER-INTEL_SOURCES_DIR}/npair_intel.cpp
|
||||
${USER-INTEL_SOURCES_DIR}/verlet_lrt_intel.cpp)
|
||||
${USER-INTEL_SOURCES_DIR}/npair_intel.cpp)
|
||||
|
||||
set_property(GLOBAL PROPERTY "USER-INTEL_SOURCES" "${USER-INTEL_SOURCES}")
|
||||
|
||||
@ -1230,9 +1229,12 @@ if(PKG_USER-INTEL)
|
||||
RegisterNBinStyle(${USER-INTEL_SOURCES_DIR}/nbin_intel.h)
|
||||
RegisterNPairStyle(${USER-INTEL_SOURCES_DIR}/npair_intel.h)
|
||||
RegisterFixStyle(${USER-INTEL_SOURCES_DIR}/fix_intel.h)
|
||||
RegisterIntegrateStyle(${USER-INTEL_SOURCES_DIR}/verlet_lrt_intel.h)
|
||||
|
||||
get_property(USER-INTEL_SOURCES GLOBAL PROPERTY USER-INTEL_SOURCES)
|
||||
if(PKG_KSPACE)
|
||||
list(APPEND USER-INTEL_SOURCES ${USER-INTEL_SOURCES_DIR}/verlet_lrt_intel.cpp)
|
||||
RegisterIntegrateStyle(${USER-INTEL_SOURCES_DIR}/verlet_lrt_intel.h)
|
||||
endif()
|
||||
|
||||
list(APPEND LIB_SOURCES ${USER-INTEL_SOURCES})
|
||||
include_directories(${USER-INTEL_SOURCES_DIR})
|
||||
@ -1370,7 +1372,15 @@ if(PKG_GPU)
|
||||
set(OCL_COMMON_HEADERS ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_preprocessor.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_aux_fun1.h)
|
||||
|
||||
file(GLOB GPU_LIB_CU ${LAMMPS_LIB_SOURCE_DIR}/gpu/[^.]*.cu)
|
||||
list(REMOVE_ITEM GPU_LIB_CU ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne.cu ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne_lj.cu)
|
||||
list(REMOVE_ITEM GPU_LIB_CU
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne.cu
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne_lj.cu
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_re_squared.cu
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_re_squared_lj.cu
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff.cu
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_zbl.cu
|
||||
${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_mod.cu
|
||||
)
|
||||
|
||||
foreach(GPU_KERNEL ${GPU_LIB_CU})
|
||||
get_filename_component(basename ${GPU_KERNEL} NAME_WE)
|
||||
@ -1381,7 +1391,21 @@ if(PKG_GPU)
|
||||
|
||||
GenerateOpenCLHeader(gayberne ${CMAKE_CURRENT_BINARY_DIR}/gpu/gayberne_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_ellipsoid_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne.cu)
|
||||
GenerateOpenCLHeader(gayberne_lj ${CMAKE_CURRENT_BINARY_DIR}/gpu/gayberne_lj_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_ellipsoid_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_gayberne_lj.cu)
|
||||
list(APPEND GPU_LIB_SOURCES ${CMAKE_CURRENT_BINARY_DIR}/gpu/gayberne_cl.h ${CMAKE_CURRENT_BINARY_DIR}/gpu/gayberne_lj_cl.h)
|
||||
GenerateOpenCLHeader(re_squared ${CMAKE_CURRENT_BINARY_DIR}/gpu/re_squared_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_ellipsoid_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_re_squared.cu)
|
||||
GenerateOpenCLHeader(re_squared_lj ${CMAKE_CURRENT_BINARY_DIR}/gpu/re_squared_lj_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_ellipsoid_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_re_squared_lj.cu)
|
||||
GenerateOpenCLHeader(tersoff ${CMAKE_CURRENT_BINARY_DIR}/gpu/tersoff_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff.cu)
|
||||
GenerateOpenCLHeader(tersoff_zbl ${CMAKE_CURRENT_BINARY_DIR}/gpu/tersoff_zbl_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_zbl_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_zbl.cu)
|
||||
GenerateOpenCLHeader(tersoff_mod ${CMAKE_CURRENT_BINARY_DIR}/gpu/tersoff_mod_cl.h ${OCL_COMMON_HEADERS} ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_mod_extra.h ${LAMMPS_LIB_SOURCE_DIR}/gpu/lal_tersoff_mod.cu)
|
||||
|
||||
list(APPEND GPU_LIB_SOURCES
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/gayberne_cl.h
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/gayberne_lj_cl.h
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/re_squared_cl.h
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/re_squared_lj_cl.h
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/tersoff_cl.h
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/tersoff_zbl_cl.h
|
||||
${CMAKE_CURRENT_BINARY_DIR}/gpu/tersoff_mod_cl.h
|
||||
)
|
||||
|
||||
add_library(gpu STATIC ${GPU_LIB_SOURCES})
|
||||
target_link_libraries(gpu ${OpenCL_LIBRARIES})
|
||||
|
||||
@ -6,7 +6,7 @@ function(GenerateOpenCLHeader varname outfile files)
|
||||
foreach(IDX RANGE 2 ${ARG_END})
|
||||
list(GET ARGV ${IDX} filename)
|
||||
file(READ ${filename} content)
|
||||
string(REGEX REPLACE "\\s*//[^\n]*\n" "" content "${content}")
|
||||
string(REGEX REPLACE "\\s*//[^\n]*\n" "\n" content "${content}")
|
||||
string(REGEX REPLACE "\\\\" "\\\\\\\\" content "${content}")
|
||||
string(REGEX REPLACE "\"" "\\\\\"" content "${content}")
|
||||
string(REGEX REPLACE "([^\n]+)\n" "\"\\1\\\\n\"\n" content "${content}")
|
||||
|
||||
@ -211,7 +211,7 @@ cmake -C ../cmake/presets/all_on.cmake -C ../cmake/presets/nolib.cmake -D PKG_GP
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code><CMAKE_VERBOSE_MAKEFILE/code></td>
|
||||
<td><code>CMAKE_VERBOSE_MAKEFILE</code></td>
|
||||
<td>Enable verbose output from Makefile builds (useful for debugging), the same can be achived by adding `VERBOSE=1` to the `make` call.</td>
|
||||
<td>
|
||||
<dl>
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
.TH LAMMPS "11 April 2019" "2019-04-11"
|
||||
.TH LAMMPS "30 April 2019" "2019-04-30"
|
||||
.SH NAME
|
||||
.B LAMMPS
|
||||
\- Molecular Dynamics Simulator.
|
||||
|
||||
@ -247,7 +247,10 @@ Maxwell50 = NVIDIA Maxwell generation CC 5.0
|
||||
Maxwell52 = NVIDIA Maxwell generation CC 5.2
|
||||
Maxwell53 = NVIDIA Maxwell generation CC 5.3
|
||||
Pascal60 = NVIDIA Pascal generation CC 6.0
|
||||
Pascal61 = NVIDIA Pascal generation CC 6.1 :ul
|
||||
Pascal61 = NVIDIA Pascal generation CC 6.1
|
||||
Volta70 = NVIDIA Volta generation CC 7.0
|
||||
Volta72 = NVIDIA Volta generation CC 7.2
|
||||
Turing75 = NVIDIA Turing generation CC 7.5 :ul
|
||||
|
||||
[CMake build]:
|
||||
|
||||
|
||||
@ -83,6 +83,7 @@ An alphabetic list of all general LAMMPS commands.
|
||||
"molecule"_molecule.html,
|
||||
"ndx2group"_group2ndx.html,
|
||||
"neb"_neb.html,
|
||||
"neb/spin"_neb_spin.html,
|
||||
"neigh_modify"_neigh_modify.html,
|
||||
"neighbor"_neighbor.html,
|
||||
"newton"_newton.html,
|
||||
|
||||
@ -116,6 +116,7 @@ Actions:
|
||||
|
||||
"minimize"_minimize.html,
|
||||
"neb"_neb.html,
|
||||
"neb_spin"_neb_spin.html,
|
||||
"prd"_prd.html,
|
||||
"rerun"_rerun.html,
|
||||
"run"_run.html,
|
||||
|
||||
@ -107,6 +107,7 @@ OPT.
|
||||
"mvv/edpd"_fix_mvv_dpd.html,
|
||||
"mvv/tdpd"_fix_mvv_dpd.html,
|
||||
"neb"_fix_neb.html,
|
||||
"neb_spin"_fix_neb_spin.html,
|
||||
"nph (ko)"_fix_nh.html,
|
||||
"nph/asphere (o)"_fix_nph_asphere.html,
|
||||
"nph/body"_fix_nph_body.html,
|
||||
|
||||
@ -80,6 +80,8 @@ OPT.
|
||||
"dpd/fdt/energy (k)"_pair_dpd_fdt.html,
|
||||
"dpd/tstat (go)"_pair_dpd.html,
|
||||
"dsmc"_pair_dsmc.html,
|
||||
"e3b"_pair_e3b.html,
|
||||
"drip"_pair_drip.html,
|
||||
"eam (gikot)"_pair_eam.html,
|
||||
"eam/alloy (gikot)"_pair_eam.html,
|
||||
"eam/cd (o)"_pair_eam.html,
|
||||
|
||||
BIN
doc/src/Eqs/e3b.jpg
Normal file
|
After Width: | Height: | Size: 28 KiB |
15
doc/src/Eqs/e3b.tex
Normal file
@ -0,0 +1,15 @@
|
||||
\documentclass[12pt]{article}
|
||||
\usepackage{amsmath}
|
||||
\begin{document}
|
||||
|
||||
\begin{align*}
|
||||
E =& E_2 \sum_{i,j}e^{-k_2 r_{ij}} + E_A \sum_{\substack{i,j,k,\ell \\\in \textrm{type A}}} f(r_{ij})f(r_{k\ell}) + E_B \sum_{\substack{i,j,k,\ell \\\in \textrm{type B}}} f(r_{ij})f(r_{k\ell}) + E_C \sum_{\substack{i,j,k,\ell \\\in \textrm{type C}}} f(r_{ij})f(r_{k\ell}) \\
|
||||
f(r) =& e^{-k_3 r}s(r) \\
|
||||
s(r) =& \begin{cases}
|
||||
1 & r<R_s \\
|
||||
\displaystyle\frac{(R_f-r)^2(R_f-3R_s+2r)}{(R_f-R_s)^3} & R_s\leq r\leq R_f \\
|
||||
0 & r>R_f\\
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/fix_spin_cubic.jpg
Normal file
|
After Width: | Height: | Size: 25 KiB |
21
doc/src/Eqs/fix_spin_cubic.tex
Normal file
@ -0,0 +1,21 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath,amssymb,amsthm,bm}
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\bm{H}_{cubic} = -\sum_{{ i}=1}^{N} K_{1}
|
||||
\Big[
|
||||
\left(\vec{s}_{i} \cdot \vec{n1} \right)^2
|
||||
\left(\vec{s}_{i} \cdot \vec{n2} \right)^2 +
|
||||
\left(\vec{s}_{i} \cdot \vec{n2} \right)^2
|
||||
\left(\vec{s}_{i} \cdot \vec{n3} \right)^2 +
|
||||
\left(\vec{s}_{i} \cdot \vec{n1} \right)^2
|
||||
\left(\vec{s}_{i} \cdot \vec{n3} \right)^2 \Big]
|
||||
+K_{2}^{(c)} \left(\vec{s}_{i} \cdot \vec{n1} \right)^2
|
||||
\left(\vec{s}_{i} \cdot \vec{n2} \right)^2
|
||||
\left(\vec{s}_{i} \cdot \vec{n3} \right)^2 \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/neb_spin_angle.jpg
Normal file
|
After Width: | Height: | Size: 9.4 KiB |
15
doc/src/Eqs/neb_spin_angle.tex
Normal file
@ -0,0 +1,15 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\omega_i^{\nu} =
|
||||
(\nu - 1) \Delta \omega_i
|
||||
{\rm ~~and~~} \Delta \omega_i = \frac{\omega_i}{Q-1}
|
||||
, \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/neb_spin_k.jpg
Normal file
|
After Width: | Height: | Size: 8.2 KiB |
16
doc/src/Eqs/neb_spin_k.tex
Normal file
@ -0,0 +1,16 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\vec{k}_i =
|
||||
\frac{\vec{m}_i^I \times \vec{m}_i^F}{\left|\vec{m}_i^I
|
||||
\times \vec{m}_i^F\right|}
|
||||
%&{\rm ~if~}& \vec{m}_i^I \times \vec{m}_i^F
|
||||
, \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/neb_spin_rodrigues_formula.jpg
Normal file
|
After Width: | Height: | Size: 20 KiB |
16
doc/src/Eqs/neb_spin_rodrigues_formula.tex
Normal file
@ -0,0 +1,16 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\vec{m}_i^{\nu} = \vec{m}_i^{I} \cos(\omega_i^{\nu})
|
||||
+ (\vec{k}_i \times \vec{m}_i^{I}) \sin(\omega_i^{\nu})
|
||||
+ (1.0-\cos(\omega_i^{\nu})) \vec{k}_i (\vec{k}_i\cdot
|
||||
\vec{m}_i^{I})
|
||||
, \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/pair_drip.jpg
Normal file
|
After Width: | Height: | Size: 58 KiB |
14
doc/src/Eqs/pair_drip.tex
Normal file
@ -0,0 +1,14 @@
|
||||
\documentclass[12pt]{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{bm}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E &=& \frac{1}{2} \sum_{i} \sum_{j\notin\text{layer}\,i} \phi_{ij} \\\phi_{ij} &=& f_\text{c}(x_r) \left[ e^{-\lambda(r_{ij} - z_0 )} \left[C+f(\rho_{ij})+ g(\rho_{ij}, \{\alpha_{ij}^{(m)}\}) \right]- A\left (\frac{z_0}{r_{ij}} \right)^6 \right] \\
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.4 KiB After Width: | Height: | Size: 2.5 KiB |
@ -1,9 +1,9 @@
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E(r) = \frac{A}{r^{12}} - \frac{A}{r^{6}}
|
||||
E(r) = \frac{A}{r^{12}} - \frac{B}{r^{6}}
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
||||
@ -56,7 +56,7 @@ COMPASS is a general force field for atomistic simulation of common
|
||||
organic molecules, inorganic small molecules, and polymers which was
|
||||
developed using ab initio and empirical parameterization techniques.
|
||||
See the "Tools"_Tools.html doc page for the msi2lmp tool for creating
|
||||
LAMMPS template input and data files from BIOVIA’s Materials Studio
|
||||
LAMMPS template input and data files from BIOVIA's Materials Studio
|
||||
files. Please note that the msi2lmp tool is very old and largely
|
||||
unmaintained, so it does not support all features of Materials Studio
|
||||
provided force field files, especially additions during the last decade.
|
||||
@ -129,7 +129,7 @@ Fischer, Gao, Guo, Ha, et al, J Phys Chem, 102, 3586 (1998).
|
||||
Spellmeyer, Fox, Caldwell, Kollman, JACS 117, 5179-5197 (1995).
|
||||
|
||||
:link(howto-Sun)
|
||||
[(Sun)] Sun, J. Phys. Chem. B, 102, 7338–7364 (1998).
|
||||
[(Sun)] Sun, J. Phys. Chem. B, 102, 7338-7364 (1998).
|
||||
|
||||
:link(howto-Mayo)
|
||||
[(Mayo)] Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909
|
||||
|
||||
@ -29,3 +29,5 @@ diffusion coefficient. The instantaneous VACF values can be
|
||||
accumulated in a vector via the "fix vector"_fix_vector.html command,
|
||||
and time integrated via the "variable trap"_variable.html function,
|
||||
and thus extract D.
|
||||
|
||||
:line
|
||||
|
||||
@ -17,6 +17,7 @@ periodically.
|
||||
These are the relevant commands:
|
||||
|
||||
"neb"_neb.html for nudged elastic band calculations
|
||||
"neb_spin"_neb_spin.html for magnetic nudged elastic band calculations
|
||||
"prd"_prd.html for parallel replica dynamics
|
||||
"tad"_tad.html for temperature accelerated dynamics
|
||||
"temper"_temper.html for parallel tempering
|
||||
|
||||
@ -10,7 +10,7 @@ Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
Magnetic spins :h3
|
||||
|
||||
The magnetic spin simulations are enabled by the SPIN package, whose
|
||||
implementation is detailed in "Tranchida"_#Tranchida7.
|
||||
implementation is detailed in "Tranchida"_#Tranchida.
|
||||
|
||||
The model represents the simulation of atomic magnetic spins coupled
|
||||
to lattice vibrations. The dynamics of those magnetic spins can be used
|
||||
@ -36,13 +36,28 @@ A Langevin thermostat can be applied to those magnetic spins using
|
||||
"fix langevin/spin"_fix_langevin_spin.html. Typically, this thermostat
|
||||
can be coupled to another Langevin thermostat applied to the atoms
|
||||
using "fix langevin"_fix_langevin.html in order to simulate
|
||||
thermostatted spin-lattice system.
|
||||
thermostatted spin-lattice systems.
|
||||
|
||||
The magnetic Gilbert damping can also be applied using "fix
|
||||
langevin/spin"_fix_langevin_spin.html. It allows to either dissipate
|
||||
the thermal energy of the Langevin thermostat, or to perform a
|
||||
relaxation of the magnetic configuration toward an equilibrium state.
|
||||
|
||||
The command "fix setforce/spin"_fix_setforce.html allows to set the
|
||||
components of the magnetic precession vectors (while erasing and
|
||||
replacing the previously computed magnetic precession vectors on
|
||||
the atom).
|
||||
This command can be used to freeze the magnetic moment of certain
|
||||
atoms in the simulation by zeroing their precession vector.
|
||||
|
||||
The command "fix nve/spin"_fix_nve_spin.html can be used to
|
||||
perform a symplectic integration of the combined dynamics of spins
|
||||
and atomic motions.
|
||||
|
||||
The minimization style "min/spin"_min_spin.html can be applied
|
||||
to the spins to perform a minimization of the spin configuration.
|
||||
|
||||
|
||||
All the computed magnetic properties can be output by two main
|
||||
commands. The first one is "compute spin"_compute_spin.html, that
|
||||
enables to evaluate magnetic averaged quantities, such as the total
|
||||
@ -54,6 +69,6 @@ magnetic spin, or the magnetic force acting on this spin.
|
||||
|
||||
:line
|
||||
|
||||
:link(Tranchida7)
|
||||
:link(Tranchida)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau and Thompson,
|
||||
arXiv preprint arXiv:1801.10233, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
<!-- HTML_ONLY -->
|
||||
<HEAD>
|
||||
<TITLE>LAMMPS Users Manual</TITLE>
|
||||
<META NAME="docnumber" CONTENT="29 Mar 2019 version">
|
||||
<META NAME="docnumber" CONTENT="30 Apr 2019 version">
|
||||
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
|
||||
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
|
||||
</HEAD>
|
||||
@ -21,7 +21,7 @@
|
||||
:line
|
||||
|
||||
LAMMPS Documentation :c,h1
|
||||
29 Mar 2019 version :c,h2
|
||||
30 Apr 2019 version :c,h2
|
||||
|
||||
"What is a LAMMPS version?"_Manual_version.html
|
||||
|
||||
|
||||
@ -905,7 +905,7 @@ SPIN package :link(PKG-SPIN),h4
|
||||
Model atomic magnetic spins classically, coupled to atoms moving in
|
||||
the usual manner via MD. Various pair, fix, and compute styles.
|
||||
|
||||
[Author:] Julian Tranchida (Sandia).
|
||||
[Author:] Julien Tranchida (Sandia).
|
||||
|
||||
[Supporting info:]
|
||||
|
||||
@ -918,6 +918,7 @@ src/SPIN: filenames -> commands
|
||||
"fix nve/spin"_fix_nve_spin.html
|
||||
"fix precession/spin"_fix_precession_spin.html
|
||||
"compute spin"_compute_spin.html
|
||||
"neb/spin"_neb_spin.html
|
||||
examples/SPIN :ul
|
||||
|
||||
:line
|
||||
|
||||
@ -111,16 +111,10 @@ Makefile.kokkos_mpi_only) will give better performance than the OpenMP
|
||||
back end (i.e. Makefile.kokkos_omp) because some of the overhead to make
|
||||
the code thread-safe is removed.
|
||||
|
||||
NOTE: The default for the "package kokkos"_package.html command is to
|
||||
use "full" neighbor lists and set the Newton flag to "off" for both
|
||||
pairwise and bonded interactions. However, when running on CPUs, it
|
||||
will typically be faster to use "half" neighbor lists and set the
|
||||
Newton flag to "on", just as is the case for non-accelerated pair
|
||||
styles. It can also be faster to use non-threaded communication. Use
|
||||
the "-pk kokkos" "command-line switch"_Run_options.html to change the
|
||||
default "package kokkos"_package.html options. See its doc page for
|
||||
details and default settings. Experimenting with its options can
|
||||
provide a speed-up for specific calculations. For example:
|
||||
NOTE: Use the "-pk kokkos" "command-line switch"_Run_options.html to
|
||||
change the default "package kokkos"_package.html options. See its doc
|
||||
page for details and default settings. Experimenting with its options
|
||||
can provide a speed-up for specific calculations. For example:
|
||||
|
||||
mpirun -np 16 lmp_kokkos_mpi_only -k on -sf kk -pk kokkos newton on neigh half comm no -in in.lj # Newton on, Half neighbor list, non-threaded comm :pre
|
||||
|
||||
@ -190,19 +184,18 @@ tasks/node. The "-k on t Nt" command-line switch sets the number of
|
||||
threads/task as Nt. The product of these two values should be N, i.e.
|
||||
256 or 264.
|
||||
|
||||
NOTE: The default for the "package kokkos"_package.html command is to
|
||||
use "full" neighbor lists and set the Newton flag to "off" for both
|
||||
pairwise and bonded interactions. When running on KNL, this will
|
||||
typically be best for pair-wise potentials. For many-body potentials,
|
||||
using "half" neighbor lists and setting the Newton flag to "on" may be
|
||||
faster. It can also be faster to use non-threaded communication. Use
|
||||
the "-pk kokkos" "command-line switch"_Run_options.html to change the
|
||||
default "package kokkos"_package.html options. See its doc page for
|
||||
details and default settings. Experimenting with its options can
|
||||
provide a speed-up for specific calculations. For example:
|
||||
NOTE: The default for the "package kokkos"_package.html command when
|
||||
running on KNL is to use "half" neighbor lists and set the Newton flag
|
||||
to "on" for both pairwise and bonded interactions. This will typically
|
||||
be best for many-body potentials. For simpler pair-wise potentials, it
|
||||
may be faster to use a "full" neighbor list with Newton flag to "off".
|
||||
Use the "-pk kokkos" "command-line switch"_Run_options.html to change
|
||||
the default "package kokkos"_package.html options. See its doc page for
|
||||
details and default settings. Experimenting with its options can provide
|
||||
a speed-up for specific calculations. For example:
|
||||
|
||||
mpirun -np 64 lmp_kokkos_phi -k on t 4 -sf kk -pk kokkos comm no -in in.lj # Newton off, full neighbor list, non-threaded comm
|
||||
mpirun -np 64 lmp_kokkos_phi -k on t 4 -sf kk -pk kokkos newton on neigh half comm no -in in.reax # Newton on, half neighbor list, non-threaded comm :pre
|
||||
mpirun -np 64 lmp_kokkos_phi -k on t 4 -sf kk -pk kokkos comm host -in in.reax # Newton on, half neighbor list, threaded comm
|
||||
mpirun -np 64 lmp_kokkos_phi -k on t 4 -sf kk -pk kokkos newton off neigh full comm no -in in.lj # Newton off, full neighbor list, non-threaded comm :pre
|
||||
|
||||
NOTE: MPI tasks and threads should be bound to cores as described
|
||||
above for CPUs.
|
||||
@ -236,19 +229,19 @@ one or more nodes, each with two GPUs:
|
||||
mpirun -np 2 lmp_kokkos_cuda_openmpi -k on g 2 -sf kk -in in.lj # 1 node, 2 MPI tasks/node, 2 GPUs/node
|
||||
mpirun -np 32 -ppn 2 lmp_kokkos_cuda_openmpi -k on g 2 -sf kk -in in.lj # 16 nodes, 2 MPI tasks/node, 2 GPUs/node (32 GPUs total) :pre
|
||||
|
||||
NOTE: The default for the "package kokkos"_package.html command is to
|
||||
use "full" neighbor lists and set the Newton flag to "off" for both
|
||||
pairwise and bonded interactions, along with threaded communication.
|
||||
When running on Maxwell or Kepler GPUs, this will typically be
|
||||
best. For Pascal GPUs, using "half" neighbor lists and setting the
|
||||
Newton flag to "on" may be faster. For many pair styles, setting the
|
||||
neighbor binsize equal to the ghost atom cutoff will give speedup.
|
||||
Use the "-pk kokkos" "command-line switch"_Run_options.html to change
|
||||
the default "package kokkos"_package.html options. See its doc page
|
||||
for details and default settings. Experimenting with its options can
|
||||
provide a speed-up for specific calculations. For example:
|
||||
NOTE: The default for the "package kokkos"_package.html command when
|
||||
running on GPUs is to use "full" neighbor lists and set the Newton flag
|
||||
to "off" for both pairwise and bonded interactions, along with threaded
|
||||
communication. When running on Maxwell or Kepler GPUs, this will
|
||||
typically be best. For Pascal GPUs, using "half" neighbor lists and
|
||||
setting the Newton flag to "on" may be faster. For many pair styles,
|
||||
setting the neighbor binsize equal to twice the CPU default value will
|
||||
give speedup, which is the default when running on GPUs. Use the "-pk
|
||||
kokkos" "command-line switch"_Run_options.html to change the default
|
||||
"package kokkos"_package.html options. See its doc page for details and
|
||||
default settings. Experimenting with its options can provide a speed-up
|
||||
for specific calculations. For example:
|
||||
|
||||
mpirun -np 2 lmp_kokkos_cuda_openmpi -k on g 2 -sf kk -pk kokkos binsize 2.8 -in in.lj # Set binsize = neighbor ghost cutoff
|
||||
mpirun -np 2 lmp_kokkos_cuda_openmpi -k on g 2 -sf kk -pk kokkos newton on neigh half binsize 2.8 -in in.lj # Newton on, half neighbor list, set binsize = neighbor ghost cutoff :pre
|
||||
|
||||
NOTE: For good performance of the KOKKOS package on GPUs, you must
|
||||
|
||||
@ -77,6 +77,7 @@ Post-processing tools :h3
|
||||
"python"_#pythontools,
|
||||
"reax"_#reax_tool,
|
||||
"smd"_#smd,
|
||||
"spin"_#spin,
|
||||
"xmgrace"_#xmgrace :tb(c=6,ea=c,a=l)
|
||||
|
||||
Miscellaneous tools :h3
|
||||
@ -511,6 +512,20 @@ Ernst Mach Institute in Germany (georg.ganzenmueller at emi.fhg.de).
|
||||
|
||||
:line
|
||||
|
||||
spin tool :h4,link(spin)
|
||||
|
||||
The spin sub-directory contains a C file interpolate.c which can
|
||||
be compiled and used to perform a cubic polynomial interpolation of
|
||||
the MEP following a GNEB calculation.
|
||||
|
||||
See the README file in tools/spin/interpolate_gneb for more details.
|
||||
|
||||
This tool was written by the SPIN package author, Julien
|
||||
Tranchida at Sandia National Labs (jtranch at sandia.gov, and by Aleksei
|
||||
Ivanov, at University of Iceland (ali5 at hi.is).
|
||||
|
||||
:line
|
||||
|
||||
vim tool :h4,link(vim)
|
||||
|
||||
The files in the tools/vim directory are add-ons to the VIM editor
|
||||
|
||||
@ -67,6 +67,7 @@ Commands :h1
|
||||
minimize
|
||||
molecule
|
||||
neb
|
||||
neb_spin
|
||||
neigh_modify
|
||||
neighbor
|
||||
newton
|
||||
|
||||
@ -321,20 +321,16 @@ accelerated styles exist.
|
||||
"restrain"_fix_restrain.html - constrain a bond, angle, dihedral
|
||||
"rhok"_fix_rhok.html -
|
||||
"rigid"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NVE integration
|
||||
"rigid/nph"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NPH integration
|
||||
"rigid/nph/small"_fix_rigid.html -
|
||||
"rigid/npt"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NPT integration
|
||||
"rigid/npt/small"_fix_rigid.html -
|
||||
"rigid/nve"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with alternate NVE integration
|
||||
"rigid/nve/small"_fix_rigid.html -
|
||||
"rigid/nvt"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NVT integration
|
||||
"rigid/nvt/small"_fix_rigid.html -
|
||||
"rigid/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NVE integration
|
||||
"rigid/small/nph"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NPH integration
|
||||
"rigid/small/npt"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NPT integration
|
||||
"rigid/small/nve"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with alternate NVE integration
|
||||
"rigid/small/nvt"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NVT integration
|
||||
"rigid/meso"_fix_rigid_meso.html - constrain clusters of mesoscopic SPH/SDPD particles to move as a rigid body
|
||||
"rigid/nph"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NPH integration
|
||||
"rigid/nph/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NPH integration
|
||||
"rigid/npt"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NPT integration
|
||||
"rigid/npt/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NPT integration
|
||||
"rigid/nve"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with alternate NVE integration
|
||||
"rigid/nve/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with alternate NVE integration
|
||||
"rigid/nvt"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NVT integration
|
||||
"rigid/nvt/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NVT integration
|
||||
"rigid/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NVE integration
|
||||
"rx"_fix_rx.html -
|
||||
"saed/vtk"_fix_saed_vtk.html -
|
||||
"setforce"_fix_setforce.html - set the force on each atom
|
||||
|
||||
@ -98,6 +98,16 @@ fix to add the energy change from the biasing force added by the fix
|
||||
to the system's potential energy as part of "thermodynamic
|
||||
output"_thermo_style.html.
|
||||
|
||||
The {fix_modify configfile <config file>} option allows to add settings
|
||||
from an additional config file to the colvars module. This option can
|
||||
only be used, after the system has been initialized with a "run"_run.html
|
||||
command.
|
||||
|
||||
The {fix_modify config <quoted string>} option allows to add settings
|
||||
from inline strings. Those have to fit on a single line when enclosed
|
||||
in a pair of double quotes ("), or can span multiple lines when bracketed
|
||||
by a pair of triple double quotes (""", like python embedded documentation).
|
||||
|
||||
This fix computes a global scalar which can be accessed by various
|
||||
"output commands"_Howto_output.html. The scalar is the cumulative
|
||||
energy change due to this fix. The scalar value calculated by this
|
||||
|
||||
@ -322,13 +322,13 @@ vector stores the following quantities:
|
||||
9 = fraction of biased bonds with negative strain during this run
|
||||
10 = average bias coeff for all bonds during this run (unitless)
|
||||
11 = min bias coeff for any bond during this run (unitless)
|
||||
12 = max bias coeff for any bond during this run (unitless)
|
||||
12 = max bias coeff for any bond during this run (unitless) :ul
|
||||
|
||||
13 = max drift distance of any bond atom during this run (distance units)
|
||||
14 = max distance from proc subbox of any ghost atom with maxstrain < qfactor during this run (distance units)
|
||||
15 = max distance outside my box of any ghost atom with any maxstrain during this run (distance units)
|
||||
16 = count of ghost atoms that could not be found on reneighbor steps during this run
|
||||
17 = count of bias overlaps (< Dcut) found during this run
|
||||
17 = count of bias overlaps (< Dcut) found during this run :ul
|
||||
|
||||
18 = cumulative hyper time since fix created (time units)
|
||||
19 = cumulative count of event timesteps since fix created
|
||||
|
||||
@ -99,4 +99,4 @@ integration fix (e.g. {fix nve/spin}).
|
||||
|
||||
:link(Tranchida2)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau and Thompson,
|
||||
Journal of Computational Physics, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -97,7 +97,7 @@ Note that in this case the specified {Kspring} is in force/distance
|
||||
units.
|
||||
|
||||
With a value of {ideal}, the spring force is computed as suggested in
|
||||
"(WeinenE)"_#WeinenE :
|
||||
"(WeinanE)"_#WeinanE :
|
||||
|
||||
Fnudge_parallel = -{Kspring} * (RD-RDideal) / (2 * meanDist) :pre
|
||||
|
||||
@ -224,8 +224,8 @@ specified (no inter-replica force on the end replicas).
|
||||
[(Henkelman2)] Henkelman, Uberuaga, Jonsson, J Chem Phys, 113,
|
||||
9901-9904 (2000).
|
||||
|
||||
:link(WeinenE)
|
||||
[(WeinenE)] E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002).
|
||||
:link(WeinanE)
|
||||
[(WeinanE)] E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002).
|
||||
|
||||
:link(Jonsson)
|
||||
[(Jonsson)] Jonsson, Mills and Jacobsen, in Classical and Quantum
|
||||
|
||||
76
doc/src/fix_neb_spin.txt
Normal file
@ -0,0 +1,76 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
fix neb/spin command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID neb/spin Kspring :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
neb/spin = style name of this fix command :l
|
||||
Kspring = spring constant for parallel nudging force
|
||||
(force/distance units or force units, see parallel keyword) :pre,ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 active neb/spin 1.0
|
||||
|
||||
[Description:]
|
||||
|
||||
Add nudging forces to spins in the group for a multi-replica
|
||||
simulation run via the "neb/spin"_neb_spin.html command to perform a
|
||||
geodesic nudged elastic band (GNEB) calculation for finding the
|
||||
transition state.
|
||||
Hi-level explanations of GNEB are given with the
|
||||
"neb/spin"_neb_spin.html command and on the
|
||||
"Howto replica"_Howto_replica.html doc page.
|
||||
The fix neb/spin command must be used with the "neb/spin" command and
|
||||
defines how inter-replica nudging forces are computed. A GNEB
|
||||
calculation is divided in two stages. In the first stage n replicas
|
||||
are relaxed toward a MEP until convergence. In the second stage, the
|
||||
climbing image scheme is enabled, so that the replica having the highest
|
||||
energy relaxes toward the saddle point (i.e. the point of highest energy
|
||||
along the MEP), and a second relaxation is performed.
|
||||
|
||||
The nudging forces are calculated as explained in
|
||||
"(BessarabB)"_#BessarabB).
|
||||
See this reference for more explanation about their expression.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
No information about this fix is written to "binary restart
|
||||
files"_restart.html. None of the "fix_modify"_fix_modify.html options
|
||||
are relevant to this fix. No global or per-atom quantities are stored
|
||||
by this fix for access by various "output commands"_Howto_output.html.
|
||||
No parameter of this fix can be used with the {start/stop} keywords of
|
||||
the "run"_run.html command.
|
||||
|
||||
The forces due to this fix are imposed during an energy minimization,
|
||||
as invoked by the "minimize"_minimize.html command via the
|
||||
"neb/spin"_neb_spin.html command.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This command can only be used if LAMMPS was built with the SPIN
|
||||
package. See the "Build package"_Build_package.html doc
|
||||
page for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"neb_spin"_neb_spin.html
|
||||
|
||||
[Default:]
|
||||
|
||||
none
|
||||
|
||||
:line
|
||||
|
||||
:link(BessarabB)
|
||||
[(BessarabB)] Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196,
|
||||
335-347 (2015).
|
||||
@ -73,4 +73,4 @@ instead of "array" is also valid.
|
||||
|
||||
:link(Tranchida1)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau and Thompson,
|
||||
Journal of Computational Physics, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -14,24 +14,28 @@ fix ID group precession/spin style args :pre
|
||||
|
||||
ID, group are documented in "fix"_fix.html command :ulb,l
|
||||
precession/spin = style name of this fix command :l
|
||||
style = {zeeman} or {anisotropy} :l
|
||||
style = {zeeman} or {anisotropy} or {cubic} :l
|
||||
{zeeman} args = H x y z
|
||||
H = intensity of the magnetic field (in Tesla)
|
||||
x y z = vector direction of the field
|
||||
{anisotropy} args = K x y z
|
||||
K = intensity of the magnetic anisotropy (in eV)
|
||||
x y z = vector direction of the anisotropy :pre
|
||||
{cubic} args = K1 K2c n1x n1y n1x n2x n2y n2z n3x n3y n3z
|
||||
K1 and K2c = intensity of the magnetic anisotropy (in eV)
|
||||
n1x to n3z = three direction vectors of the cubic anisotropy :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 all precession/spin zeeman 0.1 0.0 0.0 1.0
|
||||
fix 1 all precession/spin anisotropy 0.001 0.0 0.0 1.0
|
||||
fix 1 3 precession/spin anisotropy 0.001 0.0 0.0 1.0
|
||||
fix 1 iron precession/spin cubic 0.001 0.0005 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
|
||||
fix 1 all precession/spin zeeman 0.1 0.0 0.0 1.0 anisotropy 0.001 0.0 0.0 1.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Impose a force torque to each magnetic spin in the group.
|
||||
This fix applies a precession torque to each magnetic spin in the group.
|
||||
|
||||
Style {zeeman} is used for the simulation of the interaction
|
||||
between the magnetic spins in the defined group and an external
|
||||
@ -50,10 +54,29 @@ for the magnetic spins in the defined group:
|
||||
with n defining the direction of the anisotropy, and K (in eV) its intensity.
|
||||
If K>0, an easy axis is defined, and if K<0, an easy plane is defined.
|
||||
|
||||
In both cases, the choice of (x y z) imposes the vector direction for the force.
|
||||
Only the direction of the vector is important; it's length is ignored.
|
||||
Style {cubic} is used to simulate a cubic anisotropy, with three
|
||||
possible easy axis for the magnetic spins in the defined group:
|
||||
|
||||
Both styles can be combined within one single command line.
|
||||
:c,image(Eqs/fix_spin_cubic.jpg)
|
||||
|
||||
with K1 and K2c (in eV) the intensity coefficients and
|
||||
n1, n2 and n3 defining the three anisotropic directions
|
||||
defined by the command (from n1x to n3z).
|
||||
For n1 = (100), n2 = (010), and n3 = (001), K1 < 0 defines an
|
||||
iron type anisotropy (easy axis along the (001)-type cube
|
||||
edges), and K1 > 0 defines a nickel type anisotropy (easy axis
|
||||
along the (111)-type cube diagonals).
|
||||
K2^c > 0 also defines easy axis along the (111)-type cube
|
||||
diagonals.
|
||||
See chapter 2 of "(Skomski)"_#Skomski1 for more details on cubic
|
||||
anisotropies.
|
||||
|
||||
In all cases, the choice of (x y z) only imposes the vector
|
||||
directions for the forces. Only the direction of the vector is
|
||||
important; it's length is ignored (the entered vectors are
|
||||
normalized).
|
||||
|
||||
Those styles can be combined within one single command line.
|
||||
|
||||
:line
|
||||
|
||||
@ -85,3 +108,9 @@ package"_Build_package.html doc page for more info.
|
||||
"atom_style spin"_atom_style.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
:line
|
||||
|
||||
:link(Skomski1)
|
||||
[(Skomski)] Skomski, R. (2008). Simple models of magnetism.
|
||||
Oxford University Press.
|
||||
|
||||
@ -14,7 +14,7 @@ fix ID group-ID print N string keyword value ... :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
print = style name of this fix command :l
|
||||
N = print every N steps :l
|
||||
N = print every N steps; N can be a variable (see below) :l
|
||||
string = text string to print with optional variable names :l
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {file} or {append} or {screen} or {title} :l
|
||||
@ -40,6 +40,21 @@ If it contains variables it must be enclosed in double quotes to
|
||||
insure they are not evaluated when the input script line is read, but
|
||||
will instead be evaluated each time the string is printed.
|
||||
|
||||
Instead of a numeric value, N can be specified as an "equal-style
|
||||
variable"_variable.html, which should be specified as v_name, where
|
||||
name is the variable name. In this case, the variable is evaluated at
|
||||
the beginning of a run to determine the [next] timestep at which the
|
||||
string will be written out. On that timestep, the variable will be
|
||||
evaluated again to determine the next timestep, etc.
|
||||
Thus the variable should return timestep values. See the stagger()
|
||||
and logfreq() and stride() math functions for "equal-style
|
||||
variables"_variable.html, as examples of useful functions to use in
|
||||
this context. For example, the following commands will print output at
|
||||
timesteps 10,20,30,100,200,300,1000,2000,etc:
|
||||
|
||||
variable s equal logfreq(10,3,10)
|
||||
fix extra all print v_s "Coords of marker atom = $x $y $z" :pre
|
||||
|
||||
The specified group-ID is ignored by this fix.
|
||||
|
||||
See the "variable"_variable.html command for a description of {equal}
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
|
||||
fix setforce command :h3
|
||||
fix setforce/kk command :h3
|
||||
fix setforce/spin command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
@ -27,6 +28,7 @@ keyword = {region} :l
|
||||
|
||||
fix freeze indenter setforce 0.0 0.0 0.0
|
||||
fix 2 edge setforce NULL 0.0 0.0
|
||||
fix 1 edge setforce/spin 0.0 0.0 0.0
|
||||
fix 2 edge setforce NULL 0.0 v_oscillate :pre
|
||||
|
||||
[Description:]
|
||||
@ -65,6 +67,19 @@ to it.
|
||||
|
||||
:line
|
||||
|
||||
Style {spin} suffix sets the components of the magnetic precession
|
||||
vectors instead of the mechanical forces. This also erases all
|
||||
previously computed magnetic precession vectors on the atom, though
|
||||
additional magnetic fixes could add new forces.
|
||||
|
||||
This command can be used to freeze the magnetic moment of certain
|
||||
atoms in the simulation by zeroing their precession vector.
|
||||
|
||||
All options defined above remain valid, they just apply to the magnetic
|
||||
precession vectors instead of the forces.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
@ -117,7 +132,10 @@ forces to any value besides zero when performing a minimization. Use
|
||||
the "fix addforce"_fix_addforce.html command if you want to apply a
|
||||
non-zero force to atoms during a minimization.
|
||||
|
||||
[Restrictions:] none
|
||||
[Restrictions:]
|
||||
|
||||
The fix {setforce/spin} only makes sense when LAMMPS was built with the
|
||||
SPIN package.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -47,9 +47,9 @@ keyword = {wiggle} or {shear} :l
|
||||
fix 1 all wall/gran hooke 200000.0 NULL 50.0 NULL 0.5 0 xplane -10.0 10.0
|
||||
fix 1 all wall/gran hooke/history 200000.0 NULL 50.0 NULL 0.5 0 zplane 0.0 NULL
|
||||
fix 2 all wall/gran hooke 100000.0 20000.0 50.0 30.0 0.5 1 zcylinder 15.0 wiggle z 3.0 2.0
|
||||
fix 3 all wall/gran granular hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 zplane 0.0 NULL
|
||||
fix 4 all wall/gran granular jkr 1000.0 50.0 0.3 5.0 tangential mindlin 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall zcylinder 15.0 wiggle z 3.0 2.0
|
||||
fix 5 all wall/gran granular dmt 1000.0 50.0 0.3 10.0 tangential mindlin 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall zplane 0.0 NULL :pre
|
||||
fix 3 all wall/gran/region granular hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 damping velocity region myBox
|
||||
fix 4 all wall/gran/region granular jkr 1e5 1500.0 0.3 10.0 tangential mindlin NULL 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall region myCone
|
||||
fix 5 all wall/gran/region granular dmt 1e5 0.2 0.3 10.0 tangential mindlin NULL 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall damping tsuji region myCone :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
|
||||
@ -31,9 +31,9 @@ region-ID = region whose boundary will act as wall :l,ule
|
||||
[Examples:]
|
||||
|
||||
fix wall all wall/gran/region hooke/history 1000.0 200.0 200.0 100.0 0.5 1 region myCone
|
||||
fix 3 all wall/gran/region granular hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 region myBox
|
||||
fix 4 all wall/gran/region granular jkr 1000.0 50.0 tangential linear_history 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall region myCone
|
||||
fix 5 all wall/gran/region granular dmt 1000.0 50.0 0.3 10.0 tangential linear_history 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall region myCone :pre
|
||||
fix 3 all wall/gran/region granular hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 damping velocity region myBox
|
||||
fix 4 all wall/gran/region granular jkr 1e5 1500.0 0.3 10.0 tangential mindlin NULL 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall region myCone
|
||||
fix 5 all wall/gran/region granular dmt 1e5 0.2 0.3 10.0 tangential mindlin NULL 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall damping tsuji region myCone :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
|
||||
@ -84,6 +84,7 @@ Fixes :h1
|
||||
fix_msst
|
||||
fix_mvv_dpd
|
||||
fix_neb
|
||||
fix_neb_spin
|
||||
fix_nh
|
||||
fix_nh_eff
|
||||
fix_nh_uef
|
||||
|
||||
@ -179,6 +179,7 @@ min_spin.html
|
||||
minimize.html
|
||||
molecule.html
|
||||
neb.html
|
||||
neb_spin.html
|
||||
neigh_modify.html
|
||||
neighbor.html
|
||||
newton.html
|
||||
@ -309,6 +310,7 @@ fix_mscg.html
|
||||
fix_msst.html
|
||||
fix_mvv_dpd.html
|
||||
fix_neb.html
|
||||
fix_neb_spin.html
|
||||
fix_nh.html
|
||||
fix_nh_eff.html
|
||||
fix_nph_asphere.html
|
||||
@ -572,6 +574,8 @@ pair_dipole.html
|
||||
pair_dpd.html
|
||||
pair_dpd_fdt.html
|
||||
pair_dsmc.html
|
||||
pair_e3b.html
|
||||
pair_drip.html
|
||||
pair_eam.html
|
||||
pair_edip.html
|
||||
pair_eff.html
|
||||
|
||||
375
doc/src/neb_spin.txt
Normal file
@ -0,0 +1,375 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
neb/spin command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
neb/spin etol ttol N1 N2 Nevery file-style arg keyword :pre
|
||||
|
||||
etol = stopping tolerance for energy (energy units) :ulb,l
|
||||
ttol = stopping tolerance for torque ( units) :l
|
||||
N1 = max # of iterations (timesteps) to run initial NEB :l
|
||||
N2 = max # of iterations (timesteps) to run barrier-climbing NEB :l
|
||||
Nevery = print replica energies and reaction coordinates every this many timesteps :l
|
||||
file-style = {final} or {each} or {none} :l
|
||||
{final} arg = filename
|
||||
filename = file with initial coords for final replica
|
||||
coords for intermediate replicas are linearly interpolated
|
||||
between first and last replica
|
||||
{each} arg = filename
|
||||
filename = unique filename for each replica (except first)
|
||||
with its initial coords
|
||||
{none} arg = no argument all replicas assumed to already have
|
||||
their initial coords :pre
|
||||
keyword = {verbose}
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
neb/spin 0.1 0.0 1000 500 50 final coords.final
|
||||
neb/spin 0.0 0.001 1000 500 50 each coords.initial.$i
|
||||
neb/spin 0.0 0.001 1000 500 50 none verbose :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Perform a geodesic nudged elastic band (GNEB) calculation using multiple
|
||||
replicas of a system. Two or more replicas must be used; the first
|
||||
and last are the end points of the transition path.
|
||||
|
||||
GNEB is a method for finding both the spin configurations and height
|
||||
of the energy barrier associated with a transition state, e.g.
|
||||
spins to perform a collective rotation from one energy basin to
|
||||
another.
|
||||
The implementation in LAMMPS follows the discussion in the
|
||||
following paper: "(BessarabA)"_#BessarabA.
|
||||
|
||||
Each replica runs on a partition of one or more processors. Processor
|
||||
partitions are defined at run-time using the "-partition command-line
|
||||
switch"_Run_options.html. Note that if you have MPI installed, you
|
||||
can run a multi-replica simulation with more replicas (partitions)
|
||||
than you have physical processors, e.g you can run a 10-replica
|
||||
simulation on just one or two processors. You will simply not get the
|
||||
performance speed-up you would see with one or more physical
|
||||
processors per replica. See the "Howto replica"_Howto_replica.html
|
||||
doc page for further discussion.
|
||||
|
||||
NOTE: As explained below, a GNEB calculation performs a damped dynamics
|
||||
minimization across all the replicas. The "spin"_min_spin.html
|
||||
style minimizer has to be defined in your input script.
|
||||
|
||||
When a GNEB calculation is performed, it is assumed that each replica
|
||||
is running the same system, though LAMMPS does not check for this.
|
||||
I.e. the simulation domain, the number of magnetic atoms, the
|
||||
interaction potentials, and the starting configuration when the neb
|
||||
command is issued should be the same for every replica.
|
||||
|
||||
In a GNEB calculation each replica is connected to other replicas by
|
||||
inter-replica nudging forces. These forces are imposed by the "fix
|
||||
neb/spin"_fix_neb_spin.html command, which must be used in conjunction
|
||||
with the neb command.
|
||||
The group used to define the fix neb/spin command defines the
|
||||
GNEB magnetic atoms which are the only ones that inter-replica springs
|
||||
are applied to.
|
||||
If the group does not include all magnetic atoms, then non-GNEB
|
||||
magnetic atoms have no inter-replica springs and the torques they feel
|
||||
and their precession motion is computed in the usual way due only
|
||||
to other magnetic atoms within their replica.
|
||||
Conceptually, the non-GNEB atoms provide a background force field for
|
||||
the GNEB atoms.
|
||||
Their magnetic spins can be allowed to evolve during the GNEB
|
||||
minimization procedure.
|
||||
|
||||
The initial spin configuration for each of the replicas can be
|
||||
specified in different manners via the {file-style} setting, as
|
||||
discussed below. Only atomic spins whose initial coordinates should
|
||||
differ from the current configuration need to be specified.
|
||||
|
||||
Conceptually, the initial and final configurations for the first
|
||||
replica should be states on either side of an energy barrier.
|
||||
|
||||
As explained below, the initial configurations of intermediate
|
||||
replicas can be spin coordinates interpolated in a linear fashion
|
||||
between the first and last replicas. This is often adequate for
|
||||
simple transitions. For more complex transitions, it may lead to slow
|
||||
convergence or even bad results if the minimum energy path (MEP, see
|
||||
below) of states over the barrier cannot be correctly converged to
|
||||
from such an initial path. In this case, you will want to generate
|
||||
initial states for the intermediate replicas that are geometrically
|
||||
closer to the MEP and read them in.
|
||||
|
||||
:line
|
||||
|
||||
For a {file-style} setting of {final}, a filename is specified which
|
||||
contains atomic and spin coordinates for zero or more atoms, in the
|
||||
format described below.
|
||||
For each atom that appears in the file, the new coordinates are
|
||||
assigned to that atom in the final replica. Each intermediate replica
|
||||
also assigns a new spin to that atom in an interpolated manner.
|
||||
This is done by using the current direction of the spin at the starting
|
||||
point and the read-in direction as the final point.
|
||||
The "angular distance" between them is calculated, and the new direction
|
||||
is assigned to be a fraction of the angular distance.
|
||||
|
||||
NOTE: The "angular distance" between the starting and final point is
|
||||
evaluated in the geodesic sense, as described in
|
||||
"(BessarabA)"_#BessarabA.
|
||||
|
||||
NOTE: The angular interpolation between the starting and final point
|
||||
is achieved using Rodrigues formula:
|
||||
|
||||
:c,image(Eqs/neb_spin_rodrigues_formula.jpg)
|
||||
|
||||
where m_i^I is the initial spin configuration for the spin i,
|
||||
omega_i^nu is a rotation angle defined as:
|
||||
|
||||
:c,image(Eqs/neb_spin_angle.jpg)
|
||||
|
||||
with nu the image number, Q the total number of images, and
|
||||
omega_i the total rotation between the initial and final spins.
|
||||
k_i defines a rotation axis such as:
|
||||
|
||||
:c,image(Eqs/neb_spin_k.jpg)
|
||||
|
||||
if the initial and final spins are not aligned.
|
||||
If the initial and final spins are aligned, then their cross
|
||||
product is null, and the expression above does not apply.
|
||||
If they point toward the same direction, the intermediate images
|
||||
conserve the same orientation.
|
||||
If the initial and final spins are aligned, but point toward
|
||||
opposite directions, an arbitrary rotation vector belonging to
|
||||
the plane perpendicular to initial and final spins is chosen.
|
||||
In this case, a warning message is displayed.
|
||||
|
||||
For a {file-style} setting of {each}, a filename is specified which is
|
||||
assumed to be unique to each replica.
|
||||
See the "neb"_neb.html documentation page for more information about this
|
||||
option.
|
||||
|
||||
For a {file-style} setting of {none}, no filename is specified. Each
|
||||
replica is assumed to already be in its initial configuration at the
|
||||
time the neb command is issued. This allows each replica to define
|
||||
its own configuration by reading a replica-specific data or restart or
|
||||
dump file, via the "read_data"_read_data.html,
|
||||
"read_restart"_read_restart.html, or "read_dump"_read_dump.html
|
||||
commands. The replica-specific names of these files can be specified
|
||||
as in the discussion above for the {each} file-style. Also see the
|
||||
section below for how a NEB calculation can produce restart files, so
|
||||
that a long calculation can be restarted if needed.
|
||||
|
||||
NOTE: None of the {file-style} settings change the initial
|
||||
configuration of any atom in the first replica. The first replica
|
||||
must thus be in the correct initial configuration at the time the neb
|
||||
command is issued.
|
||||
|
||||
:line
|
||||
|
||||
A NEB calculation proceeds in two stages, each of which is a
|
||||
minimization procedure, performed via damped dynamics. To enable
|
||||
this, you must first define a damped spin dynamics
|
||||
"min_style"_min_style.html, using the {spin} style (see
|
||||
"min_spin"_min_spin.html for more information).
|
||||
The other styles cannot be used, since they relax the lattice
|
||||
degrees of freedom instead of the spins.
|
||||
|
||||
The minimizer tolerances for energy and force are set by {etol} and
|
||||
{ttol}, the same as for the "minimize"_minimize.html command.
|
||||
|
||||
A non-zero {etol} means that the GNEB calculation will terminate if the
|
||||
energy criterion is met by every replica. The energies being compared
|
||||
to {etol} do not include any contribution from the inter-replica
|
||||
nudging forces, since these are non-conservative. A non-zero {ttol}
|
||||
means that the GNEB calculation will terminate if the torque criterion
|
||||
is met by every replica. The torques being compared to {ttol} include
|
||||
the inter-replica nudging forces.
|
||||
|
||||
The maximum number of iterations in each stage is set by {N1} and
|
||||
{N2}. These are effectively timestep counts since each iteration of
|
||||
damped dynamics is like a single timestep in a dynamics
|
||||
"run"_run.html. During both stages, the potential energy of each
|
||||
replica and its normalized distance along the reaction path (reaction
|
||||
coordinate RD) will be printed to the screen and log file every
|
||||
{Nevery} timesteps. The RD is 0 and 1 for the first and last replica.
|
||||
For intermediate replicas, it is the cumulative angular distance
|
||||
(normalized by the total cumulative angular distance) between adjacent
|
||||
replicas, where "distance" is defined as the length of the 3N-vector of
|
||||
the geodesic distances in spin coordinates, with N the number of
|
||||
GNEB spins involved (see equation (13) in "(BessarabA)"_#BessarabA).
|
||||
These outputs allow you to monitor NEB's progress in
|
||||
finding a good energy barrier. {N1} and {N2} must both be multiples
|
||||
of {Nevery}.
|
||||
|
||||
In the first stage of GNEB, the set of replicas should converge toward
|
||||
a minimum energy path (MEP) of conformational states that transition
|
||||
over a barrier. The MEP for a transition is defined as a sequence of
|
||||
3N-dimensional spin states, each of which has a potential energy
|
||||
gradient parallel to the MEP itself.
|
||||
The configuration of highest energy along a MEP corresponds to a saddle
|
||||
point. The replica states will also be roughly equally spaced along
|
||||
the MEP due to the inter-replica nudging force added by the
|
||||
"fix neb"_fix_neb.html command.
|
||||
|
||||
In the second stage of GNEB, the replica with the highest energy is
|
||||
selected and the inter-replica forces on it are converted to a force
|
||||
that drives its spin coordinates to the top or saddle point of the
|
||||
barrier, via the barrier-climbing calculation described in
|
||||
"(BessarabA)"_#BessarabA. As before, the other replicas rearrange
|
||||
themselves along the MEP so as to be roughly equally spaced.
|
||||
|
||||
When both stages are complete, if the GNEB calculation was successful,
|
||||
the configurations of the replicas should be along (close to) the MEP
|
||||
and the replica with the highest energy should be a spin
|
||||
configuration at (close to) the saddle point of the transition. The
|
||||
potential energies for the set of replicas represents the energy
|
||||
profile of the transition along the MEP.
|
||||
|
||||
:line
|
||||
|
||||
An atom map must be defined which it is not by default for "atom_style
|
||||
atomic"_atom_style.html problems. The "atom_modify
|
||||
map"_atom_modify.html command can be used to do this.
|
||||
|
||||
An initial value can be defined for the timestep. Although, the {spin}
|
||||
minimization algorithm is an adaptive timestep methodology, so that
|
||||
this timestep is likely to evolve during the calculation.
|
||||
|
||||
The minimizers in LAMMPS operate on all spins in your system, even
|
||||
non-GNEB atoms, as defined above.
|
||||
|
||||
:line
|
||||
|
||||
Each file read by the neb/spin command containing spin coordinates used
|
||||
to initialize one or more replicas must be formatted as follows.
|
||||
|
||||
The file can be ASCII text or a gzipped text file (detected by a .gz
|
||||
suffix). The file can contain initial blank lines or comment lines
|
||||
starting with "#" which are ignored. The first non-blank, non-comment
|
||||
line should list N = the number of lines to follow. The N successive
|
||||
lines contain the following information:
|
||||
|
||||
ID1 g1 x1 y1 z1 sx1 sy1 sz1
|
||||
ID2 g2 x2 y2 z2 sx2 sy2 sz2
|
||||
...
|
||||
IDN gN yN zN sxN syN szN :pre
|
||||
|
||||
The fields are the atom ID, the norm of the associated magnetic spin,
|
||||
followed by the {x,y,z} coordinates and the {sx,sy,sz} spin coordinates.
|
||||
The lines can be listed in any order. Additional trailing information on
|
||||
the line is OK, such as a comment.
|
||||
|
||||
Note that for a typical GNEB calculation you do not need to specify
|
||||
initial spin coordinates for very many atoms to produce differing starting
|
||||
and final replicas whose intermediate replicas will converge to the
|
||||
energy barrier. Typically only new spin coordinates for atoms
|
||||
geometrically near the barrier need be specified.
|
||||
|
||||
Also note there is no requirement that the atoms in the file
|
||||
correspond to the GNEB atoms in the group defined by the "fix
|
||||
neb"_fix_neb.html command. Not every GNEB atom need be in the file,
|
||||
and non-GNEB atoms can be listed in the file.
|
||||
|
||||
:line
|
||||
|
||||
Four kinds of output can be generated during a GNEB calculation: energy
|
||||
barrier statistics, thermodynamic output by each replica, dump files,
|
||||
and restart files.
|
||||
|
||||
When running with multiple partitions (each of which is a replica in
|
||||
this case), the print-out to the screen and master log.lammps file
|
||||
contains a line of output, printed once every {Nevery} timesteps. It
|
||||
contains the timestep, the maximum torque per replica, the maximum
|
||||
torque per atom (in any replica), potential gradients in the initial,
|
||||
final, and climbing replicas, the forward and backward energy
|
||||
barriers, the total reaction coordinate (RDT), and the normalized
|
||||
reaction coordinate and potential energy of each replica.
|
||||
|
||||
The "maximum torque per replica" is the two-norm of the
|
||||
3N-length vector given by the cross product of a spin by its
|
||||
precession vector omega, in each replica, maximized across replicas,
|
||||
which is what the {ttol} setting is checking against. In this case, N is
|
||||
all the atoms in each replica. The "maximum torque per atom" is the
|
||||
maximum torque component of any atom in any replica. The potential
|
||||
gradients are the two-norm of the 3N-length magnetic precession vector
|
||||
solely due to the interaction potential i.e. without adding in
|
||||
inter-replica forces, and projected along the path tangent (as detailed
|
||||
in Appendix D of "(BessarabA)"_#BessarabA).
|
||||
|
||||
The "reaction coordinate" (RD) for each replica is the two-norm of the
|
||||
3N-length vector of geodesic distances between its spins and the preceding
|
||||
replica's spins (see equation (13) of "(BessarabA)"_#BessarabA), added to
|
||||
the RD of the preceding replica. The RD of the first replica RD1 = 0.0;
|
||||
the RD of the final replica RDN = RDT, the total reaction coordinate.
|
||||
The normalized RDs are divided by RDT, so that they form a monotonically
|
||||
increasing sequence from zero to one. When computing RD, N only includes
|
||||
the spins being operated on by the fix neb/spin command.
|
||||
|
||||
The forward (reverse) energy barrier is the potential energy of the
|
||||
highest replica minus the energy of the first (last) replica.
|
||||
|
||||
Supplementary information for all replicas can be printed out to the
|
||||
screen and master log.lammps file by adding the verbose keyword. This
|
||||
information include the following.
|
||||
The "GradVidottan" are the projections of the potential gradient for
|
||||
the replica i on its tangent vector (as detailed in Appendix D of
|
||||
"(BessarabA)"_#BessarabA).
|
||||
The "DNi" are the non normalized geodesic distances (see equation (13)
|
||||
of "(BessarabA)"_#BessarabA), between a replica i and the next replica
|
||||
i+1. For the last replica, this distance is not defined and a "NAN"
|
||||
value is the corresponding output.
|
||||
|
||||
When a NEB calculation does not converge properly, the supplementary
|
||||
information can help understanding what is going wrong.
|
||||
|
||||
When running on multiple partitions, LAMMPS produces additional log
|
||||
files for each partition, e.g. log.lammps.0, log.lammps.1, etc. For a
|
||||
GNEB calculation, these contain the thermodynamic output for each
|
||||
replica.
|
||||
|
||||
If "dump"_dump.html commands in the input script define a filename
|
||||
that includes a {universe} or {uloop} style "variable"_variable.html,
|
||||
then one dump file (per dump command) will be created for each
|
||||
replica. At the end of the GNEB calculation, the final snapshot in
|
||||
each file will contain the sequence of snapshots that transition the
|
||||
system over the energy barrier. Earlier snapshots will show the
|
||||
convergence of the replicas to the MEP.
|
||||
|
||||
Likewise, "restart"_restart.html filenames can be specified with a
|
||||
{universe} or {uloop} style "variable"_variable.html, to generate
|
||||
restart files for each replica. These may be useful if the GNEB
|
||||
calculation fails to converge properly to the MEP, and you wish to
|
||||
restart the calculation from an intermediate point with altered
|
||||
parameters.
|
||||
|
||||
A c file script in provided in the tool/spin/interpolate_gneb
|
||||
directory, that interpolates the MEP given the information provided
|
||||
by the verbose output option (as detailed in Appendix D of
|
||||
"(BessarabA)"_#BessarabA).
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This command can only be used if LAMMPS was built with the SPIN
|
||||
package. See the "Build package"_Build_package.html doc
|
||||
page for more info.
|
||||
|
||||
:line
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"min/spin"_min_spin.html, "fix neb/spin"_fix_neb_spin.html
|
||||
|
||||
[Default:]
|
||||
|
||||
none
|
||||
|
||||
:line
|
||||
|
||||
:link(BessarabA)
|
||||
[(BessarabA)] Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196,
|
||||
335-347 (2015).
|
||||
@ -64,7 +64,7 @@ args = arguments specific to the style :l
|
||||
{no_affinity} values = none
|
||||
{kokkos} args = keyword value ...
|
||||
zero or more keyword/value pairs may be appended
|
||||
keywords = {neigh} or {neigh/qeq} or {newton} or {binsize} or {comm} or {comm/exchange} or {comm/forward} or {comm/reverse}
|
||||
keywords = {neigh} or {neigh/qeq} or {newton} or {binsize} or {comm} or {comm/exchange} or {comm/forward} or {comm/reverse} or {gpu/direct}
|
||||
{neigh} value = {full} or {half}
|
||||
full = full neighbor list
|
||||
half = half neighbor list built in thread-safe manner
|
||||
@ -72,7 +72,7 @@ args = arguments specific to the style :l
|
||||
full = full neighbor list
|
||||
half = half neighbor list built in thread-safe manner
|
||||
{newton} = {off} or {on}
|
||||
off = set Newton pairwise and bonded flags off (default)
|
||||
off = set Newton pairwise and bonded flags off
|
||||
on = set Newton pairwise and bonded flags on
|
||||
{binsize} value = size
|
||||
size = bin size for neighbor list construction (distance units)
|
||||
@ -425,98 +425,100 @@ processes/threads used for LAMMPS.
|
||||
The {kokkos} style invokes settings associated with the use of the
|
||||
KOKKOS package.
|
||||
|
||||
All of the settings are optional keyword/value pairs. Each has a
|
||||
default value as listed below.
|
||||
All of the settings are optional keyword/value pairs. Each has a default
|
||||
value as listed below.
|
||||
|
||||
The {neigh} keyword determines how neighbor lists are built. A value
|
||||
of {half} uses a thread-safe variant of half-neighbor lists,
|
||||
the same as used by most pair styles in LAMMPS.
|
||||
The {neigh} keyword determines how neighbor lists are built. A value of
|
||||
{half} uses a thread-safe variant of half-neighbor lists, the same as
|
||||
used by most pair styles in LAMMPS, which is the default when running on
|
||||
CPUs (i.e. the Kokkos CUDA back end is not enabled).
|
||||
|
||||
A value of {full} uses a full neighbor lists and is the default. This
|
||||
performs twice as much computation as the {half} option, however that
|
||||
is often a win because it is thread-safe and doesn't require atomic
|
||||
operations in the calculation of pair forces. For that reason, {full}
|
||||
is the default setting. However, when running in MPI-only mode with 1
|
||||
thread per MPI task, {half} neighbor lists will typically be faster,
|
||||
just as it is for non-accelerated pair styles. Similarly, the {neigh/qeq}
|
||||
keyword determines how neighbor lists are built for "fix qeq/reax/kk"_fix_qeq_reax.html.
|
||||
If not explicitly set, the value of {neigh/qeq} will match {neigh}.
|
||||
A value of {full} uses a full neighbor lists and is the default when
|
||||
running on GPUs. This performs twice as much computation as the {half}
|
||||
option, however that is often a win because it is thread-safe and
|
||||
doesn't require atomic operations in the calculation of pair forces. For
|
||||
that reason, {full} is the default setting for GPUs. However, when
|
||||
running on CPUs, a {half} neighbor list is the default because it are
|
||||
often faster, just as it is for non-accelerated pair styles. Similarly,
|
||||
the {neigh/qeq} keyword determines how neighbor lists are built for "fix
|
||||
qeq/reax/kk"_fix_qeq_reax.html. If not explicitly set, the value of
|
||||
{neigh/qeq} will match {neigh}.
|
||||
|
||||
The {newton} keyword sets the Newton flags for pairwise and bonded
|
||||
interactions to {off} or {on}, the same as the "newton"_newton.html
|
||||
command allows. The default is {off} because this will almost always
|
||||
give better performance for the KOKKOS package. This means more
|
||||
computation is done, but less communication. However, when running in
|
||||
MPI-only mode with 1 thread per MPI task, a value of {on} will
|
||||
typically be faster, just as it is for non-accelerated pair styles.
|
||||
command allows. The default for GPUs is {off} because this will almost
|
||||
always give better performance for the KOKKOS package. This means more
|
||||
computation is done, but less communication. However, when running on
|
||||
CPUs a value of {on} is the default since it can often be faster, just
|
||||
as it is for non-accelerated pair styles
|
||||
|
||||
The {binsize} keyword sets the size of bins used to bin atoms in
|
||||
neighbor list builds. The same value can be set by the "neigh_modify
|
||||
binsize"_neigh_modify.html command. Making it an option in the
|
||||
package kokkos command allows it to be set from the command line. The
|
||||
default value is 0.0, which means the LAMMPS default will be used,
|
||||
binsize"_neigh_modify.html command. Making it an option in the package
|
||||
kokkos command allows it to be set from the command line. The default
|
||||
value for CPUs is 0.0, which means the LAMMPS default will be used,
|
||||
which is bins = 1/2 the size of the pairwise cutoff + neighbor skin
|
||||
distance. This is fine when neighbor lists are built on the CPU. For
|
||||
GPU builds, a 2x larger binsize equal to the pairwise cutoff +
|
||||
neighbor skin, is often faster, which can be set by this keyword.
|
||||
Note that if you use a longer-than-usual pairwise cutoff, e.g. to
|
||||
allow for a smaller fraction of KSpace work with a "long-range
|
||||
Coulombic solver"_kspace_style.html because the GPU is faster at
|
||||
performing pairwise interactions, then this rule of thumb may give too
|
||||
large a binsize.
|
||||
distance. This is fine when neighbor lists are built on the CPU. For GPU
|
||||
builds, a 2x larger binsize equal to the pairwise cutoff + neighbor skin
|
||||
is often faster, which is the default. Note that if you use a
|
||||
longer-than-usual pairwise cutoff, e.g. to allow for a smaller fraction
|
||||
of KSpace work with a "long-range Coulombic solver"_kspace_style.html
|
||||
because the GPU is faster at performing pairwise interactions, then this
|
||||
rule of thumb may give too large a binsize and the default should be
|
||||
overridden with a smaller value.
|
||||
|
||||
The {comm} and {comm/exchange} and {comm/forward} and {comm/reverse} keywords determine
|
||||
whether the host or device performs the packing and unpacking of data
|
||||
when communicating per-atom data between processors. "Exchange"
|
||||
communication happens only on timesteps that neighbor lists are
|
||||
rebuilt. The data is only for atoms that migrate to new processors.
|
||||
The {comm} and {comm/exchange} and {comm/forward} and {comm/reverse}
|
||||
keywords determine whether the host or device performs the packing and
|
||||
unpacking of data when communicating per-atom data between processors.
|
||||
"Exchange" communication happens only on timesteps that neighbor lists
|
||||
are rebuilt. The data is only for atoms that migrate to new processors.
|
||||
"Forward" communication happens every timestep. "Reverse" communication
|
||||
happens every timestep if the {newton} option is on. The data is for atom
|
||||
coordinates and any other atom properties that needs to be updated for
|
||||
ghost atoms owned by each processor.
|
||||
happens every timestep if the {newton} option is on. The data is for
|
||||
atom coordinates and any other atom properties that needs to be updated
|
||||
for ghost atoms owned by each processor.
|
||||
|
||||
The {comm} keyword is simply a short-cut to set the same value
|
||||
for both the {comm/exchange} and {comm/forward} and {comm/reverse} keywords.
|
||||
The {comm} keyword is simply a short-cut to set the same value for both
|
||||
the {comm/exchange} and {comm/forward} and {comm/reverse} keywords.
|
||||
|
||||
The value options for all 3 keywords are {no} or {host} or {device}.
|
||||
A value of {no} means to use the standard non-KOKKOS method of
|
||||
packing/unpacking data for the communication. A value of {host} means
|
||||
to use the host, typically a multi-core CPU, and perform the
|
||||
packing/unpacking in parallel with threads. A value of {device}
|
||||
means to use the device, typically a GPU, to perform the
|
||||
packing/unpacking operation.
|
||||
The value options for all 3 keywords are {no} or {host} or {device}. A
|
||||
value of {no} means to use the standard non-KOKKOS method of
|
||||
packing/unpacking data for the communication. A value of {host} means to
|
||||
use the host, typically a multi-core CPU, and perform the
|
||||
packing/unpacking in parallel with threads. A value of {device} means to
|
||||
use the device, typically a GPU, to perform the packing/unpacking
|
||||
operation.
|
||||
|
||||
The optimal choice for these keywords depends on the input script and
|
||||
the hardware used. The {no} value is useful for verifying that the
|
||||
Kokkos-based {host} and {device} values are working correctly.
|
||||
It may also be the fastest choice when using Kokkos styles in
|
||||
MPI-only mode (i.e. with a thread count of 1).
|
||||
Kokkos-based {host} and {device} values are working correctly. It is the
|
||||
default when running on CPUs since it is usually the fastest.
|
||||
|
||||
When running on CPUs or Xeon Phi, the {host} and {device} values work
|
||||
identically. When using GPUs, the {device} value will typically be
|
||||
optimal if all of your styles used in your input script are supported
|
||||
by the KOKKOS package. In this case data can stay on the GPU for many
|
||||
timesteps without being moved between the host and GPU, if you use the
|
||||
{device} value. This requires that your MPI is able to access GPU
|
||||
memory directly. Currently that is true for OpenMPI 1.8 (or later
|
||||
versions), Mvapich2 1.9 (or later), and CrayMPI. If your script uses
|
||||
styles (e.g. fixes) which are not yet supported by the KOKKOS package,
|
||||
then data has to be move between the host and device anyway, so it is
|
||||
typically faster to let the host handle communication, by using the
|
||||
{host} value. Using {host} instead of {no} will enable use of
|
||||
multiple threads to pack/unpack communicated data.
|
||||
identically. When using GPUs, the {device} value is the default since it
|
||||
will typically be optimal if all of your styles used in your input
|
||||
script are supported by the KOKKOS package. In this case data can stay
|
||||
on the GPU for many timesteps without being moved between the host and
|
||||
GPU, if you use the {device} value. This requires that your MPI is able
|
||||
to access GPU memory directly. Currently that is true for OpenMPI 1.8
|
||||
(or later versions), Mvapich2 1.9 (or later), and CrayMPI. If your
|
||||
script uses styles (e.g. fixes) which are not yet supported by the
|
||||
KOKKOS package, then data has to be move between the host and device
|
||||
anyway, so it is typically faster to let the host handle communication,
|
||||
by using the {host} value. Using {host} instead of {no} will enable use
|
||||
of multiple threads to pack/unpack communicated data.
|
||||
|
||||
The {gpu/direct} keyword chooses whether GPU-direct will be used. When
|
||||
this keyword is set to {on}, buffers in GPU memory are passed directly
|
||||
through MPI send/receive calls. This reduces overhead of first copying
|
||||
the data to the host CPU. However GPU-direct is not supported on all
|
||||
systems, which can lead to segmentation faults and would require
|
||||
using a value of {off}. If LAMMPS can safely detect that GPU-direct is
|
||||
not available (currently only possible with OpenMPI v2.0.0 or later),
|
||||
then the {gpu/direct} keyword is automatically set to {off} by default.
|
||||
When the {gpu/direct} keyword is set to {off} while any of the {comm}
|
||||
systems, which can lead to segmentation faults and would require using a
|
||||
value of {off}. If LAMMPS can safely detect that GPU-direct is not
|
||||
available (currently only possible with OpenMPI v2.0.0 or later), then
|
||||
the {gpu/direct} keyword is automatically set to {off} by default. When
|
||||
the {gpu/direct} keyword is set to {off} while any of the {comm}
|
||||
keywords are set to {device}, the value for these {comm} keywords will
|
||||
be automatically changed to {host}.
|
||||
be automatically changed to {host}. This setting has no effect if not
|
||||
running on GPUs.
|
||||
|
||||
:line
|
||||
|
||||
@ -623,14 +625,16 @@ not used, you must invoke the package intel command in your input
|
||||
script or or via the "-pk intel" "command-line
|
||||
switch"_Run_options.html.
|
||||
|
||||
For the KOKKOS package, the option defaults neigh = full, neigh/qeq =
|
||||
full, newton = off, binsize = 0.0, and comm = device, gpu/direct = on.
|
||||
When LAMMPS can safely detect, that GPU-direct is not available, the
|
||||
default value of gpu/direct becomes "off".
|
||||
These settings are made automatically by the required "-k on"
|
||||
"command-line switch"_Run_options.html. You can change them by
|
||||
using the package kokkos command in your input script or via the
|
||||
"-pk kokkos command-line switch"_Run_options.html.
|
||||
For the KOKKOS package, the option defaults for GPUs are neigh = full,
|
||||
neigh/qeq = full, newton = off, binsize for GPUs = 2x LAMMPS default
|
||||
value, comm = device, gpu/direct = on. When LAMMPS can safely detect
|
||||
that GPU-direct is not available, the default value of gpu/direct
|
||||
becomes "off". For CPUs or Xeon Phis, the option defaults are neigh =
|
||||
half, neigh/qeq = half, newton = on, binsize = 0.0, and comm = no. These
|
||||
settings are made automatically by the required "-k on" "command-line
|
||||
switch"_Run_options.html. You can change them by using the package
|
||||
kokkos command in your input script or via the "-pk kokkos command-line
|
||||
switch"_Run_options.html.
|
||||
|
||||
For the OMP package, the default is Nthreads = 0 and the option
|
||||
defaults are neigh = yes. These settings are made automatically if
|
||||
|
||||
@ -36,7 +36,7 @@ pair_style airebo/morse 3.0
|
||||
pair_coeff * * ../potentials/CH.airebo-m H C :pre
|
||||
|
||||
pair_style rebo
|
||||
pair_coeff * * ../potentials/CH.airebo H C :pre
|
||||
pair_coeff * * ../potentials/CH.rebo H C :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -57,7 +57,8 @@ The {rebo} pair style computes the Reactive Empirical Bond Order (REBO)
|
||||
Potential of "(Brenner)"_#Brenner. Note that this is the so-called
|
||||
2nd generation REBO from 2002, not the original REBO from 1990.
|
||||
As discussed below, 2nd generation REBO is closely related to the
|
||||
initial AIREBO; it is just a subset of the potential energy terms.
|
||||
initial AIREBO; it is just a subset of the potential energy terms
|
||||
with a few slightly different parameters
|
||||
|
||||
The AIREBO potential consists of three terms:
|
||||
|
||||
@ -113,12 +114,12 @@ various dihedral angle preferences in hydrocarbon configurations.
|
||||
:line
|
||||
|
||||
Only a single pair_coeff command is used with the {airebo}, {airebo}
|
||||
or {rebo} style which specifies an AIREBO or AIREBO-M potential file
|
||||
with parameters for C and H. Note that the {rebo} style in LAMMPS
|
||||
uses the same AIREBO-formatted potential file. These are mapped to
|
||||
LAMMPS atom types by specifying N additional arguments after the
|
||||
filename in the pair_coeff command, where N is the number of LAMMPS
|
||||
atom types:
|
||||
or {rebo} style which specifies an AIREBO, REBO, or AIREBO-M potential
|
||||
file with parameters for C and H. Note that as of LAMMPS version
|
||||
15 May 2019 the {rebo} style in LAMMPS uses its own potential
|
||||
file (CH.rebo). These are mapped to LAMMPS atom types by specifying
|
||||
N additional arguments after the filename in the pair_coeff command,
|
||||
where N is the number of LAMMPS atom types:
|
||||
|
||||
filename
|
||||
N element names = mapping of AIREBO elements to atom types :ul
|
||||
|
||||
269
doc/src/pair_dipole_spin.txt
Normal file
@ -0,0 +1,269 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
pair_style spin/dipole/cut command :h3
|
||||
pair_style spin/dipole/long command :h3
|
||||
pair_style spin/dipole/long/qsymp command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
pair_style lj/cut/dipole/cut cutoff (cutoff2)
|
||||
pair_style lj/sf/dipole/sf cutoff (cutoff2)
|
||||
pair_style lj/cut/dipole/long cutoff (cutoff2)
|
||||
pair_style lj/long/dipole/long flag_lj flag_coul cutoff (cutoff2) :pre
|
||||
|
||||
cutoff = global cutoff LJ (and Coulombic if only 1 arg) (distance units) :ulb,l
|
||||
cutoff2 = global cutoff for Coulombic and dipole (optional) (distance units) :l
|
||||
flag_lj = {long} or {cut} or {off} :l
|
||||
{long} = use long-range damping on dispersion 1/r^6 term
|
||||
{cut} = use a cutoff on dispersion 1/r^6 term
|
||||
{off} = omit disperion 1/r^6 term entirely :pre
|
||||
flag_coul = {long} or {off} :l
|
||||
{long} = use long-range damping on Coulombic 1/r and point-dipole terms
|
||||
{off} = omit Coulombic and point-dipole terms entirely :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style lj/cut/dipole/cut 10.0
|
||||
pair_coeff * * 1.0 1.0
|
||||
pair_coeff 2 3 1.0 1.0 2.5 4.0 :pre
|
||||
|
||||
pair_style lj/sf/dipole/sf 9.0
|
||||
pair_coeff * * 1.0 1.0
|
||||
pair_coeff 2 3 1.0 1.0 2.5 4.0 scale 0.5
|
||||
pair_coeff 2 3 1.0 1.0 2.5 4.0 :pre
|
||||
|
||||
pair_style lj/cut/dipole/long 10.0
|
||||
pair_coeff * * 1.0 1.0
|
||||
pair_coeff 2 3 1.0 1.0 2.5 4.0 :pre
|
||||
|
||||
pair_style lj/long/dipole/long long long 3.5 10.0
|
||||
pair_coeff * * 1.0 1.0
|
||||
pair_coeff 2 3 1.0 1.0 2.5 4.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Style {lj/cut/dipole/cut} computes interactions between pairs of particles
|
||||
that each have a charge and/or a point dipole moment. In addition to
|
||||
the usual Lennard-Jones interaction between the particles (Elj) the
|
||||
charge-charge (Eqq), charge-dipole (Eqp), and dipole-dipole (Epp)
|
||||
interactions are computed by these formulas for the energy (E), force
|
||||
(F), and torque (T) between particles I and J.
|
||||
|
||||
:c,image(Eqs/pair_dipole.jpg)
|
||||
|
||||
where qi and qj are the charges on the two particles, pi and pj are
|
||||
the dipole moment vectors of the two particles, r is their separation
|
||||
distance, and the vector r = Ri - Rj is the separation vector between
|
||||
the two particles. Note that Eqq and Fqq are simply Coulombic energy
|
||||
and force, Fij = -Fji as symmetric forces, and Tij != -Tji since the
|
||||
torques do not act symmetrically. These formulas are discussed in
|
||||
"(Allen)"_#Allen2 and in "(Toukmaji)"_#Toukmaji2.
|
||||
|
||||
Also note, that in the code, all of these terms (except Elj) have a
|
||||
C/epsilon prefactor, the same as the Coulombic term in the LJ +
|
||||
Coulombic pair styles discussed "here"_pair_lj.html. C is an
|
||||
energy-conversion constant and epsilon is the dielectric constant
|
||||
which can be set by the "dielectric"_dielectric.html command. The
|
||||
same is true of the equations that follow for other dipole pair
|
||||
styles.
|
||||
|
||||
Style {lj/sf/dipole/sf} computes "shifted-force" interactions between
|
||||
pairs of particles that each have a charge and/or a point dipole
|
||||
moment. In general, a shifted-force potential is a (slightly) modified
|
||||
potential containing extra terms that make both the energy and its
|
||||
derivative go to zero at the cutoff distance; this removes
|
||||
(cutoff-related) problems in energy conservation and any numerical
|
||||
instability in the equations of motion "(Allen)"_#Allen2. Shifted-force
|
||||
interactions for the Lennard-Jones (E_LJ), charge-charge (Eqq),
|
||||
charge-dipole (Eqp), dipole-charge (Epq) and dipole-dipole (Epp)
|
||||
potentials are computed by these formulas for the energy (E), force
|
||||
(F), and torque (T) between particles I and J:
|
||||
|
||||
:c,image(Eqs/pair_dipole_sf.jpg)
|
||||
:c,image(Eqs/pair_dipole_sf2.jpg)
|
||||
|
||||
where epsilon and sigma are the standard LJ parameters, r_c is the
|
||||
cutoff, qi and qj are the charges on the two particles, pi and pj are
|
||||
the dipole moment vectors of the two particles, r is their separation
|
||||
distance, and the vector r = Ri - Rj is the separation vector between
|
||||
the two particles. Note that Eqq and Fqq are simply Coulombic energy
|
||||
and force, Fij = -Fji as symmetric forces, and Tij != -Tji since the
|
||||
torques do not act symmetrically. The shifted-force formula for the
|
||||
Lennard-Jones potential is reported in "(Stoddard)"_#Stoddard. The
|
||||
original (non-shifted) formulas for the electrostatic potentials,
|
||||
forces and torques can be found in "(Price)"_#Price2. The shifted-force
|
||||
electrostatic potentials have been obtained by applying equation 5.13
|
||||
of "(Allen)"_#Allen2. The formulas for the corresponding forces and
|
||||
torques have been obtained by applying the 'chain rule' as in appendix
|
||||
C.3 of "(Allen)"_#Allen2.
|
||||
|
||||
If one cutoff is specified in the pair_style command, it is used for
|
||||
both the LJ and Coulombic (q,p) terms. If two cutoffs are specified,
|
||||
they are used as cutoffs for the LJ and Coulombic (q,p) terms
|
||||
respectively. This pair style also supports an optional {scale} keyword
|
||||
as part of a pair_coeff statement, where the interactions can be
|
||||
scaled according to this factor. This scale factor is also made available
|
||||
for use with fix adapt.
|
||||
|
||||
Style {lj/cut/dipole/long} computes long-range point-dipole
|
||||
interactions as discussed in "(Toukmaji)"_#Toukmaji2. Dipole-dipole,
|
||||
dipole-charge, and charge-charge interactions are all supported, along
|
||||
with the standard 12/6 Lennard-Jones interactions, which are computed
|
||||
with a cutoff. A "kspace_style"_kspace_style.html must be defined to
|
||||
use this pair style. Currently, only "kspace_style
|
||||
ewald/disp"_kspace_style.html support long-range point-dipole
|
||||
interactions.
|
||||
|
||||
Style {lj/long/dipole/long} also computes point-dipole interactions as
|
||||
discussed in "(Toukmaji)"_#Toukmaji2. Long-range dipole-dipole,
|
||||
dipole-charge, and charge-charge interactions are all supported, along
|
||||
with the standard 12/6 Lennard-Jones interactions. LJ interactions
|
||||
can be cutoff or long-ranged.
|
||||
|
||||
For style {lj/long/dipole/long}, if {flag_lj} is set to {long}, no
|
||||
cutoff is used on the LJ 1/r^6 dispersion term. The long-range
|
||||
portion is calculated by using the "kspace_style
|
||||
ewald_disp"_kspace_style.html command. The specified LJ cutoff then
|
||||
determines which portion of the LJ interactions are computed directly
|
||||
by the pair potential versus which part is computed in reciprocal
|
||||
space via the Kspace style. If {flag_lj} is set to {cut}, the LJ
|
||||
interactions are simply cutoff, as with "pair_style
|
||||
lj/cut"_pair_lj.html. If {flag_lj} is set to {off}, LJ interactions
|
||||
are not computed at all.
|
||||
|
||||
If {flag_coul} is set to {long}, no cutoff is used on the Coulombic or
|
||||
dipole interactions. The long-range portion is calculated by using
|
||||
{ewald_disp} of the "kspace_style"_kspace_style.html command. If
|
||||
{flag_coul} is set to {off}, Coulombic and dipole interactions are not
|
||||
computed at all.
|
||||
|
||||
Atoms with dipole moments should be integrated using the "fix
|
||||
nve/sphere update dipole"_fix_nve_sphere.html or the "fix
|
||||
nvt/sphere update dipole"_fix_nvt_sphere.html command to rotate the
|
||||
dipole moments. The {omega} option on the "fix
|
||||
langevin"_fix_langevin.html command can be used to thermostat the
|
||||
rotational motion. The "compute temp/sphere"_compute_temp_sphere.html
|
||||
command can be used to monitor the temperature, since it includes
|
||||
rotational degrees of freedom. The "atom_style
|
||||
hybrid dipole sphere"_atom_style.html command should be used since
|
||||
it defines the point dipoles and their rotational state.
|
||||
The magnitude and orientation of the dipole moment for each particle
|
||||
can be defined by the "set"_set.html command or in the "Atoms" section
|
||||
of the data file read in by the "read_data"_read_data.html command.
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the "pair_coeff"_pair_coeff.html command as in the examples
|
||||
above, or in the data file or restart files read by the
|
||||
"read_data"_read_data.html or "read_restart"_read_restart.html
|
||||
commands, or by mixing as described below:
|
||||
|
||||
epsilon (energy units)
|
||||
sigma (distance units)
|
||||
cutoff1 (distance units)
|
||||
cutoff2 (distance units) :ul
|
||||
|
||||
The latter 2 coefficients are optional. If not specified, the global
|
||||
LJ and Coulombic cutoffs specified in the pair_style command are used.
|
||||
If only one cutoff is specified, it is used as the cutoff for both LJ
|
||||
and Coulombic interactions for this type pair. If both coefficients
|
||||
are specified, they are used as the LJ and Coulombic cutoffs for this
|
||||
type pair.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
hardware, as discussed on the "Speed packages"_Speed_packages.html doc
|
||||
page. The accelerated styles take the same arguments and should
|
||||
produce the same results, except for round-off and precision issues.
|
||||
|
||||
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
|
||||
USER-OMP and OPT packages, respectively. They are only enabled if
|
||||
LAMMPS was built with those packages. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
You can specify the accelerated styles explicitly in your input script
|
||||
by including their suffix, or you can use the "-suffix command-line
|
||||
switch"_Run_options.html when you invoke LAMMPS, or you can use the
|
||||
"suffix"_suffix.html command in your input script.
|
||||
|
||||
See the "Speed packages"_Speed_packages.html doc page for more
|
||||
instructions on how to use the accelerated styles effectively.
|
||||
|
||||
:line
|
||||
|
||||
[Mixing, shift, table, tail correction, restart, rRESPA info]:
|
||||
|
||||
For atom type pairs I,J and I != J, the epsilon and sigma coefficients
|
||||
and cutoff distances for this pair style can be mixed. The default
|
||||
mix value is {geometric}. See the "pair_modify" command for details.
|
||||
|
||||
For atom type pairs I,J and I != J, the A, sigma, d1, and d2
|
||||
coefficients and cutoff distance for this pair style can be mixed. A
|
||||
is an energy value mixed like a LJ epsilon. D1 and d2 are distance
|
||||
values and are mixed like sigma. The default mix value is
|
||||
{geometric}. See the "pair_modify" command for details.
|
||||
|
||||
This pair style does not support the "pair_modify"_pair_modify.html
|
||||
shift option for the energy of the Lennard-Jones portion of the pair
|
||||
interaction; such energy goes to zero at the cutoff by construction.
|
||||
|
||||
The "pair_modify"_pair_modify.html table option is not relevant
|
||||
for this pair style.
|
||||
|
||||
This pair style does not support the "pair_modify"_pair_modify.html
|
||||
tail option for adding long-range tail corrections to energy and
|
||||
pressure.
|
||||
|
||||
This pair style writes its information to "binary restart
|
||||
files"_restart.html, so pair_style and pair_coeff commands do not need
|
||||
to be specified in an input script that reads a restart file.
|
||||
|
||||
This pair style can only be used via the {pair} keyword of the
|
||||
"run_style respa"_run_style.html command. It does not support the
|
||||
{inner}, {middle}, {outer} keywords.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
The {lj/cut/dipole/cut}, {lj/cut/dipole/long}, and
|
||||
{lj/long/dipole/long} styles are part of the DIPOLE package. They are
|
||||
only enabled if LAMMPS was built with that package. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
The {lj/sf/dipole/sf} style is part of the USER-MISC package. It is
|
||||
only enabled if LAMMPS was built with that package. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
Using dipole pair styles with {electron} "units"_units.html is not
|
||||
currently supported.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"pair_coeff"_pair_coeff.html, "set"_set.html, "read_data"_read_data.html,
|
||||
"fix nve/sphere"_fix_nve_sphere.html, "fix nvt/sphere"_fix_nvt_sphere.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
:line
|
||||
|
||||
:link(Allen2)
|
||||
[(Allen)] Allen and Tildesley, Computer Simulation of Liquids,
|
||||
Clarendon Press, Oxford, 1987.
|
||||
|
||||
:link(Toukmaji2)
|
||||
[(Toukmaji)] Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113,
|
||||
10913 (2000).
|
||||
|
||||
:link(Stoddard)
|
||||
[(Stoddard)] Stoddard and Ford, Phys Rev A, 8, 1504 (1973).
|
||||
|
||||
:link(Price2)
|
||||
[(Price)] Price, Stone and Alderton, Mol Phys, 52, 987 (1984).
|
||||
141
doc/src/pair_drip.txt
Normal file
@ -0,0 +1,141 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
pair_style drip command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
pair_style hybrid/overlay drip \[styles ...\] :pre
|
||||
|
||||
styles = other styles to be overlayed with drip (optional) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style hybrid/overlay drip
|
||||
pair_coeff * * none
|
||||
pair_coeff * * drip C.drip C :pre
|
||||
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C
|
||||
pair_coeff * * rebo CH.airebo C :pre
|
||||
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C NULL
|
||||
pair_coeff * * rebo CH.airebo C H :pre
|
||||
|
||||
|
||||
[Description:]
|
||||
|
||||
Style {drip} computes the interlayer interactions of layered materials using
|
||||
the dihedral-angle-corrected registry-dependent (DRIP) potential as described
|
||||
in "(Wen)"_#Wen2018, which is based on the "(Kolmogorov)"_#Kolmogorov2005
|
||||
potential and provides an improved prediction for forces.
|
||||
The total potential energy of a system is
|
||||
|
||||
:c,image(Eqs/pair_drip.jpg)
|
||||
|
||||
where the {r^-6} term models the attractive London dispersion,
|
||||
the exponential term is designed to capture the registry effect due to
|
||||
overlapping {pi} bonds, and {fc} is a cutoff function.
|
||||
|
||||
|
||||
This potential (DRIP) only provides the interlayer interactions between
|
||||
graphene layers. So, to perform a realistic simulation, it should be used in
|
||||
combination with an intralayer potential such as "REBO"_pair_airebo.html and
|
||||
"Tersoff"_pair_tersoff.html.
|
||||
To keep the intralayer interactions unaffected, we should avoid applying DRIP
|
||||
to contribute energy to intralayer interactions. This can be achieved by
|
||||
assigning different molecular IDs to atoms in different layers, and DRIP is
|
||||
implemented such that only atoms with different molecular ID can interact with
|
||||
each other. For this purpose, "atom style"_atom_style.html "molecular" or
|
||||
"full" has to be used.
|
||||
|
||||
On the other way around, "REBO"_pair_airebo.html ("Tersoff"_pair_tersoff.html
|
||||
or any other potential used to provide the intralayer interactions) should not
|
||||
interfere with the interlayer interactions described by DRIP. This is typically
|
||||
automatically achieved using the commands provided in the {Examples} section
|
||||
above, since the cutoff distance for carbon-carbon interaction in the intralayer
|
||||
potentials (e.g. 2 Angstrom for "REBO"_pair_airebo.html) is much smaller than
|
||||
the equilibrium layer distance of graphene layers (about 3.4 Angstrom).
|
||||
If you want, you can enforce this by assigning different atom types to atoms in
|
||||
different layers, and apply an intralayer potential to one atom type.
|
||||
See "pair_hybrid"_pair_hybrid.html for details.
|
||||
|
||||
:line
|
||||
|
||||
The "pair_coeff"_pair_coeff.html command for DRIP takes {4+N} arguments, where
|
||||
{N} is the number of LAMMPS atom types. The fist three arguments must be fixed
|
||||
to be {* * drip}, the fourth argument is the path to the DRIP parameter file,
|
||||
and the remaining N arguments specifying the mapping between element in the
|
||||
parameter file and atom types. For example, if your LAMMPS simulation has 3 atom
|
||||
types and you want all of them to be C, you would use the following pair_coeff
|
||||
command:
|
||||
|
||||
pair_coeff * * drip C.drip C C C :pre
|
||||
|
||||
If a mapping value is specified as NULL, the mapping is not performed. This
|
||||
could be useful when DRIP is used to model part of the system where other
|
||||
element exists. Suppose you have a hydrocarbon system, with C of atom type 1
|
||||
and H of atom type 2, you can use the following command to inform DRIP not to
|
||||
model H atoms:
|
||||
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C NULL
|
||||
pair_coeff * * rebo CH.airebo C H :pre
|
||||
|
||||
NOTE: The potential parameters developed in "(Wen)"_#Wen2018 are provided with
|
||||
LAMMPS (see the "potentials" directory). Besides those in "Wen"_#Wen2018, an
|
||||
additional parameter "normal_cutoff", specific to the LAMMPS implementation, is
|
||||
used to find the three nearest neighbors of an atom to construct the normal.
|
||||
|
||||
|
||||
:line
|
||||
|
||||
[Mixing, shift, table, tail correction, and restart info]:
|
||||
|
||||
This pair style does not support the pair_modify mix, shift, table,
|
||||
and tail options.
|
||||
|
||||
This pair style does not write their information to binary restart files, since
|
||||
it is stored in potential files. Thus, you need to re-specify the pair_style and
|
||||
pair_coeff commands in an input script that reads a restart file.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the USER-MISC package. It is only enabled if LAMMPS
|
||||
was built with that package. See the "Build package"_Build_package.html doc
|
||||
page for more info.
|
||||
|
||||
This pair potential requires the "newton"_newton.html setting to be "on" for
|
||||
pair interactions.
|
||||
|
||||
|
||||
The {C.drip} parameter file provided with LAMMPS (see the "potentials"
|
||||
directory) is parameterized for metal "units"_units.html. You can use the DRIP
|
||||
potential with any LAMMPS units, but you would need to create your own custom
|
||||
parameter file with coefficients listed in the appropriate units, if your
|
||||
simulation doesn't use "metal" units.
|
||||
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"pair_style lebedeva_z"_pair_lebedeva_z.html,
|
||||
"pair_style kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html,
|
||||
"pair_style kolmogorov/crespi/full"_pair_kolmogorov_crespi_full.html,
|
||||
"pair_style ilp/graphene/hbn"_pair_ilp_graphene_hbn.html.
|
||||
|
||||
|
||||
:line
|
||||
|
||||
:link(Wen2018)
|
||||
[(Wen)] M. Wen, S. Carr, S. Fang, E. Kaxiras, and E. B. Tadmor, Phys. Rev. B,
|
||||
98, 235404 (2018)
|
||||
|
||||
:link(Kolmogorov2005)
|
||||
[(Kolmogorov)] A. N. Kolmogorov, V. H. Crespi, Phys. Rev. B 71, 235415 (2005)
|
||||
|
||||
140
doc/src/pair_e3b.txt
Normal file
@ -0,0 +1,140 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
pair_style e3b command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
pair_style e3b Otype :pre
|
||||
Otype = atom type for oxygen :l
|
||||
|
||||
pair_coeff * * keyword :pre
|
||||
one or more keyword/value pairs must be appended. :l
|
||||
keyword = {preset} or {Ea} or {Eb} or {Ec} or {E2} or {K3} or {K2} or {Rs} or {Rc3} or {Rc2} or {bondL} or {neigh} :l
|
||||
If the {preset} keyword is given, no others are needed.
|
||||
Otherwise, all are mandatory except for {neigh}.
|
||||
The {neigh} keyword is always optional. :l
|
||||
{preset} arg = {2011} or {2015} = which set of predefined parameters to use
|
||||
2011 = use the potential parameters from "(Tainter 2011)"_#Tainter2011
|
||||
2015 = use the potential parameters from "(Tainter 2015)"_#Tainter2015
|
||||
{Ea} arg = three-body energy for type A hydrogen bonding interactions (energy units)
|
||||
{Eb} arg = three-body energy for type B hydrogen bonding interactions (energy units)
|
||||
{Ec} arg = three-body energy for type C hydrogen bonding interactions (energy units)
|
||||
{E2} arg = two-body energy correction (energy units)
|
||||
{K3} arg = three-body exponential constant (inverse distance units)
|
||||
{K2} arg = two-body exponential constant (inverse distance units)
|
||||
{Rc3} arg = three-body cutoff (distance units)
|
||||
{Rc2} arg = two-body cutoff (distance units)
|
||||
{Rs} arg = three-body switching function cutoff (distance units)
|
||||
{bondL} arg = intramolecular OH bond length (distance units)
|
||||
{neigh} arg = approximate integer number of molecules within Rc3 of an oxygen atom :pre
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style e3b 1
|
||||
pair_coeff * * Ea 35.85 Eb -240.2 Ec 449.3 E2 108269.9 K3 1.907 K2 4.872 Rc3 5.2 Rc2 5.2 Rs 5.0 bondL 0.9572 :pre
|
||||
|
||||
pair_style hybrid/overlay e3b 1 lj/cut/tip4p/long 1 2 1 1 0.15 8.5
|
||||
pair_coeff * * e3b preset 2011 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
The {e3b} style computes an \"explicit three-body\" (E3B) potential for water "(Kumar 2008)"_#Kumar.
|
||||
|
||||
:c,image(Eqs/e3b.jpg)
|
||||
|
||||
This potential was developed as a water model that includes the three-body cooperativity of hydrogen bonding explicitly.
|
||||
To use it in this way, it must be applied in conjunction with a conventional two-body water model, through {pair_style hybrid/overlay}.
|
||||
The three body interactions are split into three types: A, B, and C.
|
||||
Type A corresponds to anti-cooperative double hydrogen bond donor interactions.
|
||||
Type B corresponds to the cooperative interaction of molecules that both donate and accept a hydrogen bond.
|
||||
Type C corresponds to anti-cooperative double hydrogen bond acceptor interactions.
|
||||
The three-body interactions are smoothly cutoff by the switching function s(r) between Rs and Rc3.
|
||||
The two-body interactions are designed to correct for the effective many-body interactions implicitly included in the conventional two-body potential.
|
||||
The two-body interactions are cut off sharply at Rc2, because K3 is typically significantly smaller than K2.
|
||||
See "(Kumar 2008)"_#Kumar for more details.
|
||||
|
||||
Only a single {pair_coeff} command is used with the {e3b} style.
|
||||
The 1st two arguments must be * *.
|
||||
The oxygen atom type for the pair style is passed as the only argument to the {pair_style} command, not in the {pair_coeff} command.
|
||||
The hydrogen atom type is inferred by the ordering of the atoms.
|
||||
|
||||
NOTE: Every atom of type Otype must be part of a water molecule.
|
||||
Each water molecule must have consecutive IDs with the oxygen first.
|
||||
This pair style does not test that this criteria is met.
|
||||
|
||||
The {pair_coeff} command must have at least one keyword/value pair, as described above.
|
||||
The {preset} keyword sets the potential parameters to the values used in "(Tainter 2011)"_#Tainter2011 or "(Tainter 2015)"_#Tainter2015.
|
||||
To use the water models defined in those references, the {e3b} style should always be used in conjunction with an {lj/cut/tip4p/long} style through {pair_style hybrid/overlay}, as demonstrated in the second example above.
|
||||
The {preset 2011} option should be used with the "TIP4P water model"_Howto_tip4p.html.
|
||||
The {preset 2015} option should be used with the "TIP4P/2005 water model"_Howto_tip4p.html.
|
||||
If the {preset} keyword is used, no other keyword is needed.
|
||||
Changes to the preset parameters can be made by specifying the {preset} keyword followed by the specific parameter to change, like {Ea}.
|
||||
Note that the other keywords must come after {preset} in the pair_style command.
|
||||
The {e3b} style can also be used to implement any three-body potential of the same form by specifying all the keywords except {neigh}: {Ea}, {Eb}, {Ec}, {E2}, {K3}, {K2}, {Rc3}, {Rc2}, {Rs}, and {bondL}.
|
||||
The keyword {bondL} specifies the intramolecular OH bond length of the water model being used.
|
||||
This is needed to include H atoms that are within the cutoff even when the attached oxygen atom is not.
|
||||
|
||||
This pair style allocates arrays sized according to the number of pairwise interactions within Rc3.
|
||||
To do this it needs an estimate for the number of water molecules within Rc3 of an oxygen atom.
|
||||
This estimate defaults to 10 and can be changed using the {neigh} keyword, which takes an integer as an argument.
|
||||
If the neigh setting is too small, the simulation will fail with the error "neigh is too small".
|
||||
If the neigh setting is too large, the pair style will use more memory than necessary.
|
||||
|
||||
This pair style tallies a breakdown of the total E3B potential energy into sub-categories, which can be accessed via the "compute pair"_compute_pair.html command as a vector of values of length 4.
|
||||
The 4 values correspond to the terms in the first equation above: the E2 term, the Ea term, the Eb term, and the Ec term.
|
||||
|
||||
See the examples/USER/e3b directory for a complete example script.
|
||||
|
||||
:line
|
||||
|
||||
[Mixing, shift, table, tail correction, restart, rRESPA info]:
|
||||
|
||||
This pair style does not support the "pair_modify"_pair_modify.html
|
||||
shift, table, and tail options.
|
||||
|
||||
This pair style does not write its information to "binary restart
|
||||
files"_restart.html, since it is stored in potential files. Thus, you
|
||||
need to re-specify the pair_style and pair_coeff commands in an input
|
||||
script that reads a restart file.
|
||||
|
||||
This pair style is incompatible with "respa"_run_style.html.
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the USER-MISC package. It is only enabled
|
||||
if LAMMPS was built with that package. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
This pair style requires the "newton"_newton.html setting to be "on"
|
||||
for pair interactions.
|
||||
|
||||
This pair style requires a fixed number of atoms in the simulation, so it is incompatible with fixes like "fix deposit"_fix_deposit.html.
|
||||
If the number of atoms changes between runs, this pair style must be re-initialized by calling the {pair_style} and {pair_coeffs} commands.
|
||||
This is not a fundamental limitation of the pair style, but the code currently does not support a variable number of atoms.
|
||||
|
||||
The {preset} keyword currently only works with real, metal, si, and cgs "units"_units.html.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"pair_coeff"_pair_coeff.html, "compute pair"_compute_pair.html
|
||||
|
||||
[Default:]
|
||||
|
||||
The option default for the {neigh} keyword is 10.
|
||||
|
||||
:line
|
||||
|
||||
:link(Kumar)
|
||||
[(Kumar)] Kumar and Skinner, J. Phys. Chem. B, 112, 8311 (2008)
|
||||
:link(Tainter2011)
|
||||
[(Tainter 2011)] Tainter, Pieniazek, Lin, and Skinner, J. Chem. Phys., 134, 184501 (2011)
|
||||
:link(Tainter2015)
|
||||
[(Tainter 2015)] Tainter, Shi, and Skinner, 11, 2268 (2015)
|
||||
@ -24,22 +24,24 @@ cutoff = global cutoff (optional). See discussion below. :ul
|
||||
[Examples:]
|
||||
|
||||
pair_style granular
|
||||
pair_coeff * * hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 :pre
|
||||
pair_coeff * * hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 damping mass_velocity :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff * * hertz 1000.0 50.0 tangential mindlin NULL 1.0 0.4 :pre
|
||||
pair_coeff * * hooke 1000.0 50.0 tangential linear_history 500.0 1.0 0.4 damping mass_velocity :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff * * hertz/material 1e8 0.3 tangential mindlin_rescale NULL 1.0 0.4 damping tsuji :pre
|
||||
pair_coeff * * hertz 1000.0 50.0 tangential mindlin 1000.0 1.0 0.4 :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff 1 1 jkr 1000.0 50.0 tangential mindlin 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall
|
||||
pair_coeff 2 2 hertz 200.0 20.0 tangential linear_history 300.0 1.0 0.1 rolling sds 200.0 100.0 0.1 twisting marshall :pre
|
||||
pair_coeff * * hertz/material 1e8 0.3 0.3 tangential mindlin_rescale NULL 1.0 0.4 damping tsuji :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff 1 1 hertz 1000.0 50.0 tangential mindlin 800.0 0.5 0.5 rolling sds 500.0 200.0 0.5 twisting marshall
|
||||
pair_coeff 2 2 dmt 1000.0 50.0 0.3 10.0 tangential mindlin 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall
|
||||
pair_coeff 1 2 dmt 1000.0 50.0 0.3 10.0 tangential mindlin 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall :pre
|
||||
pair_coeff 1 * jkr 1000.0 500.0 0.3 10 tangential mindlin 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall
|
||||
pair_coeff 2 2 hertz 200.0 100.0 tangential linear_history 300.0 1.0 0.1 rolling sds 200.0 100.0 0.1 twisting marshall :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff 1 1 dmt 1000.0 50.0 0.3 0.0 tangential mindlin NULL 0.5 0.5 rolling sds 500.0 200.0 0.5 twisting marshall
|
||||
pair_coeff 2 2 dmt 1000.0 50.0 0.3 10.0 tangential mindlin NULL 0.5 0.1 rolling sds 500.0 200.0 0.1 twisting marshall :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -57,18 +59,18 @@ global, but can be set to different values for different combinations
|
||||
of particle types, as determined by the "pair_coeff"_pair_coeff.html
|
||||
command. If the contact model choice is the same for two particle
|
||||
types, the mixing for the cross-coefficients can be carried out
|
||||
automatically. This is shown in the second example, where model
|
||||
automatically. This is shown in the last example, where model
|
||||
choices are the same for type 1 - type 1 as for type 2 - type2
|
||||
interactions, but coefficients are different. In this case, the
|
||||
coefficients for type 2 - type interactions can be determined from
|
||||
mixed coefficients for type 1 - type 2 interactions can be determined from
|
||||
mixing rules discussed below. For additional flexibility,
|
||||
coefficients as well as model forms can vary between particle types,
|
||||
as shown in the third example: type 1- type 1 interactions are based
|
||||
on a Hertzian normal contact model and 2-2 interactions are based on a
|
||||
DMT cohesive model (see below). In that example, 1-1 and 2-2
|
||||
interactions have different model forms, in which case mixing of
|
||||
as shown in the fourth example: type 1 - type 1 interactions are based
|
||||
on a Johnson-Kendall-Roberts normal contact model and 2-2 interactions
|
||||
are based on a DMT cohesive model (see below). In that example, 1-1
|
||||
and 2-2 interactions have different model forms, in which case mixing of
|
||||
coefficients cannot be determined, so 1-2 interactions must be
|
||||
explicitly defined via the {pair_coeff 1 2} command, otherwise an
|
||||
explicitly defined via the {pair_coeff 1 *} command, otherwise an
|
||||
error would result.
|
||||
|
||||
:line
|
||||
@ -189,6 +191,7 @@ other settings, potentially also the twisting damping). The options
|
||||
for the damping model currently supported are:
|
||||
|
||||
{velocity}
|
||||
{mass_velocity}
|
||||
{viscoelastic}
|
||||
{tsuji} :ol
|
||||
|
||||
@ -199,11 +202,23 @@ For {damping velocity}, the normal damping is simply equal to the
|
||||
user-specified damping coefficient in the {normal} model:
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_n = \eta_\{n0\}\
|
||||
\eta_n = \eta_\{n0\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\gamma_n\) is the damping coefficient specified for the normal
|
||||
contact model, in units of {mass}/{time},
|
||||
Here, \(\eta_\{n0\}\) is the damping coefficient specified for the normal
|
||||
contact model, in units of {mass}/{time}.
|
||||
|
||||
For {damping mass_velocity}, the normal damping is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_n = \eta_\{n0\} m_\{eff\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\eta_\{n0\}\) is the damping coefficient specified for the normal
|
||||
contact model, in units of {mass}/{time} and
|
||||
\(m_\{eff\} = m_i m_j/(m_i + m_j)\) is the effective mass.
|
||||
Use {damping mass_velocity} to reproduce the damping behavior of
|
||||
{pair gran/hooke/*}.
|
||||
|
||||
The {damping viscoelastic} model is based on the viscoelastic
|
||||
treatment of "(Brilliantov et al)"_#Brill1996, where the normal
|
||||
@ -213,11 +228,10 @@ damping is given by:
|
||||
\eta_n = \eta_\{n0\}\ a m_\{eff\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(m_\{eff\} = m_i m_j/(m_i + m_j)\) is the effective mass, {a}
|
||||
is the contact radius, given by \(a =\sqrt\{R\delta\}\) for all models
|
||||
except {jkr}, for which it is given implicitly according to \(delta =
|
||||
a^2/R - 2\sqrt\{\pi \gamma a/E\}\). In this case, \eta_\{n0\}\ is in
|
||||
units of 1/({time}*{distance}).
|
||||
Here, {a} is the contact radius, given by \(a =\sqrt\{R\delta\}\)
|
||||
for all models except {jkr}, for which it is given implicitly according
|
||||
to \(\delta = a^2/R - 2\sqrt\{\pi \gamma a/E\}\). For {damping viscoelastic},
|
||||
\(\eta_\{n0\}\) is in units of 1/({time}*{distance}).
|
||||
|
||||
The {tsuji} model is based on the work of "(Tsuji et
|
||||
al)"_#Tsuji1992. Here, the damping coefficient specified as part of
|
||||
@ -564,6 +578,20 @@ Finally, the twisting torque on each particle is given by:
|
||||
|
||||
:line
|
||||
|
||||
The {granular} pair style can reproduce the behavior of the
|
||||
{pair gran/*} styles with the appropriate settings (some very
|
||||
minor differences can be expected due to corrections in
|
||||
displacement history frame-of-reference, and the application
|
||||
of the torque at the center of the contact rather than
|
||||
at each particle). The first example above
|
||||
is equivalent to {pair gran/hooke 1000.0 NULL 50.0 50.0 0.4 1}.
|
||||
The second example is equivalent to
|
||||
{pair gran/hooke/history 1000.0 500.0 50.0 50.0 0.4 1}.
|
||||
The third example is equivalent to
|
||||
{pair gran/hertz/history 1000.0 500.0 50.0 50.0 0.4 1}.
|
||||
|
||||
:line
|
||||
|
||||
LAMMPS automatically sets pairwise cutoff values for {pair_style
|
||||
granular} based on particle radii (and in the case of {jkr} pull-off
|
||||
distances). In the vast majority of situations, this is adequate.
|
||||
@ -619,7 +647,7 @@ interactions is set to \(\mu_1\), and friction coefficient for type
|
||||
2-type 2 interactions is set to \(\mu_2\), the friction coefficient
|
||||
for type1-type2 interactions is computed as \(\sqrt\{\mu_1\mu_2\}\)
|
||||
(unless explicitly specified to a different value by a {pair_coeff 1 2
|
||||
...} command. The exception to this is elastic modulus, only
|
||||
...} command). The exception to this is elastic modulus, only
|
||||
applicable to {hertz/material}, {dmt} and {jkr} normal contact
|
||||
models. In that case, the effective elastic modulus is computed as:
|
||||
|
||||
|
||||
@ -21,7 +21,7 @@ pair_style hybrid/overlay ilp/graphene/hbn 16.0 1
|
||||
pair_coeff * * ilp/graphene/hbn BNCH.ILP B N C :pre
|
||||
|
||||
pair_style hybrid/overlay rebo tersoff ilp/graphene/hbn 16.0 coul/shield 16.0
|
||||
pair_coeff * * rebo CH.airebo NULL NULL C
|
||||
pair_coeff * * rebo CH.rebo NULL NULL C
|
||||
pair_coeff * * tersoff BNC.tersoff B N NULL
|
||||
pair_coeff * * ilp/graphene/hbn BNCH.ILP B N C
|
||||
pair_coeff 1 1 coul/shield 0.70
|
||||
@ -50,11 +50,11 @@ calculating the normals.
|
||||
NOTE: This potential (ILP) is intended for interlayer interactions between two
|
||||
different layers of graphene, hexagonal boron nitride (h-BN) and their hetero-junction.
|
||||
To perform a realistic simulation, this potential must be used in combination with
|
||||
intra-layer potential, such as "AIREBO"_pair_airebo.html or "Tersoff"_pair_tersoff.html potential.
|
||||
To keep the intra-layer properties unaffected, the interlayer interaction
|
||||
intralayer potential, such as "AIREBO"_pair_airebo.html or "Tersoff"_pair_tersoff.html potential.
|
||||
To keep the intralayer properties unaffected, the interlayer interaction
|
||||
within the same layers should be avoided. Hence, each atom has to have a layer
|
||||
identifier such that atoms residing on the same layer interact via the
|
||||
appropriate intra-layer potential and atoms residing on different layers
|
||||
appropriate intralayer potential and atoms residing on different layers
|
||||
interact via the ILP. Here, the molecule id is chosen as the layer identifier,
|
||||
thus a data file with the "full" atom style is required to use this potential.
|
||||
|
||||
@ -117,6 +117,7 @@ units, if your simulation does not use {metal} units.
|
||||
"pair_coeff"_pair_coeff.html,
|
||||
"pair_none"_pair_none.html,
|
||||
"pair_style hybrid/overlay"_pair_hybrid.html,
|
||||
"pair_style drip"_pair_drip.html,
|
||||
"pair_style pair_kolmogorov_crespi_z"_pair_kolmogorov_crespi_z.html,
|
||||
"pair_style pair_kolmogorov_crespi_full"_pair_kolmogorov_crespi_full.html,
|
||||
"pair_style pair_lebedeva_z"_pair_lebedeva_z.html,
|
||||
|
||||
@ -22,7 +22,7 @@ pair_coeff * * none
|
||||
pair_coeff * * kolmogorov/crespi/full CH.KC C C :pre
|
||||
|
||||
pair_style hybrid/overlay rebo kolmogorov/crespi/full 16.0 1
|
||||
pair_coeff * * rebo CH.airebo C H
|
||||
pair_coeff * * rebo CH.rebo C H
|
||||
pair_coeff * * kolmogorov/crespi/full CH_taper.KC C H :pre
|
||||
|
||||
[Description:]
|
||||
@ -44,12 +44,12 @@ can be found in pair style "ilp/graphene/hbn"_pair_ilp_graphene_hbn.html.
|
||||
|
||||
NOTE: This potential (ILP) is intended for interlayer interactions between two
|
||||
different layers of graphene. To perform a realistic simulation, this potential
|
||||
must be used in combination with intra-layer potential, such as
|
||||
must be used in combination with intralayer potential, such as
|
||||
"AIREBO"_pair_airebo.html or "Tersoff"_pair_tersoff.html potential.
|
||||
To keep the intra-layer properties unaffected, the interlayer interaction
|
||||
To keep the intralayer properties unaffected, the interlayer interaction
|
||||
within the same layers should be avoided. Hence, each atom has to have a layer
|
||||
identifier such that atoms residing on the same layer interact via the
|
||||
appropriate intra-layer potential and atoms residing on different layers
|
||||
appropriate intralayer potential and atoms residing on different layers
|
||||
interact via the ILP. Here, the molecule id is chosen as the layer identifier,
|
||||
thus a data file with the "full" atom style is required to use this potential.
|
||||
|
||||
@ -106,6 +106,7 @@ units.
|
||||
"pair_coeff"_pair_coeff.html,
|
||||
"pair_none"_pair_none.html,
|
||||
"pair_style hybrid/overlay"_pair_hybrid.html,
|
||||
"pair_style drip"_pair_drip.html,
|
||||
"pair_style pair_lebedeva_z"_pair_lebedeva_z.html,
|
||||
"pair_style kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html,
|
||||
"pair_style ilp/graphene/hbn"_pair_ilp_graphene_hbn.html.
|
||||
|
||||
@ -19,7 +19,7 @@ pair_coeff * * none
|
||||
pair_coeff 1 2 kolmogorov/crespi/z CC.KC C C :pre
|
||||
|
||||
pair_style hybrid/overlay rebo kolmogorov/crespi/z 14.0
|
||||
pair_coeff * * rebo CH.airebo C C
|
||||
pair_coeff * * rebo CH.rebo C C
|
||||
pair_coeff 1 2 kolmogorov/crespi/z CC.KC C C :pre
|
||||
|
||||
[Description:]
|
||||
@ -59,6 +59,7 @@ package"_Build_package.html doc page for more info.
|
||||
"pair_coeff"_pair_coeff.html,
|
||||
"pair_none"_pair_none.html,
|
||||
"pair_style hybrid/overlay"_pair_hybrid.html,
|
||||
"pair_style drip"_pair_drip.html,
|
||||
"pair_style ilp/graphene/hbn"_pair_ilp_graphene_hbn.html.
|
||||
"pair_style kolmogorov/crespi/full"_pair_kolmogorov_crespi_full.html,
|
||||
"pair_style lebedeva/z"_pair_lebedeva_z.html
|
||||
|
||||
@ -19,7 +19,7 @@ pair_coeff * * none
|
||||
pair_coeff 1 2 lebedeva/z CC.Lebedeva C C :pre
|
||||
|
||||
pair_style hybrid/overlay rebo lebedeva/z 14.0
|
||||
pair_coeff * * rebo CH.airebo C C
|
||||
pair_coeff * * rebo CH.rebo C C
|
||||
pair_coeff 1 2 lebedeva/z CC.Lebedeva C C :pre
|
||||
|
||||
[Description:]
|
||||
@ -53,6 +53,7 @@ package"_Build_package.html doc page for more info.
|
||||
"pair_coeff"_pair_coeff.html,
|
||||
"pair_style none"_pair_none.html,
|
||||
"pair_style hybrid/overlay"_pair_hybrid.html,
|
||||
"pair_style drip"_pair_drip.html,
|
||||
"pair_style ilp/graphene/hbd"_pair_ilp_graphene_hbn.html,
|
||||
"pair_style kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html,
|
||||
"pair_style kolmogorov/crespi/full"_pair_kolmogorov_crespi_full.html.
|
||||
|
||||
@ -30,16 +30,16 @@ args = list of arguments for a particular style :l
|
||||
[Examples:]
|
||||
|
||||
pair_style lj/mdf 2.5 3.0
|
||||
pair_coeff * * 1 1
|
||||
pair_coeff 1 1 1 1.1 2.8 3.0 3.2 :pre
|
||||
pair_coeff * * 1.0 1.0
|
||||
pair_coeff 1 1 1.1 2.8 3.0 3.2 :pre
|
||||
|
||||
pair_style buck 2.5 3.0
|
||||
pair_coeff * * 100.0 1.5 200.0
|
||||
pair_coeff * * 100.0 1.5 200.0 3.0 3.5 :pre
|
||||
|
||||
pair_style lennard/mdf 2.5 3.0
|
||||
pair_coeff * * 1 1
|
||||
pair_coeff 1 1 1 1.1 2.8 3.0 3.2 :pre
|
||||
pair_coeff * * 1.0 1.0
|
||||
pair_coeff 1 1 1021760.3664 2120.317338 3.0 3.2 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -69,11 +69,12 @@ standard 12-6 Lennard-Jones written in the epsilon/sigma form:
|
||||
|
||||
:c,image(Eqs/pair_mdf-4.jpg)
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the pair_coeff command as in the examples above, or in the
|
||||
data file or restart files read by the "read_data"_read_data.html or
|
||||
"read_restart commands"_read_restart.html, or by mixing as described
|
||||
below:
|
||||
Either the first two or all of the following coefficients must be
|
||||
defined for each pair of atoms types via the pair_coeff command as
|
||||
in the examples above, or in the data file read by the
|
||||
"read_data"_read_data.html. The two cutoffs default to the global
|
||||
values and epsilon and sigma can also be determined by mixing as
|
||||
described below:
|
||||
|
||||
epsilon (energy units)
|
||||
sigma (distance units)
|
||||
@ -83,7 +84,9 @@ r_{cut} (distance units) :ul
|
||||
:line
|
||||
|
||||
For the {buck/mdf} pair_style, the potential energy, {E(r)}, is the
|
||||
standard Buckingham potential:
|
||||
standard Buckingham potential with three required coefficients.
|
||||
The two cutoffs can be omitted and default to the corresponding
|
||||
global values:
|
||||
|
||||
:c,image(Eqs/pair_mdf-5.jpg)
|
||||
|
||||
@ -91,19 +94,20 @@ A (energy units)
|
||||
\rho (distance units)
|
||||
C (energy-distance^6 units)
|
||||
r_m (distance units)
|
||||
r_{cut}$ (distance units) :ul
|
||||
r_{cut} (distance units) :ul
|
||||
|
||||
:line
|
||||
|
||||
For the {lennard/mdf} pair_style, the potential energy, {E(r)}, is the
|
||||
standard 12-6 Lennard-Jones written in the $A/B$ form:
|
||||
standard 12-6 Lennard-Jones written in the A/B form:
|
||||
|
||||
:c,image(Eqs/pair_mdf-6.jpg)
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the pair_coeff command as in the examples above, or in the
|
||||
data file or restart files read by the read_data or read_restart
|
||||
commands, or by mixing as described below:
|
||||
data file read by the read_data commands, or by mixing as described below.
|
||||
The two cutoffs default to their global values and must be either both
|
||||
given or both left out:
|
||||
|
||||
A (energy-distance^12 units)
|
||||
B (energy-distance^6 units)
|
||||
@ -115,33 +119,23 @@ r_{cut} (distance units) :ul
|
||||
[Mixing, shift, table, tail correction, restart, rRESPA info]:
|
||||
|
||||
For atom type pairs I,J and I != J, the epsilon and sigma coefficients
|
||||
and cutoff distance for all of the lj/cut pair styles can be mixed.
|
||||
and cutoff distances for the lj/mdf pair style can be mixed.
|
||||
The default mix value is {geometric}. See the "pair_modify" command
|
||||
for details.
|
||||
for details. The other two pair styles buck/mdf and lennard/mdf do not
|
||||
support mixing, so all I,J pairs of coefficients must be specified
|
||||
explicitly.
|
||||
|
||||
All of the {lj/cut} pair styles support the
|
||||
"pair_modify"_pair_modify.html shift option for the energy of the
|
||||
Lennard-Jones portion of the pair interaction.
|
||||
None of the lj/mdf, buck/mdf, or lennard/mdf pair styles supports
|
||||
the "pair_modify"_pair_modify.html shift option or long-range
|
||||
tail corrections to pressure and energy.
|
||||
|
||||
The {lj/cut/coul/long} and {lj/cut/tip4p/long} pair styles support the
|
||||
"pair_modify"_pair_modify.html table option since they can tabulate
|
||||
the short-range portion of the long-range Coulombic interaction.
|
||||
These styles write their information to "binary restart
|
||||
files"_restart.html, so pair_style and pair_coeff commands do not need
|
||||
to be specified in an input script that reads a restart file.
|
||||
|
||||
All of the {lj/cut} pair styles support the
|
||||
"pair_modify"_pair_modify.html tail option for adding a long-range
|
||||
tail correction to the energy and pressure for the Lennard-Jones
|
||||
portion of the pair interaction.
|
||||
|
||||
All of the {lj/cut} pair styles write their information to "binary
|
||||
restart files"_restart.html, so pair_style and pair_coeff commands do
|
||||
not need to be specified in an input script that reads a restart file.
|
||||
|
||||
The {lj/cut} and {lj/cut/coul/long} pair styles support the use of the
|
||||
{inner}, {middle}, and {outer} keywords of the "run_style
|
||||
respa"_run_style.html command, meaning the pairwise forces can be
|
||||
partitioned by distance at different levels of the rRESPA hierarchy.
|
||||
The other styles only support the {pair} keyword of run_style respa.
|
||||
See the "run_style"_run_style.html command for details.
|
||||
These styles can only be used via the {pair} keyword of the "run_style
|
||||
respa"_run_style.html command. They do not support the {inner},
|
||||
{middle}, {outer} keywords.
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -88,4 +88,4 @@ package"_Build_package.html doc page for more info.
|
||||
Physical Review B, 88(18), 184422. (2013).
|
||||
:link(Tranchida5)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau and Thompson,
|
||||
Journal of Computational Physics, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -95,4 +95,4 @@ package"_Build_package.html doc page for more info.
|
||||
|
||||
:link(Tranchida3)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau and Thompson,
|
||||
Journal of Computational Physics, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -70,4 +70,4 @@ package"_Build_package.html doc page for more info.
|
||||
|
||||
:link(Tranchida4)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau, and Thompson,
|
||||
Journal of Computational Physics, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -80,4 +80,4 @@ package"_Build_package.html doc page for more info.
|
||||
|
||||
:link(Tranchida6)
|
||||
[(Tranchida)] Tranchida, Plimpton, Thibaudeau and Thompson,
|
||||
Journal of Computational Physics, (2018).
|
||||
Journal of Computational Physics, 372, 406-425, (2018).
|
||||
|
||||
@ -147,6 +147,8 @@ accelerated styles exist.
|
||||
"dpd/fdt/energy"_pair_dpd_fdt.html - DPD for constant energy and enthalpy
|
||||
"dpd/tstat"_pair_dpd.html - pair-wise DPD thermostatting
|
||||
"dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
|
||||
"e3b"_pair_e3b.html - Explicit-three body (E3B) water model
|
||||
"drip"_pair_drip.html - Dihedral-angle-corrected registry-dependent interlayer potential (DRIP)
|
||||
"eam"_pair_eam.html - embedded atom method (EAM)
|
||||
"eam/alloy"_pair_eam.html - alloy EAM
|
||||
"eam/cd"_pair_eam.html - concentration-dependent EAM
|
||||
@ -174,7 +176,7 @@ accelerated styles exist.
|
||||
"kolmogorov/crespi/full"_pair_kolmogorov_crespi_full.html - Kolmogorov-Crespi (KC) potential with no simplifications
|
||||
"kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html - Kolmogorov-Crespi (KC) potential with normals along z-axis
|
||||
"lcbop"_pair_lcbop.html - long-range bond-order potential (LCBOP)
|
||||
"lebedeva/z"_pair_lebedeva_z.html - Lebedeva inter-layer potential for graphene with normals along z-axis
|
||||
"lebedeva/z"_pair_lebedeva_z.html - Lebedeva interlayer potential for graphene with normals along z-axis
|
||||
"lennard/mdf"_pair_mdf.html - LJ potential in A/B form with a taper function
|
||||
"line/lj"_pair_line_lj.html - LJ potential between line segments
|
||||
"list"_pair_list.html - potential between pairs of atoms explicitly listed in an input file
|
||||
|
||||
@ -31,7 +31,9 @@ Pair Styles :h1
|
||||
pair_dipole
|
||||
pair_dpd
|
||||
pair_dpd_fdt
|
||||
pair_drip
|
||||
pair_dsmc
|
||||
pair_e3b
|
||||
pair_eam
|
||||
pair_edip
|
||||
pair_eff
|
||||
|
||||
@ -26,11 +26,9 @@ coefficients in a way, that it can be read by LAMMPS with the
|
||||
option of "write_data"_write_data.html this can be used to move
|
||||
the Coeffs sections from a data file into a separate file.
|
||||
|
||||
NOTE: The write_coeff command is not yet fully implemented in two
|
||||
respects. First, some pair styles do not yet write their coefficient
|
||||
information into the coeff file. This means you will need to specify
|
||||
that information in your input script that reads the data file, via
|
||||
the "pair_coeff"_pair_coeff.html command.
|
||||
NOTE: The write_coeff command is not yet fully implemented as
|
||||
some pair styles do not output their coefficient information.
|
||||
This means you will need to add/copy this information manually.
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -57,8 +57,10 @@ alchemical
|
||||
AlCu
|
||||
Alderton
|
||||
Alejandre
|
||||
Aleksei
|
||||
alessandro
|
||||
Alessandro
|
||||
ali
|
||||
aliceblue
|
||||
Allinger
|
||||
allocaters
|
||||
@ -87,6 +89,7 @@ anharmonic
|
||||
anharmonicity
|
||||
aniso
|
||||
anisotropic
|
||||
anisotropies
|
||||
anisotropy
|
||||
ansi
|
||||
antiquewhite
|
||||
@ -200,6 +203,7 @@ Berkowitz
|
||||
berlin
|
||||
Berne
|
||||
Bertotti
|
||||
Bessarab
|
||||
Beutler
|
||||
bgq
|
||||
Bh
|
||||
@ -405,6 +409,7 @@ configfile
|
||||
configurational
|
||||
conformational
|
||||
Contrib
|
||||
cooperativity
|
||||
coord
|
||||
Coord
|
||||
CoordN
|
||||
@ -592,6 +597,7 @@ Dmax
|
||||
dmg
|
||||
dmi
|
||||
dnf
|
||||
DNi
|
||||
Dobson
|
||||
Dodds
|
||||
dodgerblue
|
||||
@ -650,6 +656,7 @@ Eacn
|
||||
eam
|
||||
eangle
|
||||
eatom
|
||||
Eb
|
||||
Eba
|
||||
ebond
|
||||
ebook
|
||||
@ -963,6 +970,8 @@ gmail
|
||||
gmake
|
||||
gmask
|
||||
Gmask
|
||||
gneb
|
||||
GNEB
|
||||
googlemail
|
||||
Gordan
|
||||
GPa
|
||||
@ -1130,6 +1139,7 @@ incrementing
|
||||
indenter
|
||||
indenters
|
||||
indianred
|
||||
indices
|
||||
inertiax
|
||||
inertiay
|
||||
inertiaz
|
||||
@ -1156,6 +1166,7 @@ Interparticle
|
||||
interstitials
|
||||
Intr
|
||||
intra
|
||||
intralayer
|
||||
intramolecular
|
||||
ints
|
||||
inv
|
||||
@ -1188,6 +1199,7 @@ Itsets
|
||||
itype
|
||||
itypeN
|
||||
iva
|
||||
Ivanov
|
||||
Ivector
|
||||
Iw
|
||||
ixcm
|
||||
@ -1244,6 +1256,7 @@ jpg
|
||||
JPG
|
||||
jpl
|
||||
Jth
|
||||
jtranch
|
||||
jtype
|
||||
jtypeN
|
||||
Juelich
|
||||
@ -1272,6 +1285,7 @@ Katsnelson
|
||||
Katsura
|
||||
Kaufmann
|
||||
Kawata
|
||||
Kaxiras
|
||||
Kayser
|
||||
kb
|
||||
kB
|
||||
@ -2002,6 +2016,7 @@ ortho
|
||||
orthonormal
|
||||
orthorhombic
|
||||
ot
|
||||
Otype
|
||||
Ouldridge
|
||||
outfile
|
||||
outmost
|
||||
@ -2098,6 +2113,7 @@ picograms
|
||||
picosecond
|
||||
picoseconds
|
||||
pid
|
||||
Pieniazek
|
||||
Pieter
|
||||
pimd
|
||||
Pisarev
|
||||
@ -2368,6 +2384,7 @@ rNEMD
|
||||
ro
|
||||
Rochus
|
||||
Rockett
|
||||
Rodrigues
|
||||
Rohart
|
||||
Ronchetti
|
||||
Rosati
|
||||
@ -2466,6 +2483,7 @@ Shardlow
|
||||
shawn
|
||||
Shen
|
||||
Shenderova
|
||||
Shi
|
||||
Shiga
|
||||
Shinoda
|
||||
shockvel
|
||||
@ -2492,6 +2510,7 @@ sizex
|
||||
sj
|
||||
sjplimp
|
||||
sjtu
|
||||
Skomski
|
||||
skyblue
|
||||
Skylake
|
||||
slateblue
|
||||
@ -2629,6 +2648,7 @@ Tadmor
|
||||
Tafipolsky
|
||||
tagID
|
||||
tagint
|
||||
Tainter
|
||||
Tait
|
||||
taitwater
|
||||
Tajkhorshid
|
||||
@ -2772,6 +2792,7 @@ tt
|
||||
Tt
|
||||
TThis
|
||||
ttm
|
||||
ttol
|
||||
tu
|
||||
Tuckerman
|
||||
tue
|
||||
@ -2844,6 +2865,7 @@ utsa
|
||||
Uttormark
|
||||
uvm
|
||||
uwo
|
||||
Uzdin
|
||||
vacf
|
||||
valent
|
||||
Valeriu
|
||||
@ -2943,7 +2965,7 @@ wB
|
||||
Wbody
|
||||
webpage
|
||||
Weckner
|
||||
WeinenE
|
||||
WeinanE
|
||||
Wennberg
|
||||
Westview
|
||||
wget
|
||||
|
||||
13
examples/SPIN/gneb/README
Normal file
@ -0,0 +1,13 @@
|
||||
Perform geodesic NEB calculations for spin configurations.
|
||||
The two examples are:
|
||||
- the magnetic switching of an iron nanoisland
|
||||
- the collapse of a magnetic skyrmion
|
||||
|
||||
Run those examples as:
|
||||
|
||||
mpirun -np 3 lmp_mpi -in in.gneb.iron -partition 3x1
|
||||
|
||||
You should be able to use any number of replicas >= 3.
|
||||
|
||||
In the interpolate/ directory, a c routine is provided to
|
||||
interpolate the MEP.
|
||||
68
examples/SPIN/gneb/iron/final.iron_spin
Normal file
@ -0,0 +1,68 @@
|
||||
32
|
||||
1 2.2000000000000002e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
2 2.2000000000000002e+00 1.4332499999999999e+00 1.4332499999999999e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
3 2.2000000000000002e+00 2.8664999999999998e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
4 2.2000000000000002e+00 4.2997499999999995e+00 1.4332499999999999e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
5 2.2000000000000002e+00 5.7329999999999997e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
6 2.2000000000000002e+00 7.1662499999999998e+00 1.4332499999999999e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
7 2.2000000000000002e+00 8.5994999999999990e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
8 2.2000000000000002e+00 1.0032750000000000e+01 1.4332499999999999e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
9 2.2000000000000002e+00 0.0000000000000000e+00 2.8664999999999998e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
10 2.2000000000000002e+00 2.8664999999999998e+00 2.8664999999999998e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
11 2.2000000000000002e+00 5.7329999999999997e+00 2.8664999999999998e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
12 2.2000000000000002e+00 8.5994999999999990e+00 2.8664999999999998e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
13 2.2000000000000002e+00 1.4332499999999999e+00 4.2997499999999995e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
14 2.2000000000000002e+00 4.2997499999999995e+00 4.2997499999999995e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
15 2.2000000000000002e+00 7.1662499999999998e+00 4.2997499999999995e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
16 2.2000000000000002e+00 1.0032750000000000e+01 4.2997499999999995e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
17 2.2000000000000002e+00 0.0000000000000000e+00 5.7329999999999997e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
18 2.2000000000000002e+00 1.4332499999999999e+00 7.1662499999999998e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
19 2.2000000000000002e+00 2.8664999999999998e+00 5.7329999999999997e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
20 2.2000000000000002e+00 4.2997499999999995e+00 7.1662499999999998e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
21 2.2000000000000002e+00 5.7329999999999997e+00 5.7329999999999997e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
22 2.2000000000000002e+00 7.1662499999999998e+00 7.1662499999999998e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
23 2.2000000000000002e+00 8.5994999999999990e+00 5.7329999999999997e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
24 2.2000000000000002e+00 1.0032750000000000e+01 7.1662499999999998e+00 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
25 2.2000000000000002e+00 0.0000000000000000e+00 8.5994999999999990e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
26 2.2000000000000002e+00 2.8664999999999998e+00 8.5994999999999990e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
27 2.2000000000000002e+00 5.7329999999999997e+00 8.5994999999999990e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
28 2.2000000000000002e+00 8.5994999999999990e+00 8.5994999999999990e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
29 2.2000000000000002e+00 1.4332499999999999e+00 1.0032750000000000e+01 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
30 2.2000000000000002e+00 4.2997499999999995e+00 1.0032750000000000e+01 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
31 2.2000000000000002e+00 7.1662499999999998e+00 1.0032750000000000e+01 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
32 2.2000000000000002e+00 1.0032750000000000e+01 1.0032750000000000e+01 1.4332499999999999e+00 -1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
50
examples/SPIN/gneb/iron/in.gneb.iron
Normal file
@ -0,0 +1,50 @@
|
||||
|
||||
units metal
|
||||
dimension 3
|
||||
boundary p p f
|
||||
atom_style spin
|
||||
|
||||
# necessary for the serial algorithm (sametag)
|
||||
atom_modify map array
|
||||
|
||||
# setting mass, mag. moments, and interactions for bcc iron
|
||||
# (mass not necessary for fixed lattice calculation)
|
||||
|
||||
read_data initial.iron_spin
|
||||
mass 1 55.845
|
||||
|
||||
pair_style spin/exchange 3.5
|
||||
pair_coeff * * exchange 3.4 0.02726 0.2171 1.841
|
||||
|
||||
neighbor 0.1 bin
|
||||
neigh_modify every 10 check yes delay 20
|
||||
|
||||
fix 1 all precession/spin zeeman 0.1 0.0 0.0 1.0 anisotropy 0.0001 1.0 0.0 0.0
|
||||
fix_modify 1 energy yes
|
||||
fix 3 all neb/spin 1.0
|
||||
|
||||
timestep 0.0001
|
||||
thermo 100
|
||||
|
||||
compute out_mag all spin
|
||||
compute out_pe all pe
|
||||
compute out_ke all ke
|
||||
compute out_temp all temp
|
||||
|
||||
variable magx equal c_out_mag[1]
|
||||
variable magy equal c_out_mag[2]
|
||||
variable magz equal c_out_mag[3]
|
||||
variable magnorm equal c_out_mag[4]
|
||||
variable emag equal c_out_mag[5]
|
||||
|
||||
thermo 100
|
||||
thermo_style custom step time v_magx v_magz v_magnorm etotal
|
||||
thermo_modify format float %20.15g
|
||||
|
||||
compute outsp all property/atom spx spy spz sp fmx fmy fmz
|
||||
variable u universe 1 2 3 4
|
||||
dump 1 all custom 200 dump.$u type x y z c_outsp[1] c_outsp[2] c_outsp[3]
|
||||
|
||||
min_style spin
|
||||
min_modify alpha_damp 1.0 discrete_factor 10.0
|
||||
neb/spin 1.0e-12 1.0e-12 200000 100000 1000 final final.iron_spin verbose
|
||||
82
examples/SPIN/gneb/iron/initial.iron_spin
Normal file
@ -0,0 +1,82 @@
|
||||
LAMMPS data file via write_data, version 4 Jan 2019, timestep = 0
|
||||
|
||||
32 atoms
|
||||
1 atom types
|
||||
|
||||
0.0000000000000000e+00 1.1465999999999999e+01 xlo xhi
|
||||
0.0000000000000000e+00 1.1465999999999999e+01 ylo yhi
|
||||
0.0000000000000000e+00 2.8664999999999998e+00 zlo zhi
|
||||
|
||||
Masses
|
||||
|
||||
1 55.845
|
||||
|
||||
Atoms # spin
|
||||
|
||||
1 1 2.2000000000000002e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
2 1 2.2000000000000002e+00 1.4332499999999999e+00 1.4332499999999999e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
3 1 2.2000000000000002e+00 2.8664999999999998e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
4 1 2.2000000000000002e+00 4.2997499999999995e+00 1.4332499999999999e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
5 1 2.2000000000000002e+00 5.7329999999999997e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
6 1 2.2000000000000002e+00 7.1662499999999998e+00 1.4332499999999999e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
7 1 2.2000000000000002e+00 8.5994999999999990e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
8 1 2.2000000000000002e+00 1.0032750000000000e+01 1.4332499999999999e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
9 1 2.2000000000000002e+00 0.0000000000000000e+00 2.8664999999999998e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
11 1 2.2000000000000002e+00 2.8664999999999998e+00 2.8664999999999998e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
13 1 2.2000000000000002e+00 5.7329999999999997e+00 2.8664999999999998e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
15 1 2.2000000000000002e+00 8.5994999999999990e+00 2.8664999999999998e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
10 1 2.2000000000000002e+00 1.4332499999999999e+00 4.2997499999999995e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
12 1 2.2000000000000002e+00 4.2997499999999995e+00 4.2997499999999995e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
14 1 2.2000000000000002e+00 7.1662499999999998e+00 4.2997499999999995e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
16 1 2.2000000000000002e+00 1.0032750000000000e+01 4.2997499999999995e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
17 1 2.2000000000000002e+00 0.0000000000000000e+00 5.7329999999999997e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
18 1 2.2000000000000002e+00 1.4332499999999999e+00 7.1662499999999998e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
19 1 2.2000000000000002e+00 2.8664999999999998e+00 5.7329999999999997e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
20 1 2.2000000000000002e+00 4.2997499999999995e+00 7.1662499999999998e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
21 1 2.2000000000000002e+00 5.7329999999999997e+00 5.7329999999999997e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
22 1 2.2000000000000002e+00 7.1662499999999998e+00 7.1662499999999998e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
23 1 2.2000000000000002e+00 8.5994999999999990e+00 5.7329999999999997e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
24 1 2.2000000000000002e+00 1.0032750000000000e+01 7.1662499999999998e+00 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
25 1 2.2000000000000002e+00 0.0000000000000000e+00 8.5994999999999990e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
27 1 2.2000000000000002e+00 2.8664999999999998e+00 8.5994999999999990e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
29 1 2.2000000000000002e+00 5.7329999999999997e+00 8.5994999999999990e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
31 1 2.2000000000000002e+00 8.5994999999999990e+00 8.5994999999999990e+00 0.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
26 1 2.2000000000000002e+00 1.4332499999999999e+00 1.0032750000000000e+01 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
28 1 2.2000000000000002e+00 4.2997499999999995e+00 1.0032750000000000e+01 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
30 1 2.2000000000000002e+00 7.1662499999999998e+00 1.0032750000000000e+01 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
32 1 2.2000000000000002e+00 1.0032750000000000e+01 1.0032750000000000e+01 1.4332499999999999e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
|
||||
Velocities
|
||||
|
||||
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
401
examples/SPIN/gneb/skyrmion/final.skyrmion
Normal file
@ -0,0 +1,401 @@
|
||||
400
|
||||
1 2.5 0.0 0.0 0.0 0.0 0.0 1.0
|
||||
2 2.5 0.0 3.0 0.0 0.0 0.0 1.0
|
||||
3 2.5 0.0 6.0 0.0 0.0 0.0 1.0
|
||||
4 2.5 0.0 9.0 0.0 0.0 0.0 1.0
|
||||
5 2.5 0.0 12.0 0.0 0.0 0.0 1.0
|
||||
6 2.5 0.0 15.0 0.0 0.0 0.0 1.0
|
||||
7 2.5 0.0 18.0 0.0 0.0 0.0 1.0
|
||||
8 2.5 0.0 21.0 0.0 0.0 0.0 1.0
|
||||
9 2.5 0.0 24.0 0.0 0.0 0.0 1.0
|
||||
10 2.5 0.0 27.0 0.0 0.0 0.0 1.0
|
||||
11 2.5 0.0 30.0 0.0 0.0 0.0 1.0
|
||||
12 2.5 0.0 33.0 0.0 0.0 0.0 1.0
|
||||
13 2.5 0.0 36.0 0.0 0.0 0.0 1.0
|
||||
14 2.5 0.0 39.0 0.0 0.0 0.0 1.0
|
||||
15 2.5 0.0 42.0 0.0 0.0 0.0 1.0
|
||||
16 2.5 0.0 45.0 0.0 0.0 0.0 1.0
|
||||
17 2.5 0.0 48.0 0.0 0.0 0.0 1.0
|
||||
18 2.5 0.0 51.0 0.0 0.0 0.0 1.0
|
||||
19 2.5 0.0 54.0 0.0 0.0 0.0 1.0
|
||||
20 2.5 0.0 57.0 0.0 0.0 0.0 1.0
|
||||
21 2.5 3.0 0.0 0.0 0.0 0.0 1.0
|
||||
22 2.5 3.0 3.0 0.0 0.0 0.0 1.0
|
||||
23 2.5 3.0 6.0 0.0 0.0 0.0 1.0
|
||||
24 2.5 3.0 9.0 0.0 0.0 0.0 1.0
|
||||
25 2.5 3.0 12.0 0.0 0.0 0.0 1.0
|
||||
26 2.5 3.0 15.0 0.0 0.0 0.0 1.0
|
||||
27 2.5 3.0 18.0 0.0 0.0 0.0 1.0
|
||||
28 2.5 3.0 21.0 0.0 0.0 0.0 1.0
|
||||
29 2.5 3.0 24.0 0.0 0.0 0.0 1.0
|
||||
30 2.5 3.0 27.0 0.0 0.0 0.0 1.0
|
||||
31 2.5 3.0 30.0 0.0 0.0 0.0 1.0
|
||||
32 2.5 3.0 33.0 0.0 0.0 0.0 1.0
|
||||
33 2.5 3.0 36.0 0.0 0.0 0.0 1.0
|
||||
34 2.5 3.0 39.0 0.0 0.0 0.0 1.0
|
||||
35 2.5 3.0 42.0 0.0 0.0 0.0 1.0
|
||||
36 2.5 3.0 45.0 0.0 0.0 0.0 1.0
|
||||
37 2.5 3.0 48.0 0.0 0.0 0.0 1.0
|
||||
38 2.5 3.0 51.0 0.0 0.0 0.0 1.0
|
||||
39 2.5 3.0 54.0 0.0 0.0 0.0 1.0
|
||||
40 2.5 3.0 57.0 0.0 0.0 0.0 1.0
|
||||
41 2.5 6.0 0.0 0.0 0.0 0.0 1.0
|
||||
42 2.5 6.0 3.0 0.0 0.0 0.0 1.0
|
||||
43 2.5 6.0 6.0 0.0 0.0 0.0 1.0
|
||||
44 2.5 6.0 9.0 0.0 0.0 0.0 1.0
|
||||
45 2.5 6.0 12.0 0.0 0.0 0.0 1.0
|
||||
46 2.5 6.0 15.0 0.0 0.0 0.0 1.0
|
||||
47 2.5 6.0 18.0 0.0 0.0 0.0 1.0
|
||||
48 2.5 6.0 21.0 0.0 0.0 0.0 1.0
|
||||
49 2.5 6.0 24.0 0.0 0.0 0.0 1.0
|
||||
50 2.5 6.0 27.0 0.0 0.0 0.0 1.0
|
||||
51 2.5 6.0 30.0 0.0 0.0 0.0 1.0
|
||||
52 2.5 6.0 33.0 0.0 0.0 0.0 1.0
|
||||
53 2.5 6.0 36.0 0.0 0.0 0.0 1.0
|
||||
54 2.5 6.0 39.0 0.0 0.0 0.0 1.0
|
||||
55 2.5 6.0 42.0 0.0 0.0 0.0 1.0
|
||||
56 2.5 6.0 45.0 0.0 0.0 0.0 1.0
|
||||
57 2.5 6.0 48.0 0.0 0.0 0.0 1.0
|
||||
58 2.5 6.0 51.0 0.0 0.0 0.0 1.0
|
||||
59 2.5 6.0 54.0 0.0 0.0 0.0 1.0
|
||||
60 2.5 6.0 57.0 0.0 0.0 0.0 1.0
|
||||
61 2.5 9.0 0.0 0.0 0.0 0.0 1.0
|
||||
62 2.5 9.0 3.0 0.0 0.0 0.0 1.0
|
||||
63 2.5 9.0 6.0 0.0 0.0 0.0 1.0
|
||||
64 2.5 9.0 9.0 0.0 0.0 0.0 1.0
|
||||
65 2.5 9.0 12.0 0.0 0.0 0.0 1.0
|
||||
66 2.5 9.0 15.0 0.0 0.0 0.0 1.0
|
||||
67 2.5 9.0 18.0 0.0 0.0 0.0 1.0
|
||||
68 2.5 9.0 21.0 0.0 0.0 0.0 1.0
|
||||
69 2.5 9.0 24.0 0.0 0.0 0.0 1.0
|
||||
70 2.5 9.0 27.0 0.0 0.0 0.0 1.0
|
||||
71 2.5 9.0 30.0 0.0 0.0 0.0 1.0
|
||||
72 2.5 9.0 33.0 0.0 0.0 0.0 1.0
|
||||
73 2.5 9.0 36.0 0.0 0.0 0.0 1.0
|
||||
74 2.5 9.0 39.0 0.0 0.0 0.0 1.0
|
||||
75 2.5 9.0 42.0 0.0 0.0 0.0 1.0
|
||||
76 2.5 9.0 45.0 0.0 0.0 0.0 1.0
|
||||
77 2.5 9.0 48.0 0.0 0.0 0.0 1.0
|
||||
78 2.5 9.0 51.0 0.0 0.0 0.0 1.0
|
||||
79 2.5 9.0 54.0 0.0 0.0 0.0 1.0
|
||||
80 2.5 9.0 57.0 0.0 0.0 0.0 1.0
|
||||
81 2.5 12.0 0.0 0.0 0.0 0.0 1.0
|
||||
82 2.5 12.0 3.0 0.0 0.0 0.0 1.0
|
||||
83 2.5 12.0 6.0 0.0 0.0 0.0 1.0
|
||||
84 2.5 12.0 9.0 0.0 0.0 0.0 1.0
|
||||
85 2.5 12.0 12.0 0.0 0.0 0.0 1.0
|
||||
86 2.5 12.0 15.0 0.0 0.0 0.0 1.0
|
||||
87 2.5 12.0 18.0 0.0 0.0 0.0 1.0
|
||||
88 2.5 12.0 21.0 0.0 0.0 0.0 1.0
|
||||
89 2.5 12.0 24.0 0.0 0.0 0.0 1.0
|
||||
90 2.5 12.0 27.0 0.0 0.0 0.0 1.0
|
||||
91 2.5 12.0 30.0 0.0 0.0 0.0 1.0
|
||||
92 2.5 12.0 33.0 0.0 0.0 0.0 1.0
|
||||
93 2.5 12.0 36.0 0.0 0.0 0.0 1.0
|
||||
94 2.5 12.0 39.0 0.0 0.0 0.0 1.0
|
||||
95 2.5 12.0 42.0 0.0 0.0 0.0 1.0
|
||||
96 2.5 12.0 45.0 0.0 0.0 0.0 1.0
|
||||
97 2.5 12.0 48.0 0.0 0.0 0.0 1.0
|
||||
98 2.5 12.0 51.0 0.0 0.0 0.0 1.0
|
||||
99 2.5 12.0 54.0 0.0 0.0 0.0 1.0
|
||||
100 2.5 12.0 57.0 0.0 0.0 0.0 1.0
|
||||
101 2.5 15.0 0.0 0.0 0.0 0.0 1.0
|
||||
102 2.5 15.0 3.0 0.0 0.0 0.0 1.0
|
||||
103 2.5 15.0 6.0 0.0 0.0 0.0 1.0
|
||||
104 2.5 15.0 9.0 0.0 0.0 0.0 1.0
|
||||
105 2.5 15.0 12.0 0.0 0.0 0.0 1.0
|
||||
106 2.5 15.0 15.0 0.0 0.0 0.0 1.0
|
||||
107 2.5 15.0 18.0 0.0 0.0 0.0 1.0
|
||||
108 2.5 15.0 21.0 0.0 0.0 0.0 1.0
|
||||
109 2.5 15.0 24.0 0.0 0.0 0.0 1.0
|
||||
110 2.5 15.0 27.0 0.0 0.0 0.0 1.0
|
||||
111 2.5 15.0 30.0 0.0 0.0 0.0 1.0
|
||||
112 2.5 15.0 33.0 0.0 0.0 0.0 1.0
|
||||
113 2.5 15.0 36.0 0.0 0.0 0.0 1.0
|
||||
114 2.5 15.0 39.0 0.0 0.0 0.0 1.0
|
||||
115 2.5 15.0 42.0 0.0 0.0 0.0 1.0
|
||||
116 2.5 15.0 45.0 0.0 0.0 0.0 1.0
|
||||
117 2.5 15.0 48.0 0.0 0.0 0.0 1.0
|
||||
118 2.5 15.0 51.0 0.0 0.0 0.0 1.0
|
||||
119 2.5 15.0 54.0 0.0 0.0 0.0 1.0
|
||||
120 2.5 15.0 57.0 0.0 0.0 0.0 1.0
|
||||
121 2.5 18.0 0.0 0.0 0.0 0.0 1.0
|
||||
122 2.5 18.0 3.0 0.0 0.0 0.0 1.0
|
||||
123 2.5 18.0 6.0 0.0 0.0 0.0 1.0
|
||||
124 2.5 18.0 9.0 0.0 0.0 0.0 1.0
|
||||
125 2.5 18.0 12.0 0.0 0.0 0.0 1.0
|
||||
126 2.5 18.0 15.0 0.0 0.0 0.0 1.0
|
||||
127 2.5 18.0 18.0 0.0 0.0 0.0 1.0
|
||||
128 2.5 18.0 21.0 0.0 0.0 0.0 1.0
|
||||
129 2.5 18.0 24.0 0.0 0.0 0.0 1.0
|
||||
130 2.5 18.0 27.0 0.0 0.0 0.0 1.0
|
||||
131 2.5 18.0 30.0 0.0 0.0 0.0 1.0
|
||||
132 2.5 18.0 33.0 0.0 0.0 0.0 1.0
|
||||
133 2.5 18.0 36.0 0.0 0.0 0.0 1.0
|
||||
134 2.5 18.0 39.0 0.0 0.0 0.0 1.0
|
||||
135 2.5 18.0 42.0 0.0 0.0 0.0 1.0
|
||||
136 2.5 18.0 45.0 0.0 0.0 0.0 1.0
|
||||
137 2.5 18.0 48.0 0.0 0.0 0.0 1.0
|
||||
138 2.5 18.0 51.0 0.0 0.0 0.0 1.0
|
||||
139 2.5 18.0 54.0 0.0 0.0 0.0 1.0
|
||||
140 2.5 18.0 57.0 0.0 0.0 0.0 1.0
|
||||
141 2.5 21.0 0.0 0.0 0.0 0.0 1.0
|
||||
142 2.5 21.0 3.0 0.0 0.0 0.0 1.0
|
||||
143 2.5 21.0 6.0 0.0 0.0 0.0 1.0
|
||||
144 2.5 21.0 9.0 0.0 0.0 0.0 1.0
|
||||
145 2.5 21.0 12.0 0.0 0.0 0.0 1.0
|
||||
146 2.5 21.0 15.0 0.0 0.0 0.0 1.0
|
||||
147 2.5 21.0 18.0 0.0 0.0 0.0 1.0
|
||||
148 2.5 21.0 21.0 0.0 0.0 0.0 1.0
|
||||
149 2.5 21.0 24.0 0.0 0.0 0.0 1.0
|
||||
150 2.5 21.0 27.0 0.0 0.0 0.0 1.0
|
||||
151 2.5 21.0 30.0 0.0 0.0 0.0 1.0
|
||||
152 2.5 21.0 33.0 0.0 0.0 0.0 1.0
|
||||
153 2.5 21.0 36.0 0.0 0.0 0.0 1.0
|
||||
154 2.5 21.0 39.0 0.0 0.0 0.0 1.0
|
||||
155 2.5 21.0 42.0 0.0 0.0 0.0 1.0
|
||||
156 2.5 21.0 45.0 0.0 0.0 0.0 1.0
|
||||
157 2.5 21.0 48.0 0.0 0.0 0.0 1.0
|
||||
158 2.5 21.0 51.0 0.0 0.0 0.0 1.0
|
||||
159 2.5 21.0 54.0 0.0 0.0 0.0 1.0
|
||||
160 2.5 21.0 57.0 0.0 0.0 0.0 1.0
|
||||
161 2.5 24.0 0.0 0.0 0.0 0.0 1.0
|
||||
162 2.5 24.0 3.0 0.0 0.0 0.0 1.0
|
||||
163 2.5 24.0 6.0 0.0 0.0 0.0 1.0
|
||||
164 2.5 24.0 9.0 0.0 0.0 0.0 1.0
|
||||
165 2.5 24.0 12.0 0.0 0.0 0.0 1.0
|
||||
166 2.5 24.0 15.0 0.0 0.0 0.0 1.0
|
||||
167 2.5 24.0 18.0 0.0 0.0 0.0 1.0
|
||||
168 2.5 24.0 21.0 0.0 0.0 0.0 1.0
|
||||
169 2.5 24.0 24.0 0.0 0.0 0.0 1.0
|
||||
170 2.5 24.0 27.0 0.0 0.0 0.0 1.0
|
||||
171 2.5 24.0 30.0 0.0 0.0 0.0 1.0
|
||||
172 2.5 24.0 33.0 0.0 0.0 0.0 1.0
|
||||
173 2.5 24.0 36.0 0.0 0.0 0.0 1.0
|
||||
174 2.5 24.0 39.0 0.0 0.0 0.0 1.0
|
||||
175 2.5 24.0 42.0 0.0 0.0 0.0 1.0
|
||||
176 2.5 24.0 45.0 0.0 0.0 0.0 1.0
|
||||
177 2.5 24.0 48.0 0.0 0.0 0.0 1.0
|
||||
178 2.5 24.0 51.0 0.0 0.0 0.0 1.0
|
||||
179 2.5 24.0 54.0 0.0 0.0 0.0 1.0
|
||||
180 2.5 24.0 57.0 0.0 0.0 0.0 1.0
|
||||
181 2.5 27.0 0.0 0.0 0.0 0.0 1.0
|
||||
182 2.5 27.0 3.0 0.0 0.0 0.0 1.0
|
||||
183 2.5 27.0 6.0 0.0 0.0 0.0 1.0
|
||||
184 2.5 27.0 9.0 0.0 0.0 0.0 1.0
|
||||
185 2.5 27.0 12.0 0.0 0.0 0.0 1.0
|
||||
186 2.5 27.0 15.0 0.0 0.0 0.0 1.0
|
||||
187 2.5 27.0 18.0 0.0 0.0 0.0 1.0
|
||||
188 2.5 27.0 21.0 0.0 0.0 0.0 1.0
|
||||
189 2.5 27.0 24.0 0.0 0.0 0.0 1.0
|
||||
190 2.5 27.0 27.0 0.0 0.0 0.0 1.0
|
||||
191 2.5 27.0 30.0 0.0 0.0 0.0 1.0
|
||||
192 2.5 27.0 33.0 0.0 0.0 0.0 1.0
|
||||
193 2.5 27.0 36.0 0.0 0.0 0.0 1.0
|
||||
194 2.5 27.0 39.0 0.0 0.0 0.0 1.0
|
||||
195 2.5 27.0 42.0 0.0 0.0 0.0 1.0
|
||||
196 2.5 27.0 45.0 0.0 0.0 0.0 1.0
|
||||
197 2.5 27.0 48.0 0.0 0.0 0.0 1.0
|
||||
198 2.5 27.0 51.0 0.0 0.0 0.0 1.0
|
||||
199 2.5 27.0 54.0 0.0 0.0 0.0 1.0
|
||||
200 2.5 27.0 57.0 0.0 0.0 0.0 1.0
|
||||
201 2.5 30.0 0.0 0.0 0.0 0.0 1.0
|
||||
202 2.5 30.0 3.0 0.0 0.0 0.0 1.0
|
||||
203 2.5 30.0 6.0 0.0 0.0 0.0 1.0
|
||||
204 2.5 30.0 9.0 0.0 0.0 0.0 1.0
|
||||
205 2.5 30.0 12.0 0.0 0.0 0.0 1.0
|
||||
206 2.5 30.0 15.0 0.0 0.0 0.0 1.0
|
||||
207 2.5 30.0 18.0 0.0 0.0 0.0 1.0
|
||||
208 2.5 30.0 21.0 0.0 0.0 0.0 1.0
|
||||
209 2.5 30.0 24.0 0.0 0.0 0.0 1.0
|
||||
210 2.5 30.0 27.0 0.0 0.0 0.0 1.0
|
||||
211 2.5 30.0 30.0 0.0 0.0 0.0 1.0
|
||||
212 2.5 30.0 33.0 0.0 0.0 0.0 1.0
|
||||
213 2.5 30.0 36.0 0.0 0.0 0.0 1.0
|
||||
214 2.5 30.0 39.0 0.0 0.0 0.0 1.0
|
||||
215 2.5 30.0 42.0 0.0 0.0 0.0 1.0
|
||||
216 2.5 30.0 45.0 0.0 0.0 0.0 1.0
|
||||
217 2.5 30.0 48.0 0.0 0.0 0.0 1.0
|
||||
218 2.5 30.0 51.0 0.0 0.0 0.0 1.0
|
||||
219 2.5 30.0 54.0 0.0 0.0 0.0 1.0
|
||||
220 2.5 30.0 57.0 0.0 0.0 0.0 1.0
|
||||
221 2.5 33.0 0.0 0.0 0.0 0.0 1.0
|
||||
222 2.5 33.0 3.0 0.0 0.0 0.0 1.0
|
||||
223 2.5 33.0 6.0 0.0 0.0 0.0 1.0
|
||||
224 2.5 33.0 9.0 0.0 0.0 0.0 1.0
|
||||
225 2.5 33.0 12.0 0.0 0.0 0.0 1.0
|
||||
226 2.5 33.0 15.0 0.0 0.0 0.0 1.0
|
||||
227 2.5 33.0 18.0 0.0 0.0 0.0 1.0
|
||||
228 2.5 33.0 21.0 0.0 0.0 0.0 1.0
|
||||
229 2.5 33.0 24.0 0.0 0.0 0.0 1.0
|
||||
230 2.5 33.0 27.0 0.0 0.0 0.0 1.0
|
||||
231 2.5 33.0 30.0 0.0 0.0 0.0 1.0
|
||||
232 2.5 33.0 33.0 0.0 0.0 0.0 1.0
|
||||
233 2.5 33.0 36.0 0.0 0.0 0.0 1.0
|
||||
234 2.5 33.0 39.0 0.0 0.0 0.0 1.0
|
||||
235 2.5 33.0 42.0 0.0 0.0 0.0 1.0
|
||||
236 2.5 33.0 45.0 0.0 0.0 0.0 1.0
|
||||
237 2.5 33.0 48.0 0.0 0.0 0.0 1.0
|
||||
238 2.5 33.0 51.0 0.0 0.0 0.0 1.0
|
||||
239 2.5 33.0 54.0 0.0 0.0 0.0 1.0
|
||||
240 2.5 33.0 57.0 0.0 0.0 0.0 1.0
|
||||
241 2.5 36.0 0.0 0.0 0.0 0.0 1.0
|
||||
242 2.5 36.0 3.0 0.0 0.0 0.0 1.0
|
||||
243 2.5 36.0 6.0 0.0 0.0 0.0 1.0
|
||||
244 2.5 36.0 9.0 0.0 0.0 0.0 1.0
|
||||
245 2.5 36.0 12.0 0.0 0.0 0.0 1.0
|
||||
246 2.5 36.0 15.0 0.0 0.0 0.0 1.0
|
||||
247 2.5 36.0 18.0 0.0 0.0 0.0 1.0
|
||||
248 2.5 36.0 21.0 0.0 0.0 0.0 1.0
|
||||
249 2.5 36.0 24.0 0.0 0.0 0.0 1.0
|
||||
250 2.5 36.0 27.0 0.0 0.0 0.0 1.0
|
||||
251 2.5 36.0 30.0 0.0 0.0 0.0 1.0
|
||||
252 2.5 36.0 33.0 0.0 0.0 0.0 1.0
|
||||
253 2.5 36.0 36.0 0.0 0.0 0.0 1.0
|
||||
254 2.5 36.0 39.0 0.0 0.0 0.0 1.0
|
||||
255 2.5 36.0 42.0 0.0 0.0 0.0 1.0
|
||||
256 2.5 36.0 45.0 0.0 0.0 0.0 1.0
|
||||
257 2.5 36.0 48.0 0.0 0.0 0.0 1.0
|
||||
258 2.5 36.0 51.0 0.0 0.0 0.0 1.0
|
||||
259 2.5 36.0 54.0 0.0 0.0 0.0 1.0
|
||||
260 2.5 36.0 57.0 0.0 0.0 0.0 1.0
|
||||
261 2.5 39.0 0.0 0.0 0.0 0.0 1.0
|
||||
262 2.5 39.0 3.0 0.0 0.0 0.0 1.0
|
||||
263 2.5 39.0 6.0 0.0 0.0 0.0 1.0
|
||||
264 2.5 39.0 9.0 0.0 0.0 0.0 1.0
|
||||
265 2.5 39.0 12.0 0.0 0.0 0.0 1.0
|
||||
266 2.5 39.0 15.0 0.0 0.0 0.0 1.0
|
||||
267 2.5 39.0 18.0 0.0 0.0 0.0 1.0
|
||||
268 2.5 39.0 21.0 0.0 0.0 0.0 1.0
|
||||
269 2.5 39.0 24.0 0.0 0.0 0.0 1.0
|
||||
270 2.5 39.0 27.0 0.0 0.0 0.0 1.0
|
||||
271 2.5 39.0 30.0 0.0 0.0 0.0 1.0
|
||||
272 2.5 39.0 33.0 0.0 0.0 0.0 1.0
|
||||
273 2.5 39.0 36.0 0.0 0.0 0.0 1.0
|
||||
274 2.5 39.0 39.0 0.0 0.0 0.0 1.0
|
||||
275 2.5 39.0 42.0 0.0 0.0 0.0 1.0
|
||||
276 2.5 39.0 45.0 0.0 0.0 0.0 1.0
|
||||
277 2.5 39.0 48.0 0.0 0.0 0.0 1.0
|
||||
278 2.5 39.0 51.0 0.0 0.0 0.0 1.0
|
||||
279 2.5 39.0 54.0 0.0 0.0 0.0 1.0
|
||||
280 2.5 39.0 57.0 0.0 0.0 0.0 1.0
|
||||
281 2.5 42.0 0.0 0.0 0.0 0.0 1.0
|
||||
282 2.5 42.0 3.0 0.0 0.0 0.0 1.0
|
||||
283 2.5 42.0 6.0 0.0 0.0 0.0 1.0
|
||||
284 2.5 42.0 9.0 0.0 0.0 0.0 1.0
|
||||
285 2.5 42.0 12.0 0.0 0.0 0.0 1.0
|
||||
286 2.5 42.0 15.0 0.0 0.0 0.0 1.0
|
||||
287 2.5 42.0 18.0 0.0 0.0 0.0 1.0
|
||||
288 2.5 42.0 21.0 0.0 0.0 0.0 1.0
|
||||
289 2.5 42.0 24.0 0.0 0.0 0.0 1.0
|
||||
290 2.5 42.0 27.0 0.0 0.0 0.0 1.0
|
||||
291 2.5 42.0 30.0 0.0 0.0 0.0 1.0
|
||||
292 2.5 42.0 33.0 0.0 0.0 0.0 1.0
|
||||
293 2.5 42.0 36.0 0.0 0.0 0.0 1.0
|
||||
294 2.5 42.0 39.0 0.0 0.0 0.0 1.0
|
||||
295 2.5 42.0 42.0 0.0 0.0 0.0 1.0
|
||||
296 2.5 42.0 45.0 0.0 0.0 0.0 1.0
|
||||
297 2.5 42.0 48.0 0.0 0.0 0.0 1.0
|
||||
298 2.5 42.0 51.0 0.0 0.0 0.0 1.0
|
||||
299 2.5 42.0 54.0 0.0 0.0 0.0 1.0
|
||||
300 2.5 42.0 57.0 0.0 0.0 0.0 1.0
|
||||
301 2.5 45.0 0.0 0.0 0.0 0.0 1.0
|
||||
302 2.5 45.0 3.0 0.0 0.0 0.0 1.0
|
||||
303 2.5 45.0 6.0 0.0 0.0 0.0 1.0
|
||||
304 2.5 45.0 9.0 0.0 0.0 0.0 1.0
|
||||
305 2.5 45.0 12.0 0.0 0.0 0.0 1.0
|
||||
306 2.5 45.0 15.0 0.0 0.0 0.0 1.0
|
||||
307 2.5 45.0 18.0 0.0 0.0 0.0 1.0
|
||||
308 2.5 45.0 21.0 0.0 0.0 0.0 1.0
|
||||
309 2.5 45.0 24.0 0.0 0.0 0.0 1.0
|
||||
310 2.5 45.0 27.0 0.0 0.0 0.0 1.0
|
||||
311 2.5 45.0 30.0 0.0 0.0 0.0 1.0
|
||||
312 2.5 45.0 33.0 0.0 0.0 0.0 1.0
|
||||
313 2.5 45.0 36.0 0.0 0.0 0.0 1.0
|
||||
314 2.5 45.0 39.0 0.0 0.0 0.0 1.0
|
||||
315 2.5 45.0 42.0 0.0 0.0 0.0 1.0
|
||||
316 2.5 45.0 45.0 0.0 0.0 0.0 1.0
|
||||
317 2.5 45.0 48.0 0.0 0.0 0.0 1.0
|
||||
318 2.5 45.0 51.0 0.0 0.0 0.0 1.0
|
||||
319 2.5 45.0 54.0 0.0 0.0 0.0 1.0
|
||||
320 2.5 45.0 57.0 0.0 0.0 0.0 1.0
|
||||
321 2.5 48.0 0.0 0.0 0.0 0.0 1.0
|
||||
322 2.5 48.0 3.0 0.0 0.0 0.0 1.0
|
||||
323 2.5 48.0 6.0 0.0 0.0 0.0 1.0
|
||||
324 2.5 48.0 9.0 0.0 0.0 0.0 1.0
|
||||
325 2.5 48.0 12.0 0.0 0.0 0.0 1.0
|
||||
326 2.5 48.0 15.0 0.0 0.0 0.0 1.0
|
||||
327 2.5 48.0 18.0 0.0 0.0 0.0 1.0
|
||||
328 2.5 48.0 21.0 0.0 0.0 0.0 1.0
|
||||
329 2.5 48.0 24.0 0.0 0.0 0.0 1.0
|
||||
330 2.5 48.0 27.0 0.0 0.0 0.0 1.0
|
||||
331 2.5 48.0 30.0 0.0 0.0 0.0 1.0
|
||||
332 2.5 48.0 33.0 0.0 0.0 0.0 1.0
|
||||
333 2.5 48.0 36.0 0.0 0.0 0.0 1.0
|
||||
334 2.5 48.0 39.0 0.0 0.0 0.0 1.0
|
||||
335 2.5 48.0 42.0 0.0 0.0 0.0 1.0
|
||||
336 2.5 48.0 45.0 0.0 0.0 0.0 1.0
|
||||
337 2.5 48.0 48.0 0.0 0.0 0.0 1.0
|
||||
338 2.5 48.0 51.0 0.0 0.0 0.0 1.0
|
||||
339 2.5 48.0 54.0 0.0 0.0 0.0 1.0
|
||||
340 2.5 48.0 57.0 0.0 0.0 0.0 1.0
|
||||
341 2.5 51.0 0.0 0.0 0.0 0.0 1.0
|
||||
342 2.5 51.0 3.0 0.0 0.0 0.0 1.0
|
||||
343 2.5 51.0 6.0 0.0 0.0 0.0 1.0
|
||||
344 2.5 51.0 9.0 0.0 0.0 0.0 1.0
|
||||
345 2.5 51.0 12.0 0.0 0.0 0.0 1.0
|
||||
346 2.5 51.0 15.0 0.0 0.0 0.0 1.0
|
||||
347 2.5 51.0 18.0 0.0 0.0 0.0 1.0
|
||||
348 2.5 51.0 21.0 0.0 0.0 0.0 1.0
|
||||
349 2.5 51.0 24.0 0.0 0.0 0.0 1.0
|
||||
350 2.5 51.0 27.0 0.0 0.0 0.0 1.0
|
||||
351 2.5 51.0 30.0 0.0 0.0 0.0 1.0
|
||||
352 2.5 51.0 33.0 0.0 0.0 0.0 1.0
|
||||
353 2.5 51.0 36.0 0.0 0.0 0.0 1.0
|
||||
354 2.5 51.0 39.0 0.0 0.0 0.0 1.0
|
||||
355 2.5 51.0 42.0 0.0 0.0 0.0 1.0
|
||||
356 2.5 51.0 45.0 0.0 0.0 0.0 1.0
|
||||
357 2.5 51.0 48.0 0.0 0.0 0.0 1.0
|
||||
358 2.5 51.0 51.0 0.0 0.0 0.0 1.0
|
||||
359 2.5 51.0 54.0 0.0 0.0 0.0 1.0
|
||||
360 2.5 51.0 57.0 0.0 0.0 0.0 1.0
|
||||
361 2.5 54.0 0.0 0.0 0.0 0.0 1.0
|
||||
362 2.5 54.0 3.0 0.0 0.0 0.0 1.0
|
||||
363 2.5 54.0 6.0 0.0 0.0 0.0 1.0
|
||||
364 2.5 54.0 9.0 0.0 0.0 0.0 1.0
|
||||
365 2.5 54.0 12.0 0.0 0.0 0.0 1.0
|
||||
366 2.5 54.0 15.0 0.0 0.0 0.0 1.0
|
||||
367 2.5 54.0 18.0 0.0 0.0 0.0 1.0
|
||||
368 2.5 54.0 21.0 0.0 0.0 0.0 1.0
|
||||
369 2.5 54.0 24.0 0.0 0.0 0.0 1.0
|
||||
370 2.5 54.0 27.0 0.0 0.0 0.0 1.0
|
||||
371 2.5 54.0 30.0 0.0 0.0 0.0 1.0
|
||||
372 2.5 54.0 33.0 0.0 0.0 0.0 1.0
|
||||
373 2.5 54.0 36.0 0.0 0.0 0.0 1.0
|
||||
374 2.5 54.0 39.0 0.0 0.0 0.0 1.0
|
||||
375 2.5 54.0 42.0 0.0 0.0 0.0 1.0
|
||||
376 2.5 54.0 45.0 0.0 0.0 0.0 1.0
|
||||
377 2.5 54.0 48.0 0.0 0.0 0.0 1.0
|
||||
378 2.5 54.0 51.0 0.0 0.0 0.0 1.0
|
||||
379 2.5 54.0 54.0 0.0 0.0 0.0 1.0
|
||||
380 2.5 54.0 57.0 0.0 0.0 0.0 1.0
|
||||
381 2.5 57.0 0.0 0.0 0.0 0.0 1.0
|
||||
382 2.5 57.0 3.0 0.0 0.0 0.0 1.0
|
||||
383 2.5 57.0 6.0 0.0 0.0 0.0 1.0
|
||||
384 2.5 57.0 9.0 0.0 0.0 0.0 1.0
|
||||
385 2.5 57.0 12.0 0.0 0.0 0.0 1.0
|
||||
386 2.5 57.0 15.0 0.0 0.0 0.0 1.0
|
||||
387 2.5 57.0 18.0 0.0 0.0 0.0 1.0
|
||||
388 2.5 57.0 21.0 0.0 0.0 0.0 1.0
|
||||
389 2.5 57.0 24.0 0.0 0.0 0.0 1.0
|
||||
390 2.5 57.0 27.0 0.0 0.0 0.0 1.0
|
||||
391 2.5 57.0 30.0 0.0 0.0 0.0 1.0
|
||||
392 2.5 57.0 33.0 0.0 0.0 0.0 1.0
|
||||
393 2.5 57.0 36.0 0.0 0.0 0.0 1.0
|
||||
394 2.5 57.0 39.0 0.0 0.0 0.0 1.0
|
||||
395 2.5 57.0 42.0 0.0 0.0 0.0 1.0
|
||||
396 2.5 57.0 45.0 0.0 0.0 0.0 1.0
|
||||
397 2.5 57.0 48.0 0.0 0.0 0.0 1.0
|
||||
398 2.5 57.0 51.0 0.0 0.0 0.0 1.0
|
||||
399 2.5 57.0 54.0 0.0 0.0 0.0 1.0
|
||||
400 2.5 57.0 57.0 0.0 0.0 0.0 1.0
|
||||
47
examples/SPIN/gneb/skyrmion/in.gneb.skyrmion
Normal file
@ -0,0 +1,47 @@
|
||||
|
||||
units metal
|
||||
dimension 3
|
||||
boundary p p f
|
||||
atom_style spin
|
||||
|
||||
# necessary for the serial algorithm (sametag)
|
||||
atom_modify map array
|
||||
|
||||
# setting mass, mag. moments, and interactions for bcc iron
|
||||
# (mass not necessary for fixed lattice calculation)
|
||||
|
||||
read_data initial.skyrmion
|
||||
mass 1 55.845
|
||||
|
||||
pair_style hybrid/overlay spin/exchange 3.1 spin/dmi 3.1
|
||||
pair_coeff * * spin/exchange exchange 3.1 0.01593 0.06626915552 1.211
|
||||
pair_coeff * * spin/dmi dmi 3.1 0.12e-03 0.0 0.0 1.0
|
||||
|
||||
neighbor 0.1 bin
|
||||
neigh_modify every 10 check yes delay 20
|
||||
|
||||
fix 1 all precession/spin zeeman 0.0 0.0 0.0 1.0 anisotropy 5e-05 0.0 0.0 1.0
|
||||
fix_modify 1 energy yes
|
||||
fix 2 all langevin/spin 0.0 0.0 21
|
||||
fix 3 all neb/spin 1.0
|
||||
|
||||
timestep 0.0001
|
||||
|
||||
compute out_mag all spin
|
||||
variable magx equal c_out_mag[1]
|
||||
variable magy equal c_out_mag[2]
|
||||
variable magz equal c_out_mag[3]
|
||||
variable magnorm equal c_out_mag[4]
|
||||
variable emag equal c_out_mag[5]
|
||||
|
||||
thermo 100
|
||||
thermo_style custom step time v_magx v_magz v_magnorm etotal
|
||||
thermo_modify format float %20.15g
|
||||
|
||||
compute outsp all property/atom spx spy spz sp fmx fmy fmz
|
||||
variable u universe 1 2 3 4
|
||||
dump 1 all custom 1 dump.$u type x y z c_outsp[1] c_outsp[2] c_outsp[3]
|
||||
|
||||
min_style spin
|
||||
min_modify alpha_damp 1.0 discrete_factor 10.0
|
||||
neb/spin 1.0e-9 1.0e-9 10000 10000 10 final final.skyrmion
|
||||
818
examples/SPIN/gneb/skyrmion/initial.skyrmion
Normal file
@ -0,0 +1,818 @@
|
||||
LAMMPS data file via write_data, version 28 Feb 2019, timestep = 6
|
||||
|
||||
400 atoms
|
||||
1 atom types
|
||||
|
||||
0.0000000000000000e+00 6.0000000000000000e+01 xlo xhi
|
||||
0.0000000000000000e+00 6.0000000000000000e+01 ylo yhi
|
||||
0.0000000000000000e+00 3.0000000000000000e+00 zlo zhi
|
||||
|
||||
Masses
|
||||
|
||||
1 55.845
|
||||
|
||||
Atoms # spin
|
||||
|
||||
1 1 2.5000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -3.9693242391277868e-03 -3.9693242391277929e-03 9.9998424434096433e-01 0 0 0
|
||||
21 1 2.5000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.1868011343002482e-02 -4.8145058779812530e-03 9.9991798205648519e-01 0 0 0
|
||||
41 1 2.5000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.9561861499557517e-02 -6.5828744882500201e-03 9.9978697697966845e-01 0 0 0
|
||||
61 1 2.5000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -2.6644762521588476e-02 -9.3989438861432541e-03 9.9960077855311480e-01 0 0 0
|
||||
81 1 2.5000000000000000e+00 1.2000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 -3.2364838887478299e-02 -1.3362272507461704e-02 9.9938679542868891e-01 0 0 0
|
||||
101 1 2.5000000000000000e+00 1.5000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 -3.5634992015801843e-02 -1.8429703183501425e-02 9.9919492261750509e-01 0 0 0
|
||||
121 1 2.5000000000000000e+00 1.8000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 -3.5235119566844247e-02 -2.4270277420221115e-02 9.9908430073895971e-01 0 0 0
|
||||
141 1 2.5000000000000000e+00 2.1000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 -3.0237916900163156e-02 -3.0163850736159143e-02 9.9908748890690546e-01 0 0 0
|
||||
161 1 2.5000000000000000e+00 2.4000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 -2.0551704657275890e-02 -3.5058787503171429e-02 9.9917391321755789e-01 0 0 0
|
||||
181 1 2.5000000000000000e+00 2.7000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 -7.2971667669136115e-03 -3.7860607272964066e-02 9.9925638640646097e-01 0 0 0
|
||||
201 1 2.5000000000000000e+00 3.0000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 7.2971667669136028e-03 -3.7860607272964066e-02 9.9925638640646086e-01 0 0 0
|
||||
221 1 2.5000000000000000e+00 3.3000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 2.0551704657275901e-02 -3.5058787503171443e-02 9.9917391321755789e-01 0 0 0
|
||||
241 1 2.5000000000000000e+00 3.6000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 3.0237916900163156e-02 -3.0163850736159153e-02 9.9908748890690535e-01 0 0 0
|
||||
261 1 2.5000000000000000e+00 3.9000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 3.5235119566844234e-02 -2.4270277420221108e-02 9.9908430073895960e-01 0 0 0
|
||||
281 1 2.5000000000000000e+00 4.2000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 3.5634992015801829e-02 -1.8429703183501414e-02 9.9919492261750498e-01 0 0 0
|
||||
301 1 2.5000000000000000e+00 4.5000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 3.2364838887478306e-02 -1.3362272507461704e-02 9.9938679542868891e-01 0 0 0
|
||||
321 1 2.5000000000000000e+00 4.8000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 2.6644762521588494e-02 -9.3989438861432611e-03 9.9960077855311491e-01 0 0 0
|
||||
341 1 2.5000000000000000e+00 5.1000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 1.9561861499557517e-02 -6.5828744882500201e-03 9.9978697697966856e-01 0 0 0
|
||||
361 1 2.5000000000000000e+00 5.4000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 1.1868011343002482e-02 -4.8145058779812547e-03 9.9991798205648508e-01 0 0 0
|
||||
381 1 2.5000000000000000e+00 5.7000000000000000e+01 0.0000000000000000e+00 0.0000000000000000e+00 3.9693242391277929e-03 -3.9693242391277937e-03 9.9998424434096445e-01 0 0 0
|
||||
2 1 2.5000000000000000e+00 0.0000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 -4.8145058779812512e-03 -1.1868011343002475e-02 9.9991798205648519e-01 0 0 0
|
||||
22 1 2.5000000000000000e+00 3.0000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 -1.4489047587394138e-02 -1.4489047587394138e-02 9.9979004545955574e-01 0 0 0
|
||||
42 1 2.5000000000000000e+00 6.0000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 -2.4184841732588187e-02 -2.0009637034407928e-02 9.9950723251816487e-01 0 0 0
|
||||
62 1 2.5000000000000000e+00 9.0000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 -3.3534698701154796e-02 -2.8894018478272422e-02 9.9901979944303421e-01 0 0 0
|
||||
82 1 2.5000000000000000e+00 1.2000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 -4.1631298256624205e-02 -4.1569375222726884e-02 9.9826791095830603e-01 0 0 0
|
||||
102 1 2.5000000000000000e+00 1.5000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 -4.6947676140268457e-02 -5.8031121465001792e-02 9.9721026100143129e-01 0 0 0
|
||||
122 1 2.5000000000000000e+00 1.8000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 -4.7535409319668050e-02 -7.7312985281705895e-02 9.9587302763336383e-01 0 0 0
|
||||
142 1 2.5000000000000000e+00 2.1000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 -4.1653952417990837e-02 -9.7059251840902777e-02 9.9440658177630958e-01 0 0 0
|
||||
162 1 2.5000000000000000e+00 2.4000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 -2.8752729368399305e-02 -1.1365104497068100e-01 9.9310458690459180e-01 0 0 0
|
||||
182 1 2.5000000000000000e+00 2.7000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 -1.0293413501576094e-02 -1.2321728304286263e-01 9.9232633079951105e-01 0 0 0
|
||||
202 1 2.5000000000000000e+00 3.0000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 1.0293413501576086e-02 -1.2321728304286261e-01 9.9232633079951116e-01 0 0 0
|
||||
222 1 2.5000000000000000e+00 3.3000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 2.8752729368399291e-02 -1.1365104497068100e-01 9.9310458690459180e-01 0 0 0
|
||||
242 1 2.5000000000000000e+00 3.6000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 4.1653952417990824e-02 -9.7059251840902777e-02 9.9440658177630958e-01 0 0 0
|
||||
262 1 2.5000000000000000e+00 3.9000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 4.7535409319668057e-02 -7.7312985281705895e-02 9.9587302763336383e-01 0 0 0
|
||||
282 1 2.5000000000000000e+00 4.2000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 4.6947676140268443e-02 -5.8031121465001792e-02 9.9721026100143140e-01 0 0 0
|
||||
302 1 2.5000000000000000e+00 4.5000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 4.1631298256624191e-02 -4.1569375222726877e-02 9.9826791095830592e-01 0 0 0
|
||||
322 1 2.5000000000000000e+00 4.8000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 3.3534698701154809e-02 -2.8894018478272433e-02 9.9901979944303410e-01 0 0 0
|
||||
342 1 2.5000000000000000e+00 5.1000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 2.4184841732588204e-02 -2.0009637034407945e-02 9.9950723251816487e-01 0 0 0
|
||||
362 1 2.5000000000000000e+00 5.4000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 1.4489047587394149e-02 -1.4489047587394138e-02 9.9979004545955585e-01 0 0 0
|
||||
382 1 2.5000000000000000e+00 5.7000000000000000e+01 3.0000000000000000e+00 0.0000000000000000e+00 4.8145058779812547e-03 -1.1868011343002482e-02 9.9991798205648519e-01 0 0 0
|
||||
3 1 2.5000000000000000e+00 0.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 -6.5828744882500158e-03 -1.9561861499557527e-02 9.9978697697966856e-01 0 0 0
|
||||
23 1 2.5000000000000000e+00 3.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 -2.0009637034407932e-02 -2.4184841732588200e-02 9.9950723251816498e-01 0 0 0
|
||||
43 1 2.5000000000000000e+00 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 -3.4047077037887570e-02 -3.4047077037887577e-02 9.9884012388887977e-01 0 0 0
|
||||
63 1 2.5000000000000000e+00 9.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 -4.8498220596720307e-02 -5.0241530269051260e-02 9.9755887607457838e-01 0 0 0
|
||||
83 1 2.5000000000000000e+00 1.2000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 -6.2196104012276265e-02 -7.3954811425103587e-02 9.9532021506285684e-01 0 0 0
|
||||
103 1 2.5000000000000000e+00 1.5000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 -7.2649992877525826e-02 -1.0567933713226435e-01 9.9174283775491956e-01 0 0 0
|
||||
123 1 2.5000000000000000e+00 1.8000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 -7.6126593015943808e-02 -1.4398087111736477e-01 9.8664798717073865e-01 0 0 0
|
||||
143 1 2.5000000000000000e+00 2.1000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 -6.8709104650143085e-02 -1.8428174194944069e-01 9.8046891767268973e-01 0 0 0
|
||||
163 1 2.5000000000000000e+00 2.4000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 -4.8457456104349643e-02 -2.1884669159068457e-01 9.7455528346405618e-01 0 0 0
|
||||
183 1 2.5000000000000000e+00 2.7000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 -1.7543173966404597e-02 -2.3902270727461428e-01 9.7085548999544657e-01 0 0 0
|
||||
203 1 2.5000000000000000e+00 3.0000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 1.7543173966404587e-02 -2.3902270727461422e-01 9.7085548999544646e-01 0 0 0
|
||||
223 1 2.5000000000000000e+00 3.3000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 4.8457456104349608e-02 -2.1884669159068454e-01 9.7455528346405618e-01 0 0 0
|
||||
243 1 2.5000000000000000e+00 3.6000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 6.8709104650143044e-02 -1.8428174194944069e-01 9.8046891767268962e-01 0 0 0
|
||||
263 1 2.5000000000000000e+00 3.9000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 7.6126593015943766e-02 -1.4398087111736474e-01 9.8664798717073865e-01 0 0 0
|
||||
283 1 2.5000000000000000e+00 4.2000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 7.2649992877525826e-02 -1.0567933713226434e-01 9.9174283775491956e-01 0 0 0
|
||||
303 1 2.5000000000000000e+00 4.5000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 6.2196104012276258e-02 -7.3954811425103573e-02 9.9532021506285673e-01 0 0 0
|
||||
323 1 2.5000000000000000e+00 4.8000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 4.8498220596720307e-02 -5.0241530269051260e-02 9.9755887607457838e-01 0 0 0
|
||||
343 1 2.5000000000000000e+00 5.1000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 3.4047077037887577e-02 -3.4047077037887577e-02 9.9884012388887966e-01 0 0 0
|
||||
363 1 2.5000000000000000e+00 5.4000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 2.0009637034407942e-02 -2.4184841732588211e-02 9.9950723251816498e-01 0 0 0
|
||||
383 1 2.5000000000000000e+00 5.7000000000000000e+01 6.0000000000000000e+00 0.0000000000000000e+00 6.5828744882500201e-03 -1.9561861499557531e-02 9.9978697697966856e-01 0 0 0
|
||||
4 1 2.5000000000000000e+00 0.0000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 -9.3989438861432524e-03 -2.6644762521588497e-02 9.9960077855311480e-01 0 0 0
|
||||
24 1 2.5000000000000000e+00 3.0000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 -2.8894018478272426e-02 -3.3534698701154803e-02 9.9901979944303410e-01 0 0 0
|
||||
44 1 2.5000000000000000e+00 6.0000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 -5.0241530269051232e-02 -4.8498220596720286e-02 9.9755887607457827e-01 0 0 0
|
||||
64 1 2.5000000000000000e+00 9.0000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 -7.3771080474423129e-02 -7.3771080474423115e-02 9.9454293792237669e-01 0 0 0
|
||||
84 1 2.5000000000000000e+00 1.2000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 -9.8127311868331568e-02 -1.1214098437153223e-01 9.8883539089662387e-01 0 0 0
|
||||
104 1 2.5000000000000000e+00 1.5000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 -1.1922421797550638e-01 -1.6561310406555055e-01 9.7895755046370747e-01 0 0 0
|
||||
124 1 2.5000000000000000e+00 1.8000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 -1.2975986317850730e-01 -2.3284022614534144e-01 9.6381938504912923e-01 0 0 0
|
||||
144 1 2.5000000000000000e+00 2.1000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 -1.2090775615411226e-01 -3.0602867088565672e-01 9.4431338394504205e-01 0 0 0
|
||||
164 1 2.5000000000000000e+00 2.4000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 -8.7191355151399766e-02 -3.7026717261459724e-01 9.2482424734154478e-01 0 0 0
|
||||
184 1 2.5000000000000000e+00 2.7000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 -3.1922103301157183e-02 -4.0821375936870385e-01 9.1232806927272614e-01 0 0 0
|
||||
204 1 2.5000000000000000e+00 3.0000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 3.1922103301157155e-02 -4.0821375936870385e-01 9.1232806927272625e-01 0 0 0
|
||||
224 1 2.5000000000000000e+00 3.3000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 8.7191355151399724e-02 -3.7026717261459718e-01 9.2482424734154478e-01 0 0 0
|
||||
244 1 2.5000000000000000e+00 3.6000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 1.2090775615411219e-01 -3.0602867088565661e-01 9.4431338394504194e-01 0 0 0
|
||||
264 1 2.5000000000000000e+00 3.9000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 1.2975986317850724e-01 -2.3284022614534142e-01 9.6381938504912912e-01 0 0 0
|
||||
284 1 2.5000000000000000e+00 4.2000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 1.1922421797550635e-01 -1.6561310406555052e-01 9.7895755046370747e-01 0 0 0
|
||||
304 1 2.5000000000000000e+00 4.5000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 9.8127311868331568e-02 -1.1214098437153228e-01 9.8883539089662398e-01 0 0 0
|
||||
324 1 2.5000000000000000e+00 4.8000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 7.3771080474423129e-02 -7.3771080474423142e-02 9.9454293792237669e-01 0 0 0
|
||||
344 1 2.5000000000000000e+00 5.1000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 5.0241530269051253e-02 -4.8498220596720314e-02 9.9755887607457827e-01 0 0 0
|
||||
364 1 2.5000000000000000e+00 5.4000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 2.8894018478272443e-02 -3.3534698701154816e-02 9.9901979944303410e-01 0 0 0
|
||||
384 1 2.5000000000000000e+00 5.7000000000000000e+01 9.0000000000000000e+00 0.0000000000000000e+00 9.3989438861432611e-03 -2.6644762521588494e-02 9.9960077855311480e-01 0 0 0
|
||||
5 1 2.5000000000000000e+00 0.0000000000000000e+00 1.2000000000000000e+01 0.0000000000000000e+00 -1.3362272507461699e-02 -3.2364838887478299e-02 9.9938679542868880e-01 0 0 0
|
||||
25 1 2.5000000000000000e+00 3.0000000000000000e+00 1.2000000000000000e+01 0.0000000000000000e+00 -4.1569375222726863e-02 -4.1631298256624198e-02 9.9826791095830603e-01 0 0 0
|
||||
45 1 2.5000000000000000e+00 6.0000000000000000e+00 1.2000000000000000e+01 0.0000000000000000e+00 -7.3954811425103559e-02 -6.2196104012276245e-02 9.9532021506285673e-01 0 0 0
|
||||
65 1 2.5000000000000000e+00 9.0000000000000000e+00 1.2000000000000000e+01 0.0000000000000000e+00 -1.1214098437153225e-01 -9.8127311868331554e-02 9.8883539089662398e-01 0 0 0
|
||||
85 1 2.5000000000000000e+00 1.2000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 -1.5508313718777630e-01 -1.5508313718777628e-01 9.7565282817198595e-01 0 0 0
|
||||
105 1 2.5000000000000000e+00 1.5000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 -1.9646003525323200e-01 -2.3830565311068275e-01 9.5111191257590177e-01 0 0 0
|
||||
125 1 2.5000000000000000e+00 1.8000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 -2.2234110900479689e-01 -3.4758786972735528e-01 9.1090455266450188e-01 0 0 0
|
||||
145 1 2.5000000000000000e+00 2.1000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 -2.1357380845070773e-01 -4.7013886220911955e-01 8.5636188529416402e-01 0 0 0
|
||||
165 1 2.5000000000000000e+00 2.4000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 -1.5692234237038313e-01 -5.7886257432716870e-01 8.0018341554190886e-01 0 0 0
|
||||
185 1 2.5000000000000000e+00 2.7000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 -5.7920936211537863e-02 -6.4295931380698856e-01 7.6370706814669809e-01 0 0 0
|
||||
205 1 2.5000000000000000e+00 3.0000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 5.7920936211537793e-02 -6.4295931380698856e-01 7.6370706814669809e-01 0 0 0
|
||||
225 1 2.5000000000000000e+00 3.3000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 1.5692234237038311e-01 -5.7886257432716881e-01 8.0018341554190908e-01 0 0 0
|
||||
245 1 2.5000000000000000e+00 3.6000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 2.1357380845070767e-01 -4.7013886220911949e-01 8.5636188529416413e-01 0 0 0
|
||||
265 1 2.5000000000000000e+00 3.9000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 2.2234110900479689e-01 -3.4758786972735528e-01 9.1090455266450188e-01 0 0 0
|
||||
285 1 2.5000000000000000e+00 4.2000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 1.9646003525323205e-01 -2.3830565311068283e-01 9.5111191257590177e-01 0 0 0
|
||||
305 1 2.5000000000000000e+00 4.5000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 1.5508313718777633e-01 -1.5508313718777636e-01 9.7565282817198595e-01 0 0 0
|
||||
325 1 2.5000000000000000e+00 4.8000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 1.1214098437153229e-01 -9.8127311868331610e-02 9.8883539089662398e-01 0 0 0
|
||||
345 1 2.5000000000000000e+00 5.1000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 7.3954811425103614e-02 -6.2196104012276265e-02 9.9532021506285684e-01 0 0 0
|
||||
365 1 2.5000000000000000e+00 5.4000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 4.1569375222726898e-02 -4.1631298256624198e-02 9.9826791095830603e-01 0 0 0
|
||||
385 1 2.5000000000000000e+00 5.7000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 1.3362272507461706e-02 -3.2364838887478299e-02 9.9938679542868891e-01 0 0 0
|
||||
6 1 2.5000000000000000e+00 0.0000000000000000e+00 1.5000000000000000e+01 0.0000000000000000e+00 -1.8429703183501404e-02 -3.5634992015801836e-02 9.9919492261750509e-01 0 0 0
|
||||
26 1 2.5000000000000000e+00 3.0000000000000000e+00 1.5000000000000000e+01 0.0000000000000000e+00 -5.8031121465001771e-02 -4.6947676140268457e-02 9.9721026100143140e-01 0 0 0
|
||||
46 1 2.5000000000000000e+00 6.0000000000000000e+00 1.5000000000000000e+01 0.0000000000000000e+00 -1.0567933713226434e-01 -7.2649992877525812e-02 9.9174283775491956e-01 0 0 0
|
||||
66 1 2.5000000000000000e+00 9.0000000000000000e+00 1.5000000000000000e+01 0.0000000000000000e+00 -1.6561310406555055e-01 -1.1922421797550634e-01 9.7895755046370747e-01 0 0 0
|
||||
86 1 2.5000000000000000e+00 1.2000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 -2.3830565311068275e-01 -1.9646003525323197e-01 9.5111191257590177e-01 0 0 0
|
||||
106 1 2.5000000000000000e+00 1.5000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 -3.1460569929723275e-01 -3.1460569929723275e-01 8.9557049300398384e-01 0 0 0
|
||||
126 1 2.5000000000000000e+00 1.8000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 -3.6852592591640337e-01 -4.7476254409897906e-01 7.9924287212844281e-01 0 0 0
|
||||
146 1 2.5000000000000000e+00 2.1000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 -3.6081689881382256e-01 -6.5421949001862334e-01 6.6468641058031896e-01 0 0 0
|
||||
166 1 2.5000000000000000e+00 2.4000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 -2.6598547494087149e-01 -8.0744368404029232e-01 5.2657993146712301e-01 0 0 0
|
||||
186 1 2.5000000000000000e+00 2.7000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 -9.7873033584060118e-02 -8.9330169771966939e-01 4.3867179775797049e-01 0 0 0
|
||||
206 1 2.5000000000000000e+00 3.0000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 9.7873033584060007e-02 -8.9330169771966939e-01 4.3867179775797044e-01 0 0 0
|
||||
226 1 2.5000000000000000e+00 3.3000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 2.6598547494087138e-01 -8.0744368404029232e-01 5.2657993146712301e-01 0 0 0
|
||||
246 1 2.5000000000000000e+00 3.6000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 3.6081689881382251e-01 -6.5421949001862334e-01 6.6468641058031896e-01 0 0 0
|
||||
266 1 2.5000000000000000e+00 3.9000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 3.6852592591640337e-01 -4.7476254409897911e-01 7.9924287212844303e-01 0 0 0
|
||||
286 1 2.5000000000000000e+00 4.2000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 3.1460569929723281e-01 -3.1460569929723281e-01 8.9557049300398361e-01 0 0 0
|
||||
306 1 2.5000000000000000e+00 4.5000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 2.3830565311068277e-01 -1.9646003525323205e-01 9.5111191257590177e-01 0 0 0
|
||||
326 1 2.5000000000000000e+00 4.8000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 1.6561310406555055e-01 -1.1922421797550636e-01 9.7895755046370736e-01 0 0 0
|
||||
346 1 2.5000000000000000e+00 5.1000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 1.0567933713226439e-01 -7.2649992877525854e-02 9.9174283775491956e-01 0 0 0
|
||||
366 1 2.5000000000000000e+00 5.4000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 5.8031121465001820e-02 -4.6947676140268485e-02 9.9721026100143140e-01 0 0 0
|
||||
386 1 2.5000000000000000e+00 5.7000000000000000e+01 1.5000000000000000e+01 0.0000000000000000e+00 1.8429703183501425e-02 -3.5634992015801836e-02 9.9919492261750498e-01 0 0 0
|
||||
7 1 2.5000000000000000e+00 0.0000000000000000e+00 1.8000000000000000e+01 0.0000000000000000e+00 -2.4270277420221083e-02 -3.5235119566844234e-02 9.9908430073895960e-01 0 0 0
|
||||
27 1 2.5000000000000000e+00 3.0000000000000000e+00 1.8000000000000000e+01 0.0000000000000000e+00 -7.7312985281705854e-02 -4.7535409319668043e-02 9.9587302763336372e-01 0 0 0
|
||||
47 1 2.5000000000000000e+00 6.0000000000000000e+00 1.8000000000000000e+01 0.0000000000000000e+00 -1.4398087111736474e-01 -7.6126593015943766e-02 9.8664798717073854e-01 0 0 0
|
||||
67 1 2.5000000000000000e+00 9.0000000000000000e+00 1.8000000000000000e+01 0.0000000000000000e+00 -2.3284022614534147e-01 -1.2975986317850727e-01 9.6381938504912923e-01 0 0 0
|
||||
87 1 2.5000000000000000e+00 1.2000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 -3.4758786972735523e-01 -2.2234110900479681e-01 9.1090455266450177e-01 0 0 0
|
||||
107 1 2.5000000000000000e+00 1.5000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 -4.7476254409897900e-01 -3.6852592591640326e-01 7.9924287212844292e-01 0 0 0
|
||||
127 1 2.5000000000000000e+00 1.8000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 -5.6571145299922609e-01 -5.6571145299922598e-01 5.9995091790163058e-01 0 0 0
|
||||
147 1 2.5000000000000000e+00 2.1000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 -5.4725458628470525e-01 -7.6968694425946660e-01 3.2877716713129740e-01 0 0 0
|
||||
167 1 2.5000000000000000e+00 2.4000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 -3.9048923819288139e-01 -9.1777534868081290e-01 7.2156525757244322e-02 0 0 0
|
||||
187 1 2.5000000000000000e+00 2.7000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 -1.3991724696158017e-01 -9.8714633419212083e-01 -7.7235217962726241e-02 0 0 0
|
||||
207 1 2.5000000000000000e+00 3.0000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 1.3991724696158006e-01 -9.8714633419212106e-01 -7.7235217962726241e-02 0 0 0
|
||||
227 1 2.5000000000000000e+00 3.3000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 3.9048923819288128e-01 -9.1777534868081279e-01 7.2156525757244322e-02 0 0 0
|
||||
247 1 2.5000000000000000e+00 3.6000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 5.4725458628470514e-01 -7.6968694425946649e-01 3.2877716713129734e-01 0 0 0
|
||||
267 1 2.5000000000000000e+00 3.9000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 5.6571145299922621e-01 -5.6571145299922609e-01 5.9995091790163035e-01 0 0 0
|
||||
287 1 2.5000000000000000e+00 4.2000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 4.7476254409897917e-01 -3.6852592591640337e-01 7.9924287212844281e-01 0 0 0
|
||||
307 1 2.5000000000000000e+00 4.5000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 3.4758786972735534e-01 -2.2234110900479692e-01 9.1090455266450188e-01 0 0 0
|
||||
327 1 2.5000000000000000e+00 4.8000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 2.3284022614534147e-01 -1.2975986317850732e-01 9.6381938504912912e-01 0 0 0
|
||||
347 1 2.5000000000000000e+00 5.1000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 1.4398087111736477e-01 -7.6126593015943808e-02 9.8664798717073854e-01 0 0 0
|
||||
367 1 2.5000000000000000e+00 5.4000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 7.7312985281705909e-02 -4.7535409319668064e-02 9.9587302763336372e-01 0 0 0
|
||||
387 1 2.5000000000000000e+00 5.7000000000000000e+01 1.8000000000000000e+01 0.0000000000000000e+00 2.4270277420221129e-02 -3.5235119566844247e-02 9.9908430073895971e-01 0 0 0
|
||||
8 1 2.5000000000000000e+00 0.0000000000000000e+00 2.1000000000000000e+01 0.0000000000000000e+00 -3.0163850736159105e-02 -3.0237916900163149e-02 9.9908748890690535e-01 0 0 0
|
||||
28 1 2.5000000000000000e+00 3.0000000000000000e+00 2.1000000000000000e+01 0.0000000000000000e+00 -9.7059251840902722e-02 -4.1653952417990810e-02 9.9440658177630958e-01 0 0 0
|
||||
48 1 2.5000000000000000e+00 6.0000000000000000e+00 2.1000000000000000e+01 0.0000000000000000e+00 -1.8428174194944064e-01 -6.8709104650143071e-02 9.8046891767268973e-01 0 0 0
|
||||
68 1 2.5000000000000000e+00 9.0000000000000000e+00 2.1000000000000000e+01 0.0000000000000000e+00 -3.0602867088565666e-01 -1.2090775615411221e-01 9.4431338394504205e-01 0 0 0
|
||||
88 1 2.5000000000000000e+00 1.2000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 -4.7013886220911943e-01 -2.1357380845070767e-01 8.5636188529416413e-01 0 0 0
|
||||
108 1 2.5000000000000000e+00 1.5000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 -6.5421949001862312e-01 -3.6081689881382245e-01 6.6468641058031908e-01 0 0 0
|
||||
128 1 2.5000000000000000e+00 1.8000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 -7.6968694425946649e-01 -5.4725458628470514e-01 3.2877716713129745e-01 0 0 0
|
||||
148 1 2.5000000000000000e+00 2.1000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 -7.0472416296125850e-01 -7.0472416296125850e-01 -8.2022608329090224e-02 0 0 0
|
||||
168 1 2.5000000000000000e+00 2.4000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 -4.6907708232882805e-01 -7.8303583820847300e-01 -4.0843795968914098e-01 0 0 0
|
||||
188 1 2.5000000000000000e+00 2.7000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 -1.6077801357100108e-01 -8.0506391360620255e-01 -5.7098382232881861e-01 0 0 0
|
||||
208 1 2.5000000000000000e+00 3.0000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 1.6077801357100094e-01 -8.0506391360620255e-01 -5.7098382232881872e-01 0 0 0
|
||||
228 1 2.5000000000000000e+00 3.3000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 4.6907708232882789e-01 -7.8303583820847278e-01 -4.0843795968914093e-01 0 0 0
|
||||
248 1 2.5000000000000000e+00 3.6000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 7.0472416296125839e-01 -7.0472416296125850e-01 -8.2022608329090321e-02 0 0 0
|
||||
268 1 2.5000000000000000e+00 3.9000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 7.6968694425946660e-01 -5.4725458628470514e-01 3.2877716713129729e-01 0 0 0
|
||||
288 1 2.5000000000000000e+00 4.2000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 6.5421949001862334e-01 -3.6081689881382256e-01 6.6468641058031885e-01 0 0 0
|
||||
308 1 2.5000000000000000e+00 4.5000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 4.7013886220911955e-01 -2.1357380845070770e-01 8.5636188529416402e-01 0 0 0
|
||||
328 1 2.5000000000000000e+00 4.8000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 3.0602867088565666e-01 -1.2090775615411227e-01 9.4431338394504194e-01 0 0 0
|
||||
348 1 2.5000000000000000e+00 5.1000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 1.8428174194944072e-01 -6.8709104650143099e-02 9.8046891767268962e-01 0 0 0
|
||||
368 1 2.5000000000000000e+00 5.4000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 9.7059251840902791e-02 -4.1653952417990824e-02 9.9440658177630958e-01 0 0 0
|
||||
388 1 2.5000000000000000e+00 5.7000000000000000e+01 2.1000000000000000e+01 0.0000000000000000e+00 3.0163850736159153e-02 -3.0237916900163146e-02 9.9908748890690535e-01 0 0 0
|
||||
9 1 2.5000000000000000e+00 0.0000000000000000e+00 2.4000000000000000e+01 0.0000000000000000e+00 -3.5058787503171387e-02 -2.0551704657275887e-02 9.9917391321755789e-01 0 0 0
|
||||
29 1 2.5000000000000000e+00 3.0000000000000000e+00 2.4000000000000000e+01 0.0000000000000000e+00 -1.1365104497068090e-01 -2.8752729368399281e-02 9.9310458690459180e-01 0 0 0
|
||||
49 1 2.5000000000000000e+00 6.0000000000000000e+00 2.4000000000000000e+01 0.0000000000000000e+00 -2.1884669159068454e-01 -4.8457456104349608e-02 9.7455528346405629e-01 0 0 0
|
||||
69 1 2.5000000000000000e+00 9.0000000000000000e+00 2.4000000000000000e+01 0.0000000000000000e+00 -3.7026717261459713e-01 -8.7191355151399724e-02 9.2482424734154478e-01 0 0 0
|
||||
89 1 2.5000000000000000e+00 1.2000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 -5.7886257432716870e-01 -1.5692234237038305e-01 8.0018341554190908e-01 0 0 0
|
||||
109 1 2.5000000000000000e+00 1.5000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 -8.0744368404029221e-01 -2.6598547494087144e-01 5.2657993146712301e-01 0 0 0
|
||||
129 1 2.5000000000000000e+00 1.8000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 -9.1777534868081279e-01 -3.9048923819288128e-01 7.2156525757244433e-02 0 0 0
|
||||
149 1 2.5000000000000000e+00 2.1000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 -7.8303583820847289e-01 -4.6907708232882789e-01 -4.0843795968914071e-01 0 0 0
|
||||
169 1 2.5000000000000000e+00 2.4000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 -4.8741359543182999e-01 -4.8741359543182988e-01 -7.2446944309365668e-01 0 0 0
|
||||
189 1 2.5000000000000000e+00 2.7000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 -1.6115060626850930e-01 -4.8338466373268979e-01 -8.6044741208706443e-01 0 0 0
|
||||
209 1 2.5000000000000000e+00 3.0000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 1.6115060626850913e-01 -4.8338466373268968e-01 -8.6044741208706432e-01 0 0 0
|
||||
229 1 2.5000000000000000e+00 3.3000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 4.8741359543182988e-01 -4.8741359543182988e-01 -7.2446944309365668e-01 0 0 0
|
||||
249 1 2.5000000000000000e+00 3.6000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 7.8303583820847289e-01 -4.6907708232882789e-01 -4.0843795968914098e-01 0 0 0
|
||||
269 1 2.5000000000000000e+00 3.9000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 9.1777534868081290e-01 -3.9048923819288139e-01 7.2156525757244280e-02 0 0 0
|
||||
289 1 2.5000000000000000e+00 4.2000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 8.0744368404029232e-01 -2.6598547494087149e-01 5.2657993146712290e-01 0 0 0
|
||||
309 1 2.5000000000000000e+00 4.5000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 5.7886257432716870e-01 -1.5692234237038313e-01 8.0018341554190908e-01 0 0 0
|
||||
329 1 2.5000000000000000e+00 4.8000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 3.7026717261459713e-01 -8.7191355151399724e-02 9.2482424734154478e-01 0 0 0
|
||||
349 1 2.5000000000000000e+00 5.1000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 2.1884669159068457e-01 -4.8457456104349622e-02 9.7455528346405618e-01 0 0 0
|
||||
369 1 2.5000000000000000e+00 5.4000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 1.1365104497068097e-01 -2.8752729368399291e-02 9.9310458690459180e-01 0 0 0
|
||||
389 1 2.5000000000000000e+00 5.7000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 3.5058787503171436e-02 -2.0551704657275904e-02 9.9917391321755789e-01 0 0 0
|
||||
10 1 2.5000000000000000e+00 0.0000000000000000e+00 2.7000000000000000e+01 0.0000000000000000e+00 -3.7860607272964017e-02 -7.2971667669136089e-03 9.9925638640646097e-01 0 0 0
|
||||
30 1 2.5000000000000000e+00 3.0000000000000000e+00 2.7000000000000000e+01 0.0000000000000000e+00 -1.2321728304286257e-01 -1.0293413501576077e-02 9.9232633079951116e-01 0 0 0
|
||||
50 1 2.5000000000000000e+00 6.0000000000000000e+00 2.7000000000000000e+01 0.0000000000000000e+00 -2.3902270727461422e-01 -1.7543173966404584e-02 9.7085548999544669e-01 0 0 0
|
||||
70 1 2.5000000000000000e+00 9.0000000000000000e+00 2.7000000000000000e+01 0.0000000000000000e+00 -4.0821375936870385e-01 -3.1922103301157141e-02 9.1232806927272625e-01 0 0 0
|
||||
90 1 2.5000000000000000e+00 1.2000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 -6.4295931380698856e-01 -5.7920936211537787e-02 7.6370706814669798e-01 0 0 0
|
||||
110 1 2.5000000000000000e+00 1.5000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 -8.9330169771966939e-01 -9.7873033584060035e-02 4.3867179775797044e-01 0 0 0
|
||||
130 1 2.5000000000000000e+00 1.8000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 -9.8714633419212094e-01 -1.3991724696158003e-01 -7.7235217962726088e-02 0 0 0
|
||||
150 1 2.5000000000000000e+00 2.1000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 -8.0506391360620255e-01 -1.6077801357100097e-01 -5.7098382232881850e-01 0 0 0
|
||||
170 1 2.5000000000000000e+00 2.4000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 -4.8338466373268996e-01 -1.6115060626850919e-01 -8.6044741208706443e-01 0 0 0
|
||||
190 1 2.5000000000000000e+00 2.7000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 -1.5704482464087621e-01 -1.5704482464087605e-01 -9.7502504896388853e-01 0 0 0
|
||||
210 1 2.5000000000000000e+00 3.0000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 1.5704482464087599e-01 -1.5704482464087605e-01 -9.7502504896388842e-01 0 0 0
|
||||
230 1 2.5000000000000000e+00 3.3000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 4.8338466373268973e-01 -1.6115060626850916e-01 -8.6044741208706443e-01 0 0 0
|
||||
250 1 2.5000000000000000e+00 3.6000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 8.0506391360620255e-01 -1.6077801357100097e-01 -5.7098382232881861e-01 0 0 0
|
||||
270 1 2.5000000000000000e+00 3.9000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 9.8714633419212106e-01 -1.3991724696158012e-01 -7.7235217962726269e-02 0 0 0
|
||||
290 1 2.5000000000000000e+00 4.2000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 8.9330169771966950e-01 -9.7873033584060062e-02 4.3867179775797038e-01 0 0 0
|
||||
310 1 2.5000000000000000e+00 4.5000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 6.4295931380698856e-01 -5.7920936211537821e-02 7.6370706814669798e-01 0 0 0
|
||||
330 1 2.5000000000000000e+00 4.8000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 4.0821375936870391e-01 -3.1922103301157183e-02 9.1232806927272614e-01 0 0 0
|
||||
350 1 2.5000000000000000e+00 5.1000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 2.3902270727461428e-01 -1.7543173966404597e-02 9.7085548999544657e-01 0 0 0
|
||||
370 1 2.5000000000000000e+00 5.4000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 1.2321728304286259e-01 -1.0293413501576086e-02 9.9232633079951105e-01 0 0 0
|
||||
390 1 2.5000000000000000e+00 5.7000000000000000e+01 2.7000000000000000e+01 0.0000000000000000e+00 3.7860607272964045e-02 -7.2971667669136028e-03 9.9925638640646086e-01 0 0 0
|
||||
11 1 2.5000000000000000e+00 0.0000000000000000e+00 3.0000000000000000e+01 0.0000000000000000e+00 -3.7860607272964017e-02 7.2971667669136028e-03 9.9925638640646086e-01 0 0 0
|
||||
31 1 2.5000000000000000e+00 3.0000000000000000e+00 3.0000000000000000e+01 0.0000000000000000e+00 -1.2321728304286254e-01 1.0293413501576089e-02 9.9232633079951105e-01 0 0 0
|
||||
51 1 2.5000000000000000e+00 6.0000000000000000e+00 3.0000000000000000e+01 0.0000000000000000e+00 -2.3902270727461422e-01 1.7543173966404594e-02 9.7085548999544657e-01 0 0 0
|
||||
71 1 2.5000000000000000e+00 9.0000000000000000e+00 3.0000000000000000e+01 0.0000000000000000e+00 -4.0821375936870374e-01 3.1922103301157183e-02 9.1232806927272625e-01 0 0 0
|
||||
91 1 2.5000000000000000e+00 1.2000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 -6.4295931380698856e-01 5.7920936211537842e-02 7.6370706814669798e-01 0 0 0
|
||||
111 1 2.5000000000000000e+00 1.5000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 -8.9330169771966950e-01 9.7873033584060118e-02 4.3867179775797055e-01 0 0 0
|
||||
131 1 2.5000000000000000e+00 1.8000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 -9.8714633419212083e-01 1.3991724696158012e-01 -7.7235217962726102e-02 0 0 0
|
||||
151 1 2.5000000000000000e+00 2.1000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 -8.0506391360620255e-01 1.6077801357100108e-01 -5.7098382232881850e-01 0 0 0
|
||||
171 1 2.5000000000000000e+00 2.4000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 -4.8338466373268996e-01 1.6115060626850930e-01 -8.6044741208706443e-01 0 0 0
|
||||
191 1 2.5000000000000000e+00 2.7000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 -1.5704482464087621e-01 1.5704482464087616e-01 -9.7502504896388853e-01 0 0 0
|
||||
211 1 2.5000000000000000e+00 3.0000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 1.5704482464087602e-01 1.5704482464087616e-01 -9.7502504896388842e-01 0 0 0
|
||||
231 1 2.5000000000000000e+00 3.3000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 4.8338466373268985e-01 1.6115060626850930e-01 -8.6044741208706443e-01 0 0 0
|
||||
251 1 2.5000000000000000e+00 3.6000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 8.0506391360620266e-01 1.6077801357100105e-01 -5.7098382232881861e-01 0 0 0
|
||||
271 1 2.5000000000000000e+00 3.9000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 9.8714633419212094e-01 1.3991724696158014e-01 -7.7235217962726227e-02 0 0 0
|
||||
291 1 2.5000000000000000e+00 4.2000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 8.9330169771966950e-01 9.7873033584060118e-02 4.3867179775797049e-01 0 0 0
|
||||
311 1 2.5000000000000000e+00 4.5000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 6.4295931380698867e-01 5.7920936211537849e-02 7.6370706814669809e-01 0 0 0
|
||||
331 1 2.5000000000000000e+00 4.8000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 4.0821375936870391e-01 3.1922103301157183e-02 9.1232806927272614e-01 0 0 0
|
||||
351 1 2.5000000000000000e+00 5.1000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 2.3902270727461428e-01 1.7543173966404590e-02 9.7085548999544657e-01 0 0 0
|
||||
371 1 2.5000000000000000e+00 5.4000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 1.2321728304286261e-01 1.0293413501576086e-02 9.9232633079951116e-01 0 0 0
|
||||
391 1 2.5000000000000000e+00 5.7000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 3.7860607272964052e-02 7.2971667669136046e-03 9.9925638640646097e-01 0 0 0
|
||||
12 1 2.5000000000000000e+00 0.0000000000000000e+00 3.3000000000000000e+01 0.0000000000000000e+00 -3.5058787503171387e-02 2.0551704657275897e-02 9.9917391321755789e-01 0 0 0
|
||||
32 1 2.5000000000000000e+00 3.0000000000000000e+00 3.3000000000000000e+01 0.0000000000000000e+00 -1.1365104497068096e-01 2.8752729368399288e-02 9.9310458690459191e-01 0 0 0
|
||||
52 1 2.5000000000000000e+00 6.0000000000000000e+00 3.3000000000000000e+01 0.0000000000000000e+00 -2.1884669159068451e-01 4.8457456104349615e-02 9.7455528346405618e-01 0 0 0
|
||||
72 1 2.5000000000000000e+00 9.0000000000000000e+00 3.3000000000000000e+01 0.0000000000000000e+00 -3.7026717261459707e-01 8.7191355151399710e-02 9.2482424734154478e-01 0 0 0
|
||||
92 1 2.5000000000000000e+00 1.2000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 -5.7886257432716870e-01 1.5692234237038316e-01 8.0018341554190908e-01 0 0 0
|
||||
112 1 2.5000000000000000e+00 1.5000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 -8.0744368404029210e-01 2.6598547494087149e-01 5.2657993146712301e-01 0 0 0
|
||||
132 1 2.5000000000000000e+00 1.8000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 -9.1777534868081267e-01 3.9048923819288134e-01 7.2156525757244433e-02 0 0 0
|
||||
152 1 2.5000000000000000e+00 2.1000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 -7.8303583820847311e-01 4.6907708232882811e-01 -4.0843795968914082e-01 0 0 0
|
||||
172 1 2.5000000000000000e+00 2.4000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 -4.8741359543183005e-01 4.8741359543182999e-01 -7.2446944309365657e-01 0 0 0
|
||||
192 1 2.5000000000000000e+00 2.7000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 -1.6115060626850930e-01 4.8338466373268979e-01 -8.6044741208706432e-01 0 0 0
|
||||
212 1 2.5000000000000000e+00 3.0000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 1.6115060626850916e-01 4.8338466373268979e-01 -8.6044741208706443e-01 0 0 0
|
||||
232 1 2.5000000000000000e+00 3.3000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 4.8741359543182988e-01 4.8741359543182999e-01 -7.2446944309365657e-01 0 0 0
|
||||
252 1 2.5000000000000000e+00 3.6000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 7.8303583820847278e-01 4.6907708232882794e-01 -4.0843795968914076e-01 0 0 0
|
||||
272 1 2.5000000000000000e+00 3.9000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 9.1777534868081279e-01 3.9048923819288139e-01 7.2156525757244377e-02 0 0 0
|
||||
292 1 2.5000000000000000e+00 4.2000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 8.0744368404029221e-01 2.6598547494087149e-01 5.2657993146712301e-01 0 0 0
|
||||
312 1 2.5000000000000000e+00 4.5000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 5.7886257432716870e-01 1.5692234237038316e-01 8.0018341554190908e-01 0 0 0
|
||||
332 1 2.5000000000000000e+00 4.8000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 3.7026717261459713e-01 8.7191355151399738e-02 9.2482424734154467e-01 0 0 0
|
||||
352 1 2.5000000000000000e+00 5.1000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 2.1884669159068457e-01 4.8457456104349622e-02 9.7455528346405618e-01 0 0 0
|
||||
372 1 2.5000000000000000e+00 5.4000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 1.1365104497068099e-01 2.8752729368399295e-02 9.9310458690459180e-01 0 0 0
|
||||
392 1 2.5000000000000000e+00 5.7000000000000000e+01 3.3000000000000000e+01 0.0000000000000000e+00 3.5058787503171422e-02 2.0551704657275897e-02 9.9917391321755777e-01 0 0 0
|
||||
13 1 2.5000000000000000e+00 0.0000000000000000e+00 3.6000000000000000e+01 0.0000000000000000e+00 -3.0163850736159126e-02 3.0237916900163156e-02 9.9908748890690546e-01 0 0 0
|
||||
33 1 2.5000000000000000e+00 3.0000000000000000e+00 3.6000000000000000e+01 0.0000000000000000e+00 -9.7059251840902735e-02 4.1653952417990817e-02 9.9440658177630958e-01 0 0 0
|
||||
53 1 2.5000000000000000e+00 6.0000000000000000e+00 3.6000000000000000e+01 0.0000000000000000e+00 -1.8428174194944066e-01 6.8709104650143071e-02 9.8046891767268973e-01 0 0 0
|
||||
73 1 2.5000000000000000e+00 9.0000000000000000e+00 3.6000000000000000e+01 0.0000000000000000e+00 -3.0602867088565661e-01 1.2090775615411221e-01 9.4431338394504194e-01 0 0 0
|
||||
93 1 2.5000000000000000e+00 1.2000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 -4.7013886220911938e-01 2.1357380845070770e-01 8.5636188529416413e-01 0 0 0
|
||||
113 1 2.5000000000000000e+00 1.5000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 -6.5421949001862323e-01 3.6081689881382251e-01 6.6468641058031896e-01 0 0 0
|
||||
133 1 2.5000000000000000e+00 1.8000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 -7.6968694425946660e-01 5.4725458628470525e-01 3.2877716713129751e-01 0 0 0
|
||||
153 1 2.5000000000000000e+00 2.1000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 -7.0472416296125850e-01 7.0472416296125850e-01 -8.2022608329090127e-02 0 0 0
|
||||
173 1 2.5000000000000000e+00 2.4000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 -4.6907708232882805e-01 7.8303583820847300e-01 -4.0843795968914076e-01 0 0 0
|
||||
193 1 2.5000000000000000e+00 2.7000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 -1.6077801357100108e-01 8.0506391360620244e-01 -5.7098382232881861e-01 0 0 0
|
||||
213 1 2.5000000000000000e+00 3.0000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 1.6077801357100091e-01 8.0506391360620277e-01 -5.7098382232881861e-01 0 0 0
|
||||
233 1 2.5000000000000000e+00 3.3000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 4.6907708232882794e-01 7.8303583820847300e-01 -4.0843795968914076e-01 0 0 0
|
||||
253 1 2.5000000000000000e+00 3.6000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 7.0472416296125850e-01 7.0472416296125850e-01 -8.2022608329090210e-02 0 0 0
|
||||
273 1 2.5000000000000000e+00 3.9000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 7.6968694425946649e-01 5.4725458628470525e-01 3.2877716713129740e-01 0 0 0
|
||||
293 1 2.5000000000000000e+00 4.2000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 6.5421949001862323e-01 3.6081689881382251e-01 6.6468641058031896e-01 0 0 0
|
||||
313 1 2.5000000000000000e+00 4.5000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 4.7013886220911949e-01 2.1357380845070775e-01 8.5636188529416413e-01 0 0 0
|
||||
333 1 2.5000000000000000e+00 4.8000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 3.0602867088565661e-01 1.2090775615411223e-01 9.4431338394504194e-01 0 0 0
|
||||
353 1 2.5000000000000000e+00 5.1000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 1.8428174194944069e-01 6.8709104650143099e-02 9.8046891767268973e-01 0 0 0
|
||||
373 1 2.5000000000000000e+00 5.4000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 9.7059251840902763e-02 4.1653952417990830e-02 9.9440658177630947e-01 0 0 0
|
||||
393 1 2.5000000000000000e+00 5.7000000000000000e+01 3.6000000000000000e+01 0.0000000000000000e+00 3.0163850736159133e-02 3.0237916900163159e-02 9.9908748890690535e-01 0 0 0
|
||||
14 1 2.5000000000000000e+00 0.0000000000000000e+00 3.9000000000000000e+01 0.0000000000000000e+00 -2.4270277420221101e-02 3.5235119566844240e-02 9.9908430073895960e-01 0 0 0
|
||||
34 1 2.5000000000000000e+00 3.0000000000000000e+00 3.9000000000000000e+01 0.0000000000000000e+00 -7.7312985281705854e-02 4.7535409319668036e-02 9.9587302763336372e-01 0 0 0
|
||||
54 1 2.5000000000000000e+00 6.0000000000000000e+00 3.9000000000000000e+01 0.0000000000000000e+00 -1.4398087111736474e-01 7.6126593015943766e-02 9.8664798717073854e-01 0 0 0
|
||||
74 1 2.5000000000000000e+00 9.0000000000000000e+00 3.9000000000000000e+01 0.0000000000000000e+00 -2.3284022614534142e-01 1.2975986317850727e-01 9.6381938504912923e-01 0 0 0
|
||||
94 1 2.5000000000000000e+00 1.2000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 -3.4758786972735517e-01 2.2234110900479689e-01 9.1090455266450199e-01 0 0 0
|
||||
114 1 2.5000000000000000e+00 1.5000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 -4.7476254409897917e-01 3.6852592591640326e-01 7.9924287212844314e-01 0 0 0
|
||||
134 1 2.5000000000000000e+00 1.8000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 -5.6571145299922609e-01 5.6571145299922598e-01 5.9995091790163058e-01 0 0 0
|
||||
154 1 2.5000000000000000e+00 2.1000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 -5.4725458628470514e-01 7.6968694425946649e-01 3.2877716713129751e-01 0 0 0
|
||||
174 1 2.5000000000000000e+00 2.4000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 -3.9048923819288139e-01 9.1777534868081279e-01 7.2156525757244475e-02 0 0 0
|
||||
194 1 2.5000000000000000e+00 2.7000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 -1.3991724696158014e-01 9.8714633419212094e-01 -7.7235217962726074e-02 0 0 0
|
||||
214 1 2.5000000000000000e+00 3.0000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 1.3991724696158006e-01 9.8714633419212106e-01 -7.7235217962726074e-02 0 0 0
|
||||
234 1 2.5000000000000000e+00 3.3000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 3.9048923819288128e-01 9.1777534868081290e-01 7.2156525757244516e-02 0 0 0
|
||||
254 1 2.5000000000000000e+00 3.6000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 5.4725458628470502e-01 7.6968694425946649e-01 3.2877716713129757e-01 0 0 0
|
||||
274 1 2.5000000000000000e+00 3.9000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 5.6571145299922598e-01 5.6571145299922598e-01 5.9995091790163058e-01 0 0 0
|
||||
294 1 2.5000000000000000e+00 4.2000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 4.7476254409897917e-01 3.6852592591640337e-01 7.9924287212844292e-01 0 0 0
|
||||
314 1 2.5000000000000000e+00 4.5000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 3.4758786972735523e-01 2.2234110900479689e-01 9.1090455266450188e-01 0 0 0
|
||||
334 1 2.5000000000000000e+00 4.8000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 2.3284022614534150e-01 1.2975986317850730e-01 9.6381938504912923e-01 0 0 0
|
||||
354 1 2.5000000000000000e+00 5.1000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 1.4398087111736474e-01 7.6126593015943780e-02 9.8664798717073843e-01 0 0 0
|
||||
374 1 2.5000000000000000e+00 5.4000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 7.7312985281705868e-02 4.7535409319668070e-02 9.9587302763336383e-01 0 0 0
|
||||
394 1 2.5000000000000000e+00 5.7000000000000000e+01 3.9000000000000000e+01 0.0000000000000000e+00 2.4270277420221108e-02 3.5235119566844240e-02 9.9908430073895971e-01 0 0 0
|
||||
15 1 2.5000000000000000e+00 0.0000000000000000e+00 4.2000000000000000e+01 0.0000000000000000e+00 -1.8429703183501411e-02 3.5634992015801829e-02 9.9919492261750498e-01 0 0 0
|
||||
35 1 2.5000000000000000e+00 3.0000000000000000e+00 4.2000000000000000e+01 0.0000000000000000e+00 -5.8031121465001799e-02 4.6947676140268450e-02 9.9721026100143129e-01 0 0 0
|
||||
55 1 2.5000000000000000e+00 6.0000000000000000e+00 4.2000000000000000e+01 0.0000000000000000e+00 -1.0567933713226436e-01 7.2649992877525812e-02 9.9174283775491956e-01 0 0 0
|
||||
75 1 2.5000000000000000e+00 9.0000000000000000e+00 4.2000000000000000e+01 0.0000000000000000e+00 -1.6561310406555052e-01 1.1922421797550635e-01 9.7895755046370747e-01 0 0 0
|
||||
95 1 2.5000000000000000e+00 1.2000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 -2.3830565311068272e-01 1.9646003525323200e-01 9.5111191257590177e-01 0 0 0
|
||||
115 1 2.5000000000000000e+00 1.5000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 -3.1460569929723275e-01 3.1460569929723275e-01 8.9557049300398384e-01 0 0 0
|
||||
135 1 2.5000000000000000e+00 1.8000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 -3.6852592591640337e-01 4.7476254409897900e-01 7.9924287212844303e-01 0 0 0
|
||||
155 1 2.5000000000000000e+00 2.1000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 -3.6081689881382245e-01 6.5421949001862312e-01 6.6468641058031908e-01 0 0 0
|
||||
175 1 2.5000000000000000e+00 2.4000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 -2.6598547494087144e-01 8.0744368404029221e-01 5.2657993146712301e-01 0 0 0
|
||||
195 1 2.5000000000000000e+00 2.7000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 -9.7873033584060104e-02 8.9330169771966939e-01 4.3867179775797061e-01 0 0 0
|
||||
215 1 2.5000000000000000e+00 3.0000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 9.7873033584060048e-02 8.9330169771966939e-01 4.3867179775797061e-01 0 0 0
|
||||
235 1 2.5000000000000000e+00 3.3000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 2.6598547494087144e-01 8.0744368404029221e-01 5.2657993146712312e-01 0 0 0
|
||||
255 1 2.5000000000000000e+00 3.6000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 3.6081689881382245e-01 6.5421949001862323e-01 6.6468641058031908e-01 0 0 0
|
||||
275 1 2.5000000000000000e+00 3.9000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 3.6852592591640332e-01 4.7476254409897917e-01 7.9924287212844303e-01 0 0 0
|
||||
295 1 2.5000000000000000e+00 4.2000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 3.1460569929723275e-01 3.1460569929723275e-01 8.9557049300398373e-01 0 0 0
|
||||
315 1 2.5000000000000000e+00 4.5000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 2.3830565311068272e-01 1.9646003525323200e-01 9.5111191257590177e-01 0 0 0
|
||||
335 1 2.5000000000000000e+00 4.8000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 1.6561310406555046e-01 1.1922421797550636e-01 9.7895755046370747e-01 0 0 0
|
||||
355 1 2.5000000000000000e+00 5.1000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 1.0567933713226434e-01 7.2649992877525826e-02 9.9174283775491967e-01 0 0 0
|
||||
375 1 2.5000000000000000e+00 5.4000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 5.8031121465001792e-02 4.6947676140268464e-02 9.9721026100143140e-01 0 0 0
|
||||
395 1 2.5000000000000000e+00 5.7000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 1.8429703183501421e-02 3.5634992015801836e-02 9.9919492261750509e-01 0 0 0
|
||||
16 1 2.5000000000000000e+00 0.0000000000000000e+00 4.5000000000000000e+01 0.0000000000000000e+00 -1.3362272507461697e-02 3.2364838887478299e-02 9.9938679542868891e-01 0 0 0
|
||||
36 1 2.5000000000000000e+00 3.0000000000000000e+00 4.5000000000000000e+01 0.0000000000000000e+00 -4.1569375222726877e-02 4.1631298256624177e-02 9.9826791095830592e-01 0 0 0
|
||||
56 1 2.5000000000000000e+00 6.0000000000000000e+00 4.5000000000000000e+01 0.0000000000000000e+00 -7.3954811425103587e-02 6.2196104012276252e-02 9.9532021506285684e-01 0 0 0
|
||||
76 1 2.5000000000000000e+00 9.0000000000000000e+00 4.5000000000000000e+01 0.0000000000000000e+00 -1.1214098437153222e-01 9.8127311868331527e-02 9.8883539089662387e-01 0 0 0
|
||||
96 1 2.5000000000000000e+00 1.2000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 -1.5508313718777622e-01 1.5508313718777625e-01 9.7565282817198595e-01 0 0 0
|
||||
116 1 2.5000000000000000e+00 1.5000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 -1.9646003525323200e-01 2.3830565311068266e-01 9.5111191257590189e-01 0 0 0
|
||||
136 1 2.5000000000000000e+00 1.8000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 -2.2234110900479692e-01 3.4758786972735517e-01 9.1090455266450188e-01 0 0 0
|
||||
156 1 2.5000000000000000e+00 2.1000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 -2.1357380845070770e-01 4.7013886220911938e-01 8.5636188529416413e-01 0 0 0
|
||||
176 1 2.5000000000000000e+00 2.4000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 -1.5692234237038313e-01 5.7886257432716870e-01 8.0018341554190919e-01 0 0 0
|
||||
196 1 2.5000000000000000e+00 2.7000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 -5.7920936211537842e-02 6.4295931380698867e-01 7.6370706814669809e-01 0 0 0
|
||||
216 1 2.5000000000000000e+00 3.0000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 5.7920936211537780e-02 6.4295931380698856e-01 7.6370706814669798e-01 0 0 0
|
||||
236 1 2.5000000000000000e+00 3.3000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 1.5692234237038313e-01 5.7886257432716870e-01 8.0018341554190919e-01 0 0 0
|
||||
256 1 2.5000000000000000e+00 3.6000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 2.1357380845070764e-01 4.7013886220911938e-01 8.5636188529416402e-01 0 0 0
|
||||
276 1 2.5000000000000000e+00 3.9000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 2.2234110900479681e-01 3.4758786972735523e-01 9.1090455266450177e-01 0 0 0
|
||||
296 1 2.5000000000000000e+00 4.2000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 1.9646003525323197e-01 2.3830565311068272e-01 9.5111191257590177e-01 0 0 0
|
||||
316 1 2.5000000000000000e+00 4.5000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 1.5508313718777625e-01 1.5508313718777628e-01 9.7565282817198595e-01 0 0 0
|
||||
336 1 2.5000000000000000e+00 4.8000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 1.1214098437153222e-01 9.8127311868331568e-02 9.8883539089662398e-01 0 0 0
|
||||
356 1 2.5000000000000000e+00 5.1000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 7.3954811425103573e-02 6.2196104012276258e-02 9.9532021506285684e-01 0 0 0
|
||||
376 1 2.5000000000000000e+00 5.4000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 4.1569375222726877e-02 4.1631298256624191e-02 9.9826791095830603e-01 0 0 0
|
||||
396 1 2.5000000000000000e+00 5.7000000000000000e+01 4.5000000000000000e+01 0.0000000000000000e+00 1.3362272507461703e-02 3.2364838887478306e-02 9.9938679542868891e-01 0 0 0
|
||||
17 1 2.5000000000000000e+00 0.0000000000000000e+00 4.8000000000000000e+01 0.0000000000000000e+00 -9.3989438861432541e-03 2.6644762521588483e-02 9.9960077855311480e-01 0 0 0
|
||||
37 1 2.5000000000000000e+00 3.0000000000000000e+00 4.8000000000000000e+01 0.0000000000000000e+00 -2.8894018478272422e-02 3.3534698701154803e-02 9.9901979944303410e-01 0 0 0
|
||||
57 1 2.5000000000000000e+00 6.0000000000000000e+00 4.8000000000000000e+01 0.0000000000000000e+00 -5.0241530269051239e-02 4.8498220596720300e-02 9.9755887607457838e-01 0 0 0
|
||||
77 1 2.5000000000000000e+00 9.0000000000000000e+00 4.8000000000000000e+01 0.0000000000000000e+00 -7.3771080474423129e-02 7.3771080474423115e-02 9.9454293792237680e-01 0 0 0
|
||||
97 1 2.5000000000000000e+00 1.2000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 -9.8127311868331568e-02 1.1214098437153222e-01 9.8883539089662398e-01 0 0 0
|
||||
117 1 2.5000000000000000e+00 1.5000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 -1.1922421797550634e-01 1.6561310406555049e-01 9.7895755046370736e-01 0 0 0
|
||||
137 1 2.5000000000000000e+00 1.8000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 -1.2975986317850727e-01 2.3284022614534133e-01 9.6381938504912912e-01 0 0 0
|
||||
157 1 2.5000000000000000e+00 2.1000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 -1.2090775615411221e-01 3.0602867088565655e-01 9.4431338394504194e-01 0 0 0
|
||||
177 1 2.5000000000000000e+00 2.4000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 -8.7191355151399738e-02 3.7026717261459713e-01 9.2482424734154467e-01 0 0 0
|
||||
197 1 2.5000000000000000e+00 2.7000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 -3.1922103301157183e-02 4.0821375936870380e-01 9.1232806927272625e-01 0 0 0
|
||||
217 1 2.5000000000000000e+00 3.0000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 3.1922103301157141e-02 4.0821375936870391e-01 9.1232806927272625e-01 0 0 0
|
||||
237 1 2.5000000000000000e+00 3.3000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 8.7191355151399710e-02 3.7026717261459707e-01 9.2482424734154489e-01 0 0 0
|
||||
257 1 2.5000000000000000e+00 3.6000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 1.2090775615411221e-01 3.0602867088565661e-01 9.4431338394504205e-01 0 0 0
|
||||
277 1 2.5000000000000000e+00 3.9000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 1.2975986317850727e-01 2.3284022614534139e-01 9.6381938504912912e-01 0 0 0
|
||||
297 1 2.5000000000000000e+00 4.2000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 1.1922421797550634e-01 1.6561310406555052e-01 9.7895755046370747e-01 0 0 0
|
||||
317 1 2.5000000000000000e+00 4.5000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 9.8127311868331568e-02 1.1214098437153222e-01 9.8883539089662398e-01 0 0 0
|
||||
337 1 2.5000000000000000e+00 4.8000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 7.3771080474423115e-02 7.3771080474423129e-02 9.9454293792237680e-01 0 0 0
|
||||
357 1 2.5000000000000000e+00 5.1000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 5.0241530269051225e-02 4.8498220596720300e-02 9.9755887607457838e-01 0 0 0
|
||||
377 1 2.5000000000000000e+00 5.4000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 2.8894018478272426e-02 3.3534698701154796e-02 9.9901979944303410e-01 0 0 0
|
||||
397 1 2.5000000000000000e+00 5.7000000000000000e+01 4.8000000000000000e+01 0.0000000000000000e+00 9.3989438861432593e-03 2.6644762521588490e-02 9.9960077855311480e-01 0 0 0
|
||||
18 1 2.5000000000000000e+00 0.0000000000000000e+00 5.1000000000000000e+01 0.0000000000000000e+00 -6.5828744882500166e-03 1.9561861499557524e-02 9.9978697697966856e-01 0 0 0
|
||||
38 1 2.5000000000000000e+00 3.0000000000000000e+00 5.1000000000000000e+01 0.0000000000000000e+00 -2.0009637034407939e-02 2.4184841732588204e-02 9.9950723251816498e-01 0 0 0
|
||||
58 1 2.5000000000000000e+00 6.0000000000000000e+00 5.1000000000000000e+01 0.0000000000000000e+00 -3.4047077037887570e-02 3.4047077037887563e-02 9.9884012388887966e-01 0 0 0
|
||||
78 1 2.5000000000000000e+00 9.0000000000000000e+00 5.1000000000000000e+01 0.0000000000000000e+00 -4.8498220596720300e-02 5.0241530269051239e-02 9.9755887607457827e-01 0 0 0
|
||||
98 1 2.5000000000000000e+00 1.2000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 -6.2196104012276252e-02 7.3954811425103573e-02 9.9532021506285684e-01 0 0 0
|
||||
118 1 2.5000000000000000e+00 1.5000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 -7.2649992877525812e-02 1.0567933713226434e-01 9.9174283775491956e-01 0 0 0
|
||||
138 1 2.5000000000000000e+00 1.8000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 -7.6126593015943753e-02 1.4398087111736468e-01 9.8664798717073843e-01 0 0 0
|
||||
158 1 2.5000000000000000e+00 2.1000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 -6.8709104650143085e-02 1.8428174194944066e-01 9.8046891767268962e-01 0 0 0
|
||||
178 1 2.5000000000000000e+00 2.4000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 -4.8457456104349608e-02 2.1884669159068451e-01 9.7455528346405618e-01 0 0 0
|
||||
198 1 2.5000000000000000e+00 2.7000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 -1.7543173966404604e-02 2.3902270727461422e-01 9.7085548999544669e-01 0 0 0
|
||||
218 1 2.5000000000000000e+00 3.0000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 1.7543173966404566e-02 2.3902270727461419e-01 9.7085548999544657e-01 0 0 0
|
||||
238 1 2.5000000000000000e+00 3.3000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 4.8457456104349608e-02 2.1884669159068451e-01 9.7455528346405618e-01 0 0 0
|
||||
258 1 2.5000000000000000e+00 3.6000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 6.8709104650143071e-02 1.8428174194944066e-01 9.8046891767268962e-01 0 0 0
|
||||
278 1 2.5000000000000000e+00 3.9000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 7.6126593015943766e-02 1.4398087111736474e-01 9.8664798717073843e-01 0 0 0
|
||||
298 1 2.5000000000000000e+00 4.2000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 7.2649992877525799e-02 1.0567933713226434e-01 9.9174283775491956e-01 0 0 0
|
||||
318 1 2.5000000000000000e+00 4.5000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 6.2196104012276245e-02 7.3954811425103587e-02 9.9532021506285684e-01 0 0 0
|
||||
338 1 2.5000000000000000e+00 4.8000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 4.8498220596720293e-02 5.0241530269051232e-02 9.9755887607457827e-01 0 0 0
|
||||
358 1 2.5000000000000000e+00 5.1000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 3.4047077037887570e-02 3.4047077037887570e-02 9.9884012388887977e-01 0 0 0
|
||||
378 1 2.5000000000000000e+00 5.4000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 2.0009637034407935e-02 2.4184841732588200e-02 9.9950723251816487e-01 0 0 0
|
||||
398 1 2.5000000000000000e+00 5.7000000000000000e+01 5.1000000000000000e+01 0.0000000000000000e+00 6.5828744882500193e-03 1.9561861499557524e-02 9.9978697697966856e-01 0 0 0
|
||||
19 1 2.5000000000000000e+00 0.0000000000000000e+00 5.4000000000000000e+01 0.0000000000000000e+00 -4.8145058779812486e-03 1.1868011343002475e-02 9.9991798205648519e-01 0 0 0
|
||||
39 1 2.5000000000000000e+00 3.0000000000000000e+00 5.4000000000000000e+01 0.0000000000000000e+00 -1.4489047587394143e-02 1.4489047587394136e-02 9.9979004545955585e-01 0 0 0
|
||||
59 1 2.5000000000000000e+00 6.0000000000000000e+00 5.4000000000000000e+01 0.0000000000000000e+00 -2.4184841732588200e-02 2.0009637034407932e-02 9.9950723251816498e-01 0 0 0
|
||||
79 1 2.5000000000000000e+00 9.0000000000000000e+00 5.4000000000000000e+01 0.0000000000000000e+00 -3.3534698701154803e-02 2.8894018478272433e-02 9.9901979944303421e-01 0 0 0
|
||||
99 1 2.5000000000000000e+00 1.2000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 -4.1631298256624205e-02 4.1569375222726870e-02 9.9826791095830603e-01 0 0 0
|
||||
119 1 2.5000000000000000e+00 1.5000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 -4.6947676140268450e-02 5.8031121465001771e-02 9.9721026100143129e-01 0 0 0
|
||||
139 1 2.5000000000000000e+00 1.8000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 -4.7535409319668043e-02 7.7312985281705840e-02 9.9587302763336372e-01 0 0 0
|
||||
159 1 2.5000000000000000e+00 2.1000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 -4.1653952417990810e-02 9.7059251840902694e-02 9.9440658177630958e-01 0 0 0
|
||||
179 1 2.5000000000000000e+00 2.4000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 -2.8752729368399278e-02 1.1365104497068095e-01 9.9310458690459180e-01 0 0 0
|
||||
199 1 2.5000000000000000e+00 2.7000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 -1.0293413501576094e-02 1.2321728304286254e-01 9.9232633079951105e-01 0 0 0
|
||||
219 1 2.5000000000000000e+00 3.0000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 1.0293413501576077e-02 1.2321728304286257e-01 9.9232633079951116e-01 0 0 0
|
||||
239 1 2.5000000000000000e+00 3.3000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 2.8752729368399284e-02 1.1365104497068095e-01 9.9310458690459180e-01 0 0 0
|
||||
259 1 2.5000000000000000e+00 3.6000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 4.1653952417990817e-02 9.7059251840902749e-02 9.9440658177630958e-01 0 0 0
|
||||
279 1 2.5000000000000000e+00 3.9000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 4.7535409319668036e-02 7.7312985281705868e-02 9.9587302763336383e-01 0 0 0
|
||||
299 1 2.5000000000000000e+00 4.2000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 4.6947676140268443e-02 5.8031121465001785e-02 9.9721026100143129e-01 0 0 0
|
||||
319 1 2.5000000000000000e+00 4.5000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 4.1631298256624191e-02 4.1569375222726877e-02 9.9826791095830603e-01 0 0 0
|
||||
339 1 2.5000000000000000e+00 4.8000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 3.3534698701154803e-02 2.8894018478272433e-02 9.9901979944303410e-01 0 0 0
|
||||
359 1 2.5000000000000000e+00 5.1000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 2.4184841732588204e-02 2.0009637034407932e-02 9.9950723251816498e-01 0 0 0
|
||||
379 1 2.5000000000000000e+00 5.4000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 1.4489047587394145e-02 1.4489047587394140e-02 9.9979004545955585e-01 0 0 0
|
||||
399 1 2.5000000000000000e+00 5.7000000000000000e+01 5.4000000000000000e+01 0.0000000000000000e+00 4.8145058779812486e-03 1.1868011343002480e-02 9.9991798205648519e-01 0 0 0
|
||||
20 1 2.5000000000000000e+00 0.0000000000000000e+00 5.7000000000000000e+01 0.0000000000000000e+00 -3.9693242391277937e-03 3.9693242391277764e-03 9.9998424434096445e-01 0 0 0
|
||||
40 1 2.5000000000000000e+00 3.0000000000000000e+00 5.7000000000000000e+01 0.0000000000000000e+00 -1.1868011343002482e-02 4.8145058779812460e-03 9.9991798205648519e-01 0 0 0
|
||||
60 1 2.5000000000000000e+00 6.0000000000000000e+00 5.7000000000000000e+01 0.0000000000000000e+00 -1.9561861499557517e-02 6.5828744882500097e-03 9.9978697697966856e-01 0 0 0
|
||||
80 1 2.5000000000000000e+00 9.0000000000000000e+00 5.7000000000000000e+01 0.0000000000000000e+00 -2.6644762521588487e-02 9.3989438861432437e-03 9.9960077855311491e-01 0 0 0
|
||||
100 1 2.5000000000000000e+00 1.2000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 -3.2364838887478306e-02 1.3362272507461690e-02 9.9938679542868891e-01 0 0 0
|
||||
120 1 2.5000000000000000e+00 1.5000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 -3.5634992015801822e-02 1.8429703183501404e-02 9.9919492261750509e-01 0 0 0
|
||||
140 1 2.5000000000000000e+00 1.8000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 -3.5235119566844240e-02 2.4270277420221090e-02 9.9908430073895971e-01 0 0 0
|
||||
160 1 2.5000000000000000e+00 2.1000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 -3.0237916900163146e-02 3.0163850736159105e-02 9.9908748890690546e-01 0 0 0
|
||||
180 1 2.5000000000000000e+00 2.4000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 -2.0551704657275894e-02 3.5058787503171394e-02 9.9917391321755789e-01 0 0 0
|
||||
200 1 2.5000000000000000e+00 2.7000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 -7.2971667669136028e-03 3.7860607272964010e-02 9.9925638640646086e-01 0 0 0
|
||||
220 1 2.5000000000000000e+00 3.0000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 7.2971667669136037e-03 3.7860607272964024e-02 9.9925638640646097e-01 0 0 0
|
||||
240 1 2.5000000000000000e+00 3.3000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 2.0551704657275890e-02 3.5058787503171394e-02 9.9917391321755777e-01 0 0 0
|
||||
260 1 2.5000000000000000e+00 3.6000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 3.0237916900163159e-02 3.0163850736159115e-02 9.9908748890690535e-01 0 0 0
|
||||
280 1 2.5000000000000000e+00 3.9000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 3.5235119566844234e-02 2.4270277420221094e-02 9.9908430073895960e-01 0 0 0
|
||||
300 1 2.5000000000000000e+00 4.2000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 3.5634992015801836e-02 1.8429703183501414e-02 9.9919492261750498e-01 0 0 0
|
||||
320 1 2.5000000000000000e+00 4.5000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 3.2364838887478299e-02 1.3362272507461701e-02 9.9938679542868891e-01 0 0 0
|
||||
340 1 2.5000000000000000e+00 4.8000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 2.6644762521588480e-02 9.3989438861432611e-03 9.9960077855311480e-01 0 0 0
|
||||
360 1 2.5000000000000000e+00 5.1000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 1.9561861499557527e-02 6.5828744882500097e-03 9.9978697697966845e-01 0 0 0
|
||||
380 1 2.5000000000000000e+00 5.4000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 1.1868011343002492e-02 4.8145058779812391e-03 9.9991798205648519e-01 0 0 0
|
||||
400 1 2.5000000000000000e+00 5.7000000000000000e+01 5.7000000000000000e+01 0.0000000000000000e+00 3.9693242391277937e-03 3.9693242391277851e-03 9.9998424434096445e-01 0 0 0
|
||||
|
||||
Velocities
|
||||
|
||||
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
41 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
61 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
81 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
101 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
121 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
141 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
161 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
181 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
201 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
221 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
241 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
261 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
281 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
301 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
321 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
341 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
361 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
381 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
42 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
62 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
82 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
102 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
122 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
142 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
162 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
182 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
202 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
222 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
242 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
262 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
282 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
302 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
322 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
342 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
362 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
382 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
43 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
63 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
83 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
103 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
123 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
143 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
163 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
183 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
203 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
223 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
243 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
263 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
283 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
303 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
323 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
343 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
363 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
383 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
44 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
64 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
84 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
104 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
124 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
144 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
164 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
184 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
204 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
224 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
244 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
264 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
284 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
304 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
324 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
344 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
364 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
384 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
45 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
65 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
85 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
105 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
125 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
145 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
165 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
185 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
205 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
225 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
245 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
265 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
285 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
305 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
325 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
345 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
365 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
385 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
46 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
66 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
86 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
106 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
126 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
146 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
166 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
186 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
206 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
226 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
246 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
266 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
286 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
306 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
326 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
346 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
366 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
386 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
47 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
67 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
87 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
107 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
127 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
147 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
167 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
187 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
207 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
227 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
247 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
267 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
287 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
307 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
327 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
347 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
367 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
387 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
48 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
68 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
88 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
108 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
128 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
148 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
168 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
188 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
208 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
228 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
248 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
268 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
288 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
308 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
328 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
348 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
368 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
388 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
49 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
69 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
89 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
109 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
129 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
149 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
169 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
189 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
209 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
229 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
249 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
269 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
289 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
309 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
329 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
349 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
369 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
389 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
50 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
70 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
90 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
110 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
130 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
150 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
170 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
190 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
210 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
230 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
250 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
270 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
290 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
310 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
330 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
350 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
370 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
390 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
51 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
71 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
91 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
111 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
131 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
151 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
171 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
191 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
211 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
231 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
251 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
271 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
291 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
311 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
331 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
351 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
371 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
391 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
52 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
72 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
92 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
112 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
132 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
152 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
172 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
192 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
212 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
232 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
252 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
272 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
292 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
312 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
332 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
352 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
372 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
392 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
33 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
53 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
73 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
93 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
113 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
133 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
153 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
173 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
193 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
213 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
233 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
253 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
273 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
293 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
313 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
333 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
353 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
373 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
393 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
34 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
54 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
74 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
94 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
114 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
134 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
154 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
174 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
194 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
214 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
234 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
254 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
274 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
294 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
314 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
334 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
354 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
374 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
394 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
35 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
55 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
75 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
95 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
115 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
135 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
155 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
175 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
195 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
215 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
235 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
255 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
275 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
295 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
315 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
335 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
355 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
375 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
395 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
36 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
56 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
76 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
96 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
116 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
136 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
156 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
176 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
196 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
216 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
236 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
256 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
276 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
296 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
316 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
336 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
356 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
376 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
396 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
37 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
57 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
77 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
97 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
117 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
137 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
157 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
177 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
197 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
217 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
237 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
257 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
277 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
297 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
317 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
337 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
357 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
377 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
397 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
38 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
58 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
78 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
98 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
118 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
138 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
158 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
178 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
198 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
218 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
238 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
258 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
278 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
298 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
318 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
338 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
358 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
378 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
398 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
39 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
59 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
79 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
99 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
119 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
139 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
159 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
179 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
199 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
219 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
239 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
259 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
279 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
299 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
319 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
339 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
359 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
379 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
399 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
40 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
60 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
80 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
100 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
120 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
140 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
160 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
180 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
200 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
220 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
240 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
260 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
280 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
300 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
320 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
340 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
360 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
380 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
400 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
60
examples/SPIN/iron/in.spin.iron_cubic
Normal file
@ -0,0 +1,60 @@
|
||||
# bcc iron in a 3d periodic box
|
||||
|
||||
clear
|
||||
units metal
|
||||
atom_style spin
|
||||
|
||||
dimension 3
|
||||
boundary p p p
|
||||
|
||||
# necessary for the serial algorithm (sametag)
|
||||
atom_modify map array
|
||||
|
||||
lattice bcc 2.8665
|
||||
region box block 0.0 5.0 0.0 5.0 0.0 5.0
|
||||
create_box 1 box
|
||||
create_atoms 1 box
|
||||
|
||||
# setting mass, mag. moments, and interactions for bcc iron
|
||||
|
||||
mass 1 55.845
|
||||
set group all spin 2.2 -1.0 0.0 0.0
|
||||
velocity all create 100 4928459 rot yes dist gaussian
|
||||
|
||||
pair_style hybrid/overlay eam/alloy spin/exchange 3.5
|
||||
pair_coeff * * eam/alloy Fe_Mishin2006.eam.alloy Fe
|
||||
pair_coeff * * spin/exchange exchange 3.4 0.02726 0.2171 1.841
|
||||
neighbor 0.1 bin
|
||||
neigh_modify every 10 check yes delay 20
|
||||
|
||||
fix 1 all precession/spin cubic 0.001 0.0005 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
|
||||
fix_modify 1 energy yes
|
||||
fix 2 all langevin/spin 0.0 0.0 21
|
||||
|
||||
fix 3 all nve/spin lattice yes
|
||||
timestep 0.0001
|
||||
|
||||
# compute and output options
|
||||
|
||||
compute out_mag all spin
|
||||
compute out_pe all pe
|
||||
compute out_ke all ke
|
||||
compute out_temp all temp
|
||||
|
||||
variable magx equal c_out_mag[1]
|
||||
variable magy equal c_out_mag[2]
|
||||
variable magz equal c_out_mag[3]
|
||||
variable magnorm equal c_out_mag[4]
|
||||
variable emag equal c_out_mag[5]
|
||||
variable tmag equal c_out_mag[6]
|
||||
|
||||
thermo_style custom step time v_magx v_magy v_magz v_magnorm v_tmag v_emag pe etotal
|
||||
thermo 50
|
||||
|
||||
compute outsp all property/atom spx spy spz sp fmx fmy fmz
|
||||
dump 100 all custom 1 dump_iron.lammpstrj type x y z c_outsp[1] c_outsp[2] c_outsp[3]
|
||||
|
||||
run 2000
|
||||
# min_style spin
|
||||
# min_modify alpha_damp 1.0 discrete_factor 10
|
||||
# minimize 1.0e-16 1.0e-16 10000 10000
|
||||
60
examples/SPIN/nickel/in.spin.nickel_cubic
Normal file
@ -0,0 +1,60 @@
|
||||
# fcc nickel in a 3d periodic box
|
||||
|
||||
clear
|
||||
units metal
|
||||
atom_style spin
|
||||
|
||||
dimension 3
|
||||
boundary p p p
|
||||
|
||||
# necessary for the serial algorithm (sametag)
|
||||
atom_modify map array
|
||||
|
||||
lattice fcc 3.524
|
||||
region box block 0.0 5.0 0.0 5.0 0.0 5.0
|
||||
create_box 1 box
|
||||
create_atoms 1 box
|
||||
|
||||
# setting mass, mag. moments, and interactions for cobalt
|
||||
|
||||
mass 1 58.69
|
||||
|
||||
set group all spin/random 31 0.63
|
||||
#set group all spin 0.63 0.0 0.0 1.0
|
||||
velocity all create 100 4928459 rot yes dist gaussian
|
||||
|
||||
pair_style hybrid/overlay eam/alloy spin/exchange 4.0
|
||||
pair_coeff * * eam/alloy Ni99.eam.alloy Ni
|
||||
pair_coeff * * spin/exchange exchange 4.0 0.50 0.2280246862 1.229983475
|
||||
|
||||
neighbor 0.1 bin
|
||||
neigh_modify every 10 check yes delay 20
|
||||
|
||||
fix 1 all precession/spin cubic -0.0001 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 &
|
||||
zeeman 0.0 0.0 0.0 1.0
|
||||
fix_modify 1 energy yes
|
||||
fix 2 all langevin/spin 0.0 0.0 21
|
||||
|
||||
fix 3 all nve/spin lattice yes
|
||||
timestep 0.0001
|
||||
|
||||
# compute and output options
|
||||
|
||||
compute out_mag all spin
|
||||
compute out_pe all pe
|
||||
compute out_ke all ke
|
||||
compute out_temp all temp
|
||||
|
||||
variable magz equal c_out_mag[3]
|
||||
variable magnorm equal c_out_mag[4]
|
||||
variable emag equal c_out_mag[5]
|
||||
variable tmag equal c_out_mag[6]
|
||||
|
||||
thermo_style custom step time v_magnorm v_emag temp v_tmag etotal
|
||||
thermo 50
|
||||
|
||||
compute outsp all property/atom spx spy spz sp fmx fmy fmz
|
||||
dump 50 all custom 1 dump.lammpstrj type x y z c_outsp[1] c_outsp[2] c_outsp[3] c_outsp[4] c_outsp[5] c_outsp[6] c_outsp[7]
|
||||
|
||||
run 2000
|
||||
|
||||
@ -40,6 +40,6 @@ thermo_style custom step time v_magnorm v_emag v_tmag temp etotal
|
||||
thermo_modify format float %20.15g
|
||||
|
||||
compute outsp all property/atom spx spy spz sp fmx fmy fmz
|
||||
dump 10 all custom 1 dump.lammpstrj type x y z c_outsp[1] c_outsp[2] c_outsp[3] c_outsp[4] c_outsp[5] c_outsp[6] c_outsp[7]
|
||||
dump 1 all custom 1 dump.lammpstrj type x y z c_outsp[1] c_outsp[2] c_outsp[3] c_outsp[4] c_outsp[5] c_outsp[6] c_outsp[7]
|
||||
|
||||
run 100
|
||||
|
||||
59
examples/SPIN/setforce_spin/in.spinmin.setforce
Normal file
@ -0,0 +1,59 @@
|
||||
|
||||
units metal
|
||||
dimension 3
|
||||
boundary f f f
|
||||
atom_style spin
|
||||
|
||||
# necessary for the serial algorithm (sametag)
|
||||
atom_modify map array
|
||||
|
||||
lattice sc 3.0
|
||||
region box block 0.0 10.0 0.0 10.0 0.0 1.0
|
||||
create_box 2 box
|
||||
region reg1 block 0.0 10.0 0.0 5.0 0.0 1.0
|
||||
region reg2 block 0.0 10.0 6.0 10.0 0.0 1.0
|
||||
create_atoms 1 region reg1
|
||||
create_atoms 2 region reg2
|
||||
|
||||
# setting mass, mag. moments, and interactions for bcc iron
|
||||
|
||||
mass 1 55.845
|
||||
mass 2 55.845
|
||||
set region reg1 spin 2.2 0.0 0.0 1.0
|
||||
set region reg2 spin/random 31 2.2
|
||||
|
||||
group fixed_spin region reg1
|
||||
|
||||
pair_style hybrid/overlay spin/exchange 3.1 spin/dmi 3.1
|
||||
pair_coeff * * spin/exchange exchange 3.1 -0.01593 0.06626915552 1.211
|
||||
pair_coeff * * spin/dmi dmi 3.1 0.12e-03 0.0 0.0 1.0
|
||||
|
||||
neighbor 0.1 bin
|
||||
neigh_modify every 10 check yes delay 20
|
||||
|
||||
fix 1 all precession/spin zeeman 0.0 0.0 0.0 1.0 anisotropy 5e-05 0.0 0.0 1.0
|
||||
fix_modify 1 energy yes
|
||||
fix 2 fixed_spin setforce/spin 0.0 0.0 0.0
|
||||
fix 3 all langevin/spin 0.0 0.1 21
|
||||
fix 4 all nve/spin lattice no
|
||||
|
||||
timestep 0.0001
|
||||
|
||||
compute out_mag all spin
|
||||
variable magx equal c_out_mag[1]
|
||||
variable magy equal c_out_mag[2]
|
||||
variable magz equal c_out_mag[3]
|
||||
variable magnorm equal c_out_mag[4]
|
||||
variable emag equal c_out_mag[5]
|
||||
variable tmag equal c_out_mag[6]
|
||||
|
||||
thermo 1000
|
||||
thermo_style custom step time v_magx v_magz v_magnorm v_tmag etotal
|
||||
thermo_modify format float %20.15g
|
||||
|
||||
compute outsp all property/atom spx spy spz sp fmx fmy fmz
|
||||
dump 1 all custom 1000 dump.lammpstrj type x y z c_outsp[1] c_outsp[2] c_outsp[3] c_outsp[5] c_outsp[6] c_outsp[7]
|
||||
|
||||
min_style spin
|
||||
min_modify alpha_damp 1.0 discrete_factor 20.0
|
||||
minimize 1.0e-16 1.0e-16 50000 1000
|
||||
6
examples/USER/e3b/README
Normal file
@ -0,0 +1,6 @@
|
||||
The input script in.lammps simulates bulk water using the 2015 E3B potential.
|
||||
|
||||
This script also demonstrates the use of compute pair to calculate the
|
||||
potential energy contribution of the e3b pair style. These potential energy
|
||||
contributions can be found in the output file e3b.txt. See the LAMMPS
|
||||
documentation for more details.
|
||||
1973
examples/USER/e3b/e3b_box.data
Normal file
95
examples/USER/e3b/in.e3b-tip4p2005
Normal file
@ -0,0 +1,95 @@
|
||||
#LAMMPS input file
|
||||
#to simulate bulk E3B3 water model
|
||||
|
||||
#####################################################################
|
||||
|
||||
variable samp_rate equal 10
|
||||
variable thermo_rate equal 10
|
||||
variable Wlat equal 3.10744 #for water density 0.997g/mL
|
||||
variable L equal 3 #(L*2)^3 = Nmolec, L=3 -> N=216
|
||||
|
||||
variable equil equal 100
|
||||
variable run equal 100
|
||||
|
||||
variable ts equal 2.0
|
||||
variable Tdamp equal 100*${ts}
|
||||
variable Pdamp equal 1000*${ts}
|
||||
variable myT equal 298.0
|
||||
variable myP equal 1.0
|
||||
|
||||
units real
|
||||
atom_style full
|
||||
|
||||
dimension 3
|
||||
|
||||
boundary p p p
|
||||
|
||||
#############################################################################
|
||||
#setup box
|
||||
read_data e3b_box.data
|
||||
|
||||
#############################################################################
|
||||
#set up potential
|
||||
|
||||
pair_style hybrid/overlay e3b 1 lj/cut/tip4p/long 1 2 1 1 0.1546 8.5
|
||||
pair_modify table 0 table/disp 0 shift yes
|
||||
|
||||
bond_style harmonic
|
||||
angle_style harmonic
|
||||
|
||||
kspace_style pppm/tip4p 1.0e-6
|
||||
|
||||
pair_coeff * * lj/cut/tip4p/long 0.0 0.0
|
||||
pair_coeff 1 1 lj/cut/tip4p/long 0.1852 3.1589
|
||||
pair_coeff * * e3b preset 2015
|
||||
|
||||
#potential coeffs aren't too important since will be rigid anyways
|
||||
bond_coeff 1 554.13 0.9572
|
||||
angle_coeff 1 45.769 104.52
|
||||
|
||||
#############################################################################
|
||||
#setup for run
|
||||
thermo ${thermo_rate}
|
||||
thermo_style custom step vol temp epair pe etotal press density
|
||||
|
||||
timestep ${ts}
|
||||
run_style verlet
|
||||
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1 delay 3 check yes
|
||||
|
||||
#############################################################################
|
||||
|
||||
#dump positions only in first batch run
|
||||
#dump 7 all custom ${samp_rate} dump.lammpstrj id x y z
|
||||
#dump_modify 7 sort id
|
||||
|
||||
#############################################################################
|
||||
#initialize velocity and rigid constraint
|
||||
|
||||
fix rigid all shake 1.0e-8 100 0 b 1 a 1 t 1 2
|
||||
velocity all create ${myT} 15856 dist gaussian rot yes mom yes
|
||||
|
||||
#scale velocity
|
||||
run 0
|
||||
velocity all scale ${myT}
|
||||
|
||||
compute e3b all pair e3b
|
||||
fix e3b all ave/time 1 1 ${thermo_rate} c_e3b c_e3b[*] &
|
||||
file e3b.txt title2 "step pe_e3b pe_e2 pe_ea pe_eb pe_ec"
|
||||
|
||||
#############################################################################
|
||||
#equilibrate bulk water at NVT
|
||||
|
||||
fix 1 all nvt temp ${myT} ${myT} ${Tdamp}
|
||||
run ${equil}
|
||||
|
||||
#############################################################################
|
||||
#run at NVT
|
||||
|
||||
#dump 1 all custom ${samp_rate} dump.lammpstrj id x y z type
|
||||
#dump_modify 1 sort id
|
||||
|
||||
run ${run}
|
||||
|
||||
# write_restart lammps.restart
|
||||
332
examples/USER/e3b/log.29Mar2019.e3b-tip4p2005.g++.1
Normal file
@ -0,0 +1,332 @@
|
||||
LAMMPS (29 Mar 2019)
|
||||
#LAMMPS input file
|
||||
#to simulate bulk E3B3 water model
|
||||
|
||||
#####################################################################
|
||||
|
||||
variable samp_rate equal 10
|
||||
variable thermo_rate equal 10
|
||||
variable Wlat equal 3.10744 #for water density 0.997g/mL
|
||||
variable L equal 3 #(L*2)^3 = Nmolec, L=3 -> N=216
|
||||
|
||||
variable equil equal 100
|
||||
variable run equal 100
|
||||
|
||||
variable ts equal 2.0
|
||||
variable Tdamp equal 100*${ts}
|
||||
variable Tdamp equal 100*2
|
||||
variable Pdamp equal 1000*${ts}
|
||||
variable Pdamp equal 1000*2
|
||||
variable myT equal 298.0
|
||||
variable myP equal 1.0
|
||||
|
||||
units real
|
||||
atom_style full
|
||||
|
||||
dimension 3
|
||||
|
||||
boundary p p p
|
||||
|
||||
#############################################################################
|
||||
#setup box
|
||||
read_data e3b_box.data
|
||||
orthogonal box = (-9.32232 -9.32232 -9.32232) to (9.32232 9.32232 9.32232)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
648 atoms
|
||||
reading velocities ...
|
||||
648 velocities
|
||||
scanning bonds ...
|
||||
2 = max bonds/atom
|
||||
scanning angles ...
|
||||
1 = max angles/atom
|
||||
reading bonds ...
|
||||
432 bonds
|
||||
reading angles ...
|
||||
216 angles
|
||||
2 = max # of 1-2 neighbors
|
||||
1 = max # of 1-3 neighbors
|
||||
1 = max # of 1-4 neighbors
|
||||
2 = max # of special neighbors
|
||||
special bonds CPU = 0.000257254 secs
|
||||
read_data CPU = 0.00286555 secs
|
||||
|
||||
#############################################################################
|
||||
#set up potential
|
||||
|
||||
pair_style hybrid/overlay e3b 1 lj/cut/tip4p/long 1 2 1 1 0.1546 8.5
|
||||
pair_modify table 0 table/disp 0 shift yes
|
||||
|
||||
bond_style harmonic
|
||||
angle_style harmonic
|
||||
|
||||
kspace_style pppm/tip4p 1.0e-6
|
||||
|
||||
pair_coeff * * lj/cut/tip4p/long 0.0 0.0
|
||||
pair_coeff 1 1 lj/cut/tip4p/long 0.1852 3.1589
|
||||
pair_coeff * * e3b preset 2015
|
||||
|
||||
#potential coeffs aren't too important since will be rigid anyways
|
||||
bond_coeff 1 554.13 0.9572
|
||||
angle_coeff 1 45.769 104.52
|
||||
|
||||
#############################################################################
|
||||
#setup for run
|
||||
thermo ${thermo_rate}
|
||||
thermo 10
|
||||
thermo_style custom step vol temp epair pe etotal press density
|
||||
|
||||
timestep ${ts}
|
||||
timestep 2
|
||||
run_style verlet
|
||||
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1 delay 3 check yes
|
||||
|
||||
#############################################################################
|
||||
|
||||
#dump positions only in first batch run
|
||||
#dump 7 all custom ${samp_rate} dump.lammpstrj id x y z
|
||||
#dump_modify 7 sort id
|
||||
|
||||
#############################################################################
|
||||
#initialize velocity and rigid constraint
|
||||
|
||||
fix rigid all shake 1.0e-8 100 0 b 1 a 1 t 1 2
|
||||
0 = # of size 2 clusters
|
||||
0 = # of size 3 clusters
|
||||
0 = # of size 4 clusters
|
||||
216 = # of frozen angles
|
||||
find clusters CPU = 0.000185728 secs
|
||||
velocity all create ${myT} 15856 dist gaussian rot yes mom yes
|
||||
velocity all create 298 15856 dist gaussian rot yes mom yes
|
||||
|
||||
#scale velocity
|
||||
run 0
|
||||
PPPM initialization ...
|
||||
extracting TIP4P info from pair style
|
||||
using polynomial approximation for long-range coulomb (../kspace.cpp:319)
|
||||
G vector (1/distance) = 0.409658
|
||||
grid = 36 36 36
|
||||
stencil order = 5
|
||||
estimated absolute RMS force accuracy = 0.000341883
|
||||
estimated relative force accuracy = 1.02957e-06
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc = 91125 46656
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 3 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.8092
|
||||
ghost atom cutoff = 10.8092
|
||||
binsize = 5.4046, bins = 4 4 4
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair e3b, perpetual, skip from (2)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair lj/cut/tip4p/long, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 16.4 | 16.4 | 16.4 Mbytes
|
||||
Step Volume Temp E_pair PotEng TotEng Press Density
|
||||
0 6481.2982 298 -512.62432 -512.62432 -129.77504 14088.322 0.99697602
|
||||
Loop time of 1.19209e-06 on 1 procs for 0 steps with 648 atoms
|
||||
|
||||
251.7% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Bond | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Kspace | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Output | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 1.192e-06 | | |100.00
|
||||
|
||||
Nlocal: 648 ave 648 max 648 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 5943 ave 5943 max 5943 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 18984 ave 18984 max 18984 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 18984
|
||||
Ave neighs/atom = 29.2963
|
||||
Ave special neighs/atom = 2
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
velocity all scale ${myT}
|
||||
velocity all scale 298
|
||||
|
||||
compute e3b all pe/e3b
|
||||
fix e3b all ave/time 1 1 ${thermo_rate} c_e3b c_e3b[*] file e3b.txt title2 "step pe_e3b pe_ea pe_eb pe_ec pe_e2"
|
||||
fix e3b all ave/time 1 1 10 c_e3b c_e3b[*] file e3b.txt title2 "step pe_e3b pe_ea pe_eb pe_ec pe_e2"
|
||||
|
||||
#############################################################################
|
||||
#equilibrate bulk water at NVT
|
||||
|
||||
fix 1 all nvt temp ${myT} ${myT} ${Tdamp}
|
||||
fix 1 all nvt temp 298 ${myT} ${Tdamp}
|
||||
fix 1 all nvt temp 298 298 ${Tdamp}
|
||||
fix 1 all nvt temp 298 298 200
|
||||
run ${equil}
|
||||
run 100
|
||||
PPPM initialization ...
|
||||
extracting TIP4P info from pair style
|
||||
using polynomial approximation for long-range coulomb (../kspace.cpp:319)
|
||||
G vector (1/distance) = 0.409658
|
||||
grid = 36 36 36
|
||||
stencil order = 5
|
||||
estimated absolute RMS force accuracy = 0.000341883
|
||||
estimated relative force accuracy = 1.02957e-06
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc = 91125 46656
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 3 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.8092
|
||||
ghost atom cutoff = 10.8092
|
||||
binsize = 5.4046, bins = 4 4 4
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair e3b, perpetual, skip from (2)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair lj/cut/tip4p/long, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 16.88 | 16.88 | 16.88 Mbytes
|
||||
Step Volume Temp E_pair PotEng TotEng Press Density
|
||||
0 6481.2982 298 -512.33264 -512.33264 -129.48336 14091.383 0.99697602
|
||||
10 6481.2982 905.58028 -1442.0378 -1442.0378 -278.61245 -798.38952 0.99697602
|
||||
20 6481.2982 816.39844 -1363.5999 -1363.5999 -314.74903 3023.9064 0.99697602
|
||||
30 6481.2982 783.3897 -1370.6594 -1370.6594 -364.21587 7095.4765 0.99697602
|
||||
40 6481.2982 793.12519 -1425.8404 -1425.8404 -406.88933 7030.242 0.99697602
|
||||
50 6481.2982 810.90264 -1495.4822 -1495.4822 -453.69195 6944.2325 0.99697602
|
||||
60 6481.2982 766.64937 -1491.2317 -1491.2317 -506.29493 9062.0151 0.99697602
|
||||
70 6481.2982 761.77292 -1538.7368 -1538.7368 -560.06492 7693.2197 0.99697602
|
||||
80 6481.2982 730.44938 -1554.1818 -1554.1818 -615.75215 7345.9601 0.99697602
|
||||
90 6481.2982 695.46244 -1563.9869 -1563.9869 -670.50605 7809.0685 0.99697602
|
||||
100 6481.2982 691.5674 -1613.2754 -1613.2754 -724.79866 7143.062 0.99697602
|
||||
Loop time of 1.94577 on 1 procs for 100 steps with 648 atoms
|
||||
|
||||
Performance: 8.881 ns/day, 2.702 hours/ns, 51.393 timesteps/s
|
||||
99.7% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.91572 | 0.91572 | 0.91572 | 0.0 | 47.06
|
||||
Bond | 6.7234e-05 | 6.7234e-05 | 6.7234e-05 | 0.0 | 0.00
|
||||
Kspace | 0.92654 | 0.92654 | 0.92654 | 0.0 | 47.62
|
||||
Neigh | 0.087331 | 0.087331 | 0.087331 | 0.0 | 4.49
|
||||
Comm | 0.0054724 | 0.0054724 | 0.0054724 | 0.0 | 0.28
|
||||
Output | 0.0003047 | 0.0003047 | 0.0003047 | 0.0 | 0.02
|
||||
Modify | 0.0093319 | 0.0093319 | 0.0093319 | 0.0 | 0.48
|
||||
Other | | 0.001007 | | | 0.05
|
||||
|
||||
Nlocal: 648 ave 648 max 648 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 5911 ave 5911 max 5911 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 19136 ave 19136 max 19136 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 19136
|
||||
Ave neighs/atom = 29.5309
|
||||
Ave special neighs/atom = 2
|
||||
Neighbor list builds = 15
|
||||
Dangerous builds = 0
|
||||
|
||||
#############################################################################
|
||||
#run at NVT
|
||||
|
||||
#dump 1 all custom ${samp_rate} dump.lammpstrj id x y z type
|
||||
#dump_modify 1 sort id
|
||||
|
||||
run ${run}
|
||||
run 100
|
||||
PPPM initialization ...
|
||||
extracting TIP4P info from pair style
|
||||
using polynomial approximation for long-range coulomb (../kspace.cpp:319)
|
||||
G vector (1/distance) = 0.409658
|
||||
grid = 36 36 36
|
||||
stencil order = 5
|
||||
estimated absolute RMS force accuracy = 0.000341883
|
||||
estimated relative force accuracy = 1.02957e-06
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc = 91125 46656
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 3 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.8092
|
||||
ghost atom cutoff = 10.8092
|
||||
binsize = 5.4046, bins = 4 4 4
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair e3b, perpetual, skip from (2)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair lj/cut/tip4p/long, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 16.88 | 16.88 | 16.88 Mbytes
|
||||
Step Volume Temp E_pair PotEng TotEng Press Density
|
||||
100 6481.2982 691.5674 -1613.2754 -1613.2754 -724.79866 7131.3961 0.99697602
|
||||
110 6481.2982 668.27004 -1635.5867 -1635.5867 -777.04068 6965.8705 0.99697602
|
||||
120 6481.2982 646.18686 -1659.5025 -1659.5025 -829.32738 6196.7432 0.99697602
|
||||
130 6481.2982 650.7802 -1716.9557 -1716.9557 -880.87943 5626.5466 0.99697602
|
||||
140 6481.2982 586.262 -1681.8052 -1681.8052 -928.61728 6103.747 0.99697602
|
||||
150 6481.2982 615.88299 -1767.8614 -1767.8614 -976.61859 3897.648 0.99697602
|
||||
160 6481.2982 585.23516 -1773.2038 -1773.2038 -1021.3352 4821.7742 0.99697602
|
||||
170 6481.2982 558.77885 -1782.2817 -1782.2817 -1064.4022 5092.7248 0.99697602
|
||||
180 6481.2982 564.01576 -1830.0301 -1830.0301 -1105.4226 4316.1636 0.99697602
|
||||
190 6481.2982 526.53776 -1821.3122 -1821.3122 -1144.8538 4529.5062 0.99697602
|
||||
200 6481.2982 537.81273 -1873.6662 -1873.6662 -1182.7226 4244.313 0.99697602
|
||||
Loop time of 1.9157 on 1 procs for 100 steps with 648 atoms
|
||||
|
||||
Performance: 9.020 ns/day, 2.661 hours/ns, 52.200 timesteps/s
|
||||
99.6% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.90464 | 0.90464 | 0.90464 | 0.0 | 47.22
|
||||
Bond | 6.9141e-05 | 6.9141e-05 | 6.9141e-05 | 0.0 | 0.00
|
||||
Kspace | 0.92769 | 0.92769 | 0.92769 | 0.0 | 48.43
|
||||
Neigh | 0.067551 | 0.067551 | 0.067551 | 0.0 | 3.53
|
||||
Comm | 0.0051386 | 0.0051386 | 0.0051386 | 0.0 | 0.27
|
||||
Output | 0.00029993 | 0.00029993 | 0.00029993 | 0.0 | 0.02
|
||||
Modify | 0.0092504 | 0.0092504 | 0.0092504 | 0.0 | 0.48
|
||||
Other | | 0.001062 | | | 0.06
|
||||
|
||||
Nlocal: 648 ave 648 max 648 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 5901 ave 5901 max 5901 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 18971 ave 18971 max 18971 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 18971
|
||||
Ave neighs/atom = 29.2762
|
||||
Ave special neighs/atom = 2
|
||||
Neighbor list builds = 12
|
||||
Dangerous builds = 0
|
||||
|
||||
# write_restart lammps.restart
|
||||
|
||||
Please see the log.cite file for references relevant to this simulation
|
||||
|
||||
Total wall time: 0:00:03
|
||||
332
examples/USER/e3b/log.29Mar2019.e3b-tip4p2005.g++.4
Normal file
@ -0,0 +1,332 @@
|
||||
LAMMPS (29 Mar 2019)
|
||||
#LAMMPS input file
|
||||
#to simulate bulk E3B3 water model
|
||||
|
||||
#####################################################################
|
||||
|
||||
variable samp_rate equal 10
|
||||
variable thermo_rate equal 10
|
||||
variable Wlat equal 3.10744 #for water density 0.997g/mL
|
||||
variable L equal 3 #(L*2)^3 = Nmolec, L=3 -> N=216
|
||||
|
||||
variable equil equal 100
|
||||
variable run equal 100
|
||||
|
||||
variable ts equal 2.0
|
||||
variable Tdamp equal 100*${ts}
|
||||
variable Tdamp equal 100*2
|
||||
variable Pdamp equal 1000*${ts}
|
||||
variable Pdamp equal 1000*2
|
||||
variable myT equal 298.0
|
||||
variable myP equal 1.0
|
||||
|
||||
units real
|
||||
atom_style full
|
||||
|
||||
dimension 3
|
||||
|
||||
boundary p p p
|
||||
|
||||
#############################################################################
|
||||
#setup box
|
||||
read_data e3b_box.data
|
||||
orthogonal box = (-9.32232 -9.32232 -9.32232) to (9.32232 9.32232 9.32232)
|
||||
1 by 2 by 2 MPI processor grid
|
||||
reading atoms ...
|
||||
648 atoms
|
||||
reading velocities ...
|
||||
648 velocities
|
||||
scanning bonds ...
|
||||
2 = max bonds/atom
|
||||
scanning angles ...
|
||||
1 = max angles/atom
|
||||
reading bonds ...
|
||||
432 bonds
|
||||
reading angles ...
|
||||
216 angles
|
||||
2 = max # of 1-2 neighbors
|
||||
1 = max # of 1-3 neighbors
|
||||
1 = max # of 1-4 neighbors
|
||||
2 = max # of special neighbors
|
||||
special bonds CPU = 0.00029397 secs
|
||||
read_data CPU = 0.00397325 secs
|
||||
|
||||
#############################################################################
|
||||
#set up potential
|
||||
|
||||
pair_style hybrid/overlay e3b 1 lj/cut/tip4p/long 1 2 1 1 0.1546 8.5
|
||||
pair_modify table 0 table/disp 0 shift yes
|
||||
|
||||
bond_style harmonic
|
||||
angle_style harmonic
|
||||
|
||||
kspace_style pppm/tip4p 1.0e-6
|
||||
|
||||
pair_coeff * * lj/cut/tip4p/long 0.0 0.0
|
||||
pair_coeff 1 1 lj/cut/tip4p/long 0.1852 3.1589
|
||||
pair_coeff * * e3b preset 2015
|
||||
|
||||
#potential coeffs aren't too important since will be rigid anyways
|
||||
bond_coeff 1 554.13 0.9572
|
||||
angle_coeff 1 45.769 104.52
|
||||
|
||||
#############################################################################
|
||||
#setup for run
|
||||
thermo ${thermo_rate}
|
||||
thermo 10
|
||||
thermo_style custom step vol temp epair pe etotal press density
|
||||
|
||||
timestep ${ts}
|
||||
timestep 2
|
||||
run_style verlet
|
||||
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1 delay 3 check yes
|
||||
|
||||
#############################################################################
|
||||
|
||||
#dump positions only in first batch run
|
||||
#dump 7 all custom ${samp_rate} dump.lammpstrj id x y z
|
||||
#dump_modify 7 sort id
|
||||
|
||||
#############################################################################
|
||||
#initialize velocity and rigid constraint
|
||||
|
||||
fix rigid all shake 1.0e-8 100 0 b 1 a 1 t 1 2
|
||||
0 = # of size 2 clusters
|
||||
0 = # of size 3 clusters
|
||||
0 = # of size 4 clusters
|
||||
216 = # of frozen angles
|
||||
find clusters CPU = 0.000289917 secs
|
||||
velocity all create ${myT} 15856 dist gaussian rot yes mom yes
|
||||
velocity all create 298 15856 dist gaussian rot yes mom yes
|
||||
|
||||
#scale velocity
|
||||
run 0
|
||||
PPPM initialization ...
|
||||
extracting TIP4P info from pair style
|
||||
using polynomial approximation for long-range coulomb (../kspace.cpp:319)
|
||||
G vector (1/distance) = 0.409658
|
||||
grid = 36 36 36
|
||||
stencil order = 5
|
||||
estimated absolute RMS force accuracy = 0.000341883
|
||||
estimated relative force accuracy = 1.02957e-06
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc = 32805 11664
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 3 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.8092
|
||||
ghost atom cutoff = 10.8092
|
||||
binsize = 5.4046, bins = 4 4 4
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair e3b, perpetual, skip from (2)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair lj/cut/tip4p/long, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 10.69 | 10.69 | 10.69 Mbytes
|
||||
Step Volume Temp E_pair PotEng TotEng Press Density
|
||||
0 6481.2982 298 -512.62432 -512.62432 -129.77504 14088.322 0.99697602
|
||||
Loop time of 3.30806e-05 on 4 procs for 0 steps with 648 atoms
|
||||
|
||||
77.1% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Bond | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Kspace | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Output | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 3.308e-05 | | |100.00
|
||||
|
||||
Nlocal: 162 ave 168 max 157 min
|
||||
Histogram: 2 0 0 0 0 0 0 1 0 1
|
||||
Nghost: 3738 ave 3743 max 3732 min
|
||||
Histogram: 1 0 1 0 0 0 0 0 0 2
|
||||
Neighs: 4746 ave 5380 max 4318 min
|
||||
Histogram: 1 1 0 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 18984
|
||||
Ave neighs/atom = 29.2963
|
||||
Ave special neighs/atom = 2
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
velocity all scale ${myT}
|
||||
velocity all scale 298
|
||||
|
||||
compute e3b all pe/e3b
|
||||
fix e3b all ave/time 1 1 ${thermo_rate} c_e3b c_e3b[*] file e3b.txt title2 "step pe_e3b pe_ea pe_eb pe_ec pe_e2"
|
||||
fix e3b all ave/time 1 1 10 c_e3b c_e3b[*] file e3b.txt title2 "step pe_e3b pe_ea pe_eb pe_ec pe_e2"
|
||||
|
||||
#############################################################################
|
||||
#equilibrate bulk water at NVT
|
||||
|
||||
fix 1 all nvt temp ${myT} ${myT} ${Tdamp}
|
||||
fix 1 all nvt temp 298 ${myT} ${Tdamp}
|
||||
fix 1 all nvt temp 298 298 ${Tdamp}
|
||||
fix 1 all nvt temp 298 298 200
|
||||
run ${equil}
|
||||
run 100
|
||||
PPPM initialization ...
|
||||
extracting TIP4P info from pair style
|
||||
using polynomial approximation for long-range coulomb (../kspace.cpp:319)
|
||||
G vector (1/distance) = 0.409658
|
||||
grid = 36 36 36
|
||||
stencil order = 5
|
||||
estimated absolute RMS force accuracy = 0.000341883
|
||||
estimated relative force accuracy = 1.02957e-06
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc = 32805 11664
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 3 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.8092
|
||||
ghost atom cutoff = 10.8092
|
||||
binsize = 5.4046, bins = 4 4 4
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair e3b, perpetual, skip from (2)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair lj/cut/tip4p/long, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 11.18 | 11.18 | 11.18 Mbytes
|
||||
Step Volume Temp E_pair PotEng TotEng Press Density
|
||||
0 6481.2982 298 -512.33264 -512.33264 -129.48336 14091.383 0.99697602
|
||||
10 6481.2982 905.58028 -1442.0378 -1442.0378 -278.61245 -798.38952 0.99697602
|
||||
20 6481.2982 816.39844 -1363.5999 -1363.5999 -314.74903 3023.9064 0.99697602
|
||||
30 6481.2982 783.3897 -1370.6594 -1370.6594 -364.21587 7095.4765 0.99697602
|
||||
40 6481.2982 793.12519 -1425.8404 -1425.8404 -406.88933 7030.242 0.99697602
|
||||
50 6481.2982 810.90264 -1495.4822 -1495.4822 -453.69195 6944.2325 0.99697602
|
||||
60 6481.2982 766.64937 -1491.2317 -1491.2317 -506.29493 9062.0151 0.99697602
|
||||
70 6481.2982 761.77292 -1538.7368 -1538.7368 -560.06492 7693.2197 0.99697602
|
||||
80 6481.2982 730.44938 -1554.1818 -1554.1818 -615.75215 7345.9601 0.99697602
|
||||
90 6481.2982 695.46244 -1563.9869 -1563.9869 -670.50605 7809.0685 0.99697602
|
||||
100 6481.2982 691.5674 -1613.2754 -1613.2754 -724.79866 7143.062 0.99697602
|
||||
Loop time of 1.20724 on 4 procs for 100 steps with 648 atoms
|
||||
|
||||
Performance: 14.314 ns/day, 1.677 hours/ns, 82.834 timesteps/s
|
||||
97.6% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.37421 | 0.39416 | 0.42739 | 3.2 | 32.65
|
||||
Bond | 5.8651e-05 | 7.1406e-05 | 8.2016e-05 | 0.0 | 0.01
|
||||
Kspace | 0.67929 | 0.71762 | 0.74038 | 2.8 | 59.44
|
||||
Neigh | 0.042206 | 0.042236 | 0.042263 | 0.0 | 3.50
|
||||
Comm | 0.0248 | 0.031467 | 0.035969 | 2.7 | 2.61
|
||||
Output | 0.00064564 | 0.0008018 | 0.0012648 | 0.0 | 0.07
|
||||
Modify | 0.018263 | 0.01869 | 0.019076 | 0.2 | 1.55
|
||||
Other | | 0.002194 | | | 0.18
|
||||
|
||||
Nlocal: 162 ave 170 max 151 min
|
||||
Histogram: 1 0 0 0 0 1 0 1 0 1
|
||||
Nghost: 3726.75 ave 3737 max 3720 min
|
||||
Histogram: 1 0 1 1 0 0 0 0 0 1
|
||||
Neighs: 4784 ave 5474 max 4389 min
|
||||
Histogram: 1 1 1 0 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 19136
|
||||
Ave neighs/atom = 29.5309
|
||||
Ave special neighs/atom = 2
|
||||
Neighbor list builds = 15
|
||||
Dangerous builds = 0
|
||||
|
||||
#############################################################################
|
||||
#run at NVT
|
||||
|
||||
#dump 1 all custom ${samp_rate} dump.lammpstrj id x y z type
|
||||
#dump_modify 1 sort id
|
||||
|
||||
run ${run}
|
||||
run 100
|
||||
PPPM initialization ...
|
||||
extracting TIP4P info from pair style
|
||||
using polynomial approximation for long-range coulomb (../kspace.cpp:319)
|
||||
G vector (1/distance) = 0.409658
|
||||
grid = 36 36 36
|
||||
stencil order = 5
|
||||
estimated absolute RMS force accuracy = 0.000341883
|
||||
estimated relative force accuracy = 1.02957e-06
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc = 32805 11664
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 3 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.8092
|
||||
ghost atom cutoff = 10.8092
|
||||
binsize = 5.4046, bins = 4 4 4
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair e3b, perpetual, skip from (2)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair lj/cut/tip4p/long, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 11.18 | 11.18 | 11.18 Mbytes
|
||||
Step Volume Temp E_pair PotEng TotEng Press Density
|
||||
100 6481.2982 691.5674 -1613.2754 -1613.2754 -724.79866 7131.3961 0.99697602
|
||||
110 6481.2982 668.27004 -1635.5867 -1635.5867 -777.04068 6965.8705 0.99697602
|
||||
120 6481.2982 646.18686 -1659.5025 -1659.5025 -829.32738 6196.7432 0.99697602
|
||||
130 6481.2982 650.7802 -1716.9557 -1716.9557 -880.87943 5626.5466 0.99697602
|
||||
140 6481.2982 586.262 -1681.8052 -1681.8052 -928.61728 6103.747 0.99697602
|
||||
150 6481.2982 615.88299 -1767.8614 -1767.8614 -976.61859 3897.648 0.99697602
|
||||
160 6481.2982 585.23516 -1773.2038 -1773.2038 -1021.3352 4821.7742 0.99697602
|
||||
170 6481.2982 558.77885 -1782.2817 -1782.2817 -1064.4022 5092.7248 0.99697602
|
||||
180 6481.2982 564.01576 -1830.0301 -1830.0301 -1105.4226 4316.1636 0.99697602
|
||||
190 6481.2982 526.53776 -1821.3122 -1821.3122 -1144.8538 4529.5062 0.99697602
|
||||
200 6481.2982 537.81273 -1873.6662 -1873.6662 -1182.7226 4244.313 0.99697602
|
||||
Loop time of 1.21286 on 4 procs for 100 steps with 648 atoms
|
||||
|
||||
Performance: 14.247 ns/day, 1.685 hours/ns, 82.450 timesteps/s
|
||||
97.6% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.37664 | 0.39663 | 0.4367 | 3.8 | 32.70
|
||||
Bond | 6.175e-05 | 6.7353e-05 | 7.4148e-05 | 0.0 | 0.01
|
||||
Kspace | 0.6969 | 0.73237 | 0.75103 | 2.5 | 60.38
|
||||
Neigh | 0.033138 | 0.03317 | 0.033202 | 0.0 | 2.73
|
||||
Comm | 0.022651 | 0.02763 | 0.034947 | 3.0 | 2.28
|
||||
Output | 0.00065303 | 0.00096697 | 0.0018971 | 0.0 | 0.08
|
||||
Modify | 0.017379 | 0.018252 | 0.018955 | 0.4 | 1.50
|
||||
Other | | 0.003775 | | | 0.31
|
||||
|
||||
Nlocal: 162 ave 175 max 156 min
|
||||
Histogram: 1 2 0 0 0 0 0 0 0 1
|
||||
Nghost: 3689.5 ave 3721 max 3651 min
|
||||
Histogram: 1 0 0 0 0 1 1 0 0 1
|
||||
Neighs: 4742.75 ave 5159 max 4485 min
|
||||
Histogram: 2 0 0 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 18971
|
||||
Ave neighs/atom = 29.2762
|
||||
Ave special neighs/atom = 2
|
||||
Neighbor list builds = 12
|
||||
Dangerous builds = 0
|
||||
|
||||
# write_restart lammps.restart
|
||||
|
||||
Please see the log.cite file for references relevant to this simulation
|
||||
|
||||
Total wall time: 0:00:02
|
||||
1
examples/USER/misc/drip/C.drip
Symbolic link
@ -0,0 +1 @@
|
||||
../../../../potentials/C.drip
|
||||
1
examples/USER/misc/drip/CH.rebo
Symbolic link
@ -0,0 +1 @@
|
||||
../../../../potentials/CH.rebo
|
||||
6
examples/USER/misc/drip/README.txt
Normal file
@ -0,0 +1,6 @@
|
||||
in.C_drip:
|
||||
Use DRIP and REBO to relax a bilayer graphene.
|
||||
|
||||
in.CH_drip:
|
||||
Use DRIP and REBO to relax a bilayer graphene with additional hydrogen atoms
|
||||
on top of it.
|
||||
416
examples/USER/misc/drip/data.C
Normal file
@ -0,0 +1,416 @@
|
||||
LAMMPS data file
|
||||
|
||||
400 atoms
|
||||
1 atom types
|
||||
|
||||
0.0 2.465000000000000e+01 xlo xhi
|
||||
0.0 2.134752620328641e+01 ylo yhi
|
||||
0.0 3.000000000000000e+01 zlo zhi
|
||||
1.232500000000000e+01 0.000000000000000e+00 0.000000000000000e+00 xy xz yz
|
||||
|
||||
Masses
|
||||
|
||||
1 12.011
|
||||
|
||||
Atoms # molecular
|
||||
|
||||
1 1 1 0.000000000000000e+00 0.000000000000000e+00 1.498097531971289e+01
|
||||
2 1 1 9.859999999999999e+00 1.707802096262913e+01 1.489139792549795e+01
|
||||
3 1 1 2.588250000000000e+01 6.404257860985923e+00 1.495586615731768e+01
|
||||
4 1 1 2.711500000000000e+01 7.115842067762138e+00 1.501795235919980e+01
|
||||
5 1 1 4.930000000000000e+00 8.539010481314564e+00 1.492827527515956e+01
|
||||
6 1 1 6.162499999999999e+00 9.250594688090777e+00 1.500678649580791e+01
|
||||
7 1 1 3.204499999999999e+01 1.565485254907670e+01 1.511662064028576e+01
|
||||
8 1 1 3.081250000000000e+01 1.494326834230049e+01 1.505500683988625e+01
|
||||
9 1 1 7.395000000000000e+00 8.539010481314564e+00 1.504923694256975e+01
|
||||
10 1 1 8.627500000000000e+00 9.250594688090777e+00 1.503332570633445e+01
|
||||
11 1 1 9.859999999999999e+00 8.539010481314564e+00 1.508137430939768e+01
|
||||
12 1 1 1.109250000000000e+01 9.250594688090777e+00 1.510475862694483e+01
|
||||
13 1 1 1.109250000000000e+01 1.778960516940534e+01 1.494613902888088e+01
|
||||
14 1 1 2.958000000000000e+01 1.565485254907670e+01 1.516279958068751e+01
|
||||
15 1 1 1.232500000000000e+01 8.539010481314564e+00 1.511276583208523e+01
|
||||
16 1 1 1.355750000000000e+01 9.250594688090777e+00 1.495632206546155e+01
|
||||
17 1 1 1.479000000000000e+01 8.539010481314564e+00 1.498291715828213e+01
|
||||
18 1 1 1.602250000000000e+01 9.250594688090777e+00 1.509801558902469e+01
|
||||
19 1 1 2.711499999999999e+01 1.565485254907670e+01 1.500089766276763e+01
|
||||
20 1 1 2.588250000000000e+01 1.494326834230049e+01 1.505114888970355e+01
|
||||
21 1 1 1.725500000000000e+01 8.539010481314564e+00 1.504495103103041e+01
|
||||
22 1 1 1.848750000000000e+01 9.250594688090777e+00 1.513527732850389e+01
|
||||
23 1 1 1.972000000000000e+01 8.539010481314564e+00 1.502400693288890e+01
|
||||
24 1 1 2.095250000000000e+01 9.250594688090777e+00 1.490419939433632e+01
|
||||
25 1 1 2.465000000000000e+01 1.565485254907670e+01 1.492998117758711e+01
|
||||
26 1 1 2.834750000000000e+01 1.494326834230049e+01 1.496091474579883e+01
|
||||
27 1 1 2.465000000000000e+01 7.115842067762138e+00 1.497394355694102e+01
|
||||
28 1 1 2.341750000000000e+01 6.404257860985923e+00 1.500235588455933e+01
|
||||
29 1 1 2.218500000000000e+01 7.115842067762138e+00 1.503766448268803e+01
|
||||
30 1 1 2.465000000000000e+01 4.269505240657282e+00 1.488340764495658e+01
|
||||
31 1 1 2.588250000000000e+01 4.981089447433495e+00 1.490587231994899e+01
|
||||
32 1 1 3.697500000000000e+00 6.404257860985923e+00 1.500462204163887e+01
|
||||
33 1 1 4.930000000000000e+00 7.115842067762138e+00 1.507823175629797e+01
|
||||
34 1 1 2.095250000000000e+01 1.778960516940534e+01 1.485635836857104e+01
|
||||
35 1 1 1.972000000000000e+01 1.707802096262913e+01 1.508733405608850e+01
|
||||
36 1 1 6.162500000000000e+00 6.404257860985923e+00 1.495657175139946e+01
|
||||
37 1 1 7.395000000000000e+00 7.115842067762138e+00 1.505630699893542e+01
|
||||
38 1 1 8.627500000000000e+00 6.404257860985923e+00 1.493710859708546e+01
|
||||
39 1 1 9.859999999999999e+00 7.115842067762138e+00 1.498031036104573e+01
|
||||
40 1 1 1.848750000000000e+01 1.778960516940534e+01 1.492663969598082e+01
|
||||
41 1 1 1.725500000000000e+01 1.707802096262913e+01 1.487928391741343e+01
|
||||
42 1 1 2.218500000000000e+01 1.280851572197185e+01 1.493339893560164e+01
|
||||
43 1 1 1.232500000000000e+01 7.115842067762138e+00 1.507943978677017e+01
|
||||
44 1 1 1.355750000000000e+01 6.404257860985923e+00 1.484914917113341e+01
|
||||
45 1 1 1.479000000000000e+01 7.115842067762138e+00 1.516663648122805e+01
|
||||
46 1 1 1.602250000000000e+01 1.778960516940534e+01 1.494170266401908e+01
|
||||
47 1 1 1.479000000000000e+01 1.707802096262913e+01 1.489834582180523e+01
|
||||
48 1 1 1.602250000000000e+01 6.404257860985923e+00 1.502658138746657e+01
|
||||
49 1 1 1.725500000000000e+01 7.115842067762138e+00 1.498697322036154e+01
|
||||
50 1 1 1.848750000000000e+01 6.404257860985923e+00 1.504573856434245e+01
|
||||
51 1 1 1.972000000000000e+01 7.115842067762138e+00 1.498510668772038e+01
|
||||
52 1 1 1.355750000000000e+01 1.778960516940534e+01 1.503160986637731e+01
|
||||
53 1 1 1.232500000000000e+01 1.707802096262913e+01 1.482446479934924e+01
|
||||
54 1 1 2.095250000000000e+01 6.404257860985923e+00 1.510811524523195e+01
|
||||
55 1 1 2.341750000000000e+01 1.494326834230049e+01 1.505440697642049e+01
|
||||
56 1 1 2.218500000000000e+01 1.707802096262913e+01 1.489480063588714e+01
|
||||
57 1 1 2.218500000000000e+01 8.539010481314564e+00 1.495045959051609e+01
|
||||
58 1 1 2.465000000000000e+01 8.539010481314564e+00 1.512601015985335e+01
|
||||
59 1 1 2.588250000000000e+01 1.067376310164321e+01 1.495691790117351e+01
|
||||
60 1 1 2.711500000000000e+01 1.138534730841942e+01 1.496195578420333e+01
|
||||
61 1 1 9.859999999999999e+00 1.565485254907670e+01 1.488138963237187e+01
|
||||
62 1 1 8.627500000000000e+00 1.494326834230049e+01 1.498700505084123e+01
|
||||
63 1 1 2.834750000000000e+01 1.067376310164321e+01 1.504459111637339e+01
|
||||
64 1 1 2.958000000000000e+01 1.138534730841942e+01 1.495098625433358e+01
|
||||
65 1 1 7.395000000000000e+00 1.280851572197185e+01 1.505608046573023e+01
|
||||
66 1 1 8.627500000000000e+00 1.352009992874806e+01 1.484199719552881e+01
|
||||
67 1 1 3.081250000000000e+01 1.352009992874806e+01 1.483451056838223e+01
|
||||
68 1 1 2.958000000000000e+01 1.280851572197185e+01 1.502332948089694e+01
|
||||
69 1 1 9.859999999999999e+00 1.280851572197185e+01 1.506286085730730e+01
|
||||
70 1 1 2.465000000000000e+01 1.138534730841942e+01 1.506305034228861e+01
|
||||
71 1 1 1.109250000000000e+01 1.352009992874806e+01 1.491918072685150e+01
|
||||
72 1 1 1.355750000000000e+01 1.352009992874806e+01 1.494644661191470e+01
|
||||
73 1 1 2.834750000000000e+01 1.352009992874806e+01 1.496099714517733e+01
|
||||
74 1 1 2.711500000000000e+01 1.280851572197185e+01 1.498298656405413e+01
|
||||
75 1 1 1.479000000000000e+01 1.280851572197185e+01 1.511808602386498e+01
|
||||
76 1 1 1.602250000000000e+01 1.352009992874806e+01 1.509196186449678e+01
|
||||
77 1 1 1.725500000000000e+01 1.280851572197185e+01 1.494017769280163e+01
|
||||
78 1 1 1.848750000000000e+01 1.352009992874806e+01 1.486540173862453e+01
|
||||
79 1 1 2.588250000000000e+01 1.352009992874806e+01 1.502414429870090e+01
|
||||
80 1 1 2.465000000000000e+01 1.280851572197185e+01 1.491189258035136e+01
|
||||
81 1 1 1.972000000000000e+01 1.280851572197185e+01 1.503451993485524e+01
|
||||
82 1 1 2.095250000000000e+01 1.352009992874806e+01 1.503423133885440e+01
|
||||
83 1 1 1.232500000000000e+01 1.280851572197185e+01 1.492432047742539e+01
|
||||
84 1 1 2.341750000000000e+01 1.067376310164321e+01 1.500488865182437e+01
|
||||
85 1 1 1.109250000000000e+01 1.494326834230049e+01 1.509530225402135e+01
|
||||
86 1 1 1.232500000000000e+01 1.565485254907670e+01 1.500246060086581e+01
|
||||
87 1 1 2.588250000000000e+01 9.250594688090777e+00 1.498734533172262e+01
|
||||
88 1 1 2.218500000000000e+01 1.565485254907670e+01 1.504729297899704e+01
|
||||
89 1 1 2.095250000000000e+01 1.494326834230049e+01 1.486622917148261e+01
|
||||
90 1 1 2.711500000000000e+01 8.539010481314564e+00 1.494373650471835e+01
|
||||
91 1 1 2.834750000000000e+01 9.250594688090777e+00 1.488792788684821e+01
|
||||
92 1 1 6.162500000000000e+00 1.067376310164321e+01 1.486731884367082e+01
|
||||
93 1 1 7.395000000000000e+00 1.138534730841942e+01 1.509646856144050e+01
|
||||
94 1 1 1.972000000000000e+01 1.565485254907670e+01 1.488798024124609e+01
|
||||
95 1 1 1.848750000000000e+01 1.494326834230049e+01 1.489558509878004e+01
|
||||
96 1 1 8.627500000000000e+00 1.067376310164321e+01 1.497336164791434e+01
|
||||
97 1 1 9.859999999999999e+00 1.138534730841942e+01 1.496081048392299e+01
|
||||
98 1 1 1.109250000000000e+01 1.067376310164321e+01 1.494580009249847e+01
|
||||
99 1 1 1.232500000000000e+01 1.138534730841942e+01 1.510396759497348e+01
|
||||
100 1 1 1.725500000000000e+01 1.565485254907670e+01 1.499338417222946e+01
|
||||
101 1 1 1.602250000000000e+01 1.494326834230049e+01 1.511840116374763e+01
|
||||
102 1 1 1.355750000000000e+01 1.067376310164321e+01 1.503281161003896e+01
|
||||
103 1 1 1.479000000000000e+01 1.138534730841942e+01 1.499843298302028e+01
|
||||
104 1 1 1.602250000000000e+01 1.067376310164321e+01 1.491311607132768e+01
|
||||
105 1 1 1.725500000000000e+01 1.138534730841942e+01 1.504030511972019e+01
|
||||
106 1 1 1.479000000000000e+01 1.565485254907670e+01 1.486944422096690e+01
|
||||
107 1 1 1.355750000000000e+01 1.494326834230049e+01 1.476511580670247e+01
|
||||
108 1 1 1.848750000000000e+01 1.067376310164321e+01 1.483733215135541e+01
|
||||
109 1 1 1.972000000000000e+01 1.138534730841942e+01 1.483307878319485e+01
|
||||
110 1 1 2.095250000000000e+01 1.067376310164321e+01 1.472377202887134e+01
|
||||
111 1 1 2.218500000000000e+01 1.138534730841942e+01 1.494032335018560e+01
|
||||
112 1 1 2.341750000000000e+01 9.250594688090777e+00 1.511930030385710e+01
|
||||
113 1 1 2.341750000000000e+01 1.778960516940534e+01 1.506163255648677e+01
|
||||
114 1 1 1.109250000000000e+01 6.404257860985923e+00 1.507183137955260e+01
|
||||
115 1 1 2.218500000000000e+01 4.269505240657282e+00 1.492921198534790e+01
|
||||
116 1 1 2.341750000000000e+01 7.115842067762137e-01 1.506491820629175e+01
|
||||
117 1 1 1.232500000000000e+00 2.134752620328641e+00 1.507012124249483e+01
|
||||
118 1 1 2.465000000000000e+00 2.846336827104855e+00 1.503655403336380e+01
|
||||
119 1 1 2.218500000000000e+01 1.992435778973398e+01 1.505948767536701e+01
|
||||
120 1 1 2.095250000000000e+01 1.921277358295777e+01 1.514330257618634e+01
|
||||
121 1 1 3.697500000000000e+00 2.134752620328641e+00 1.502497496406354e+01
|
||||
122 1 1 4.930000000000000e+00 2.846336827104855e+00 1.507374298221752e+01
|
||||
123 1 1 6.162500000000000e+00 2.134752620328641e+00 1.493733326297393e+01
|
||||
124 1 1 7.395000000000000e+00 2.846336827104855e+00 1.487495201368372e+01
|
||||
125 1 1 1.972000000000000e+01 1.992435778973398e+01 1.505808760634221e+01
|
||||
126 1 1 1.848750000000000e+01 1.921277358295777e+01 1.493872889432326e+01
|
||||
127 1 1 2.218500000000000e+01 0.000000000000000e+00 1.501312853963581e+01
|
||||
128 1 1 8.627500000000000e+00 2.134752620328641e+00 1.505205628279858e+01
|
||||
129 1 1 2.341750000000000e+01 4.981089447433495e+00 1.507571160792217e+01
|
||||
130 1 1 1.109250000000000e+01 2.134752620328641e+00 1.489358054803088e+01
|
||||
131 1 1 1.232500000000000e+01 2.846336827104855e+00 1.499912561242418e+01
|
||||
132 1 1 1.725500000000000e+01 1.992435778973398e+01 1.497577189332382e+01
|
||||
133 1 1 1.602250000000000e+01 1.921277358295777e+01 1.499040615876794e+01
|
||||
134 1 1 1.355750000000000e+01 2.134752620328641e+00 1.516072772863512e+01
|
||||
135 1 1 1.479000000000000e+01 2.846336827104855e+00 1.507211585538748e+01
|
||||
136 1 1 1.602250000000000e+01 2.134752620328641e+00 1.504045728176403e+01
|
||||
137 1 1 1.725500000000000e+01 2.846336827104855e+00 1.504684394670705e+01
|
||||
138 1 1 1.479000000000000e+01 1.992435778973398e+01 1.510384904069957e+01
|
||||
139 1 1 1.355750000000000e+01 1.921277358295777e+01 1.511446984282775e+01
|
||||
140 1 1 9.859999999999999e+00 2.846336827104855e+00 1.502182693962230e+01
|
||||
141 1 1 1.848750000000000e+01 2.134752620328641e+00 1.492115016417242e+01
|
||||
142 1 1 2.341750000000000e+01 1.921277358295777e+01 1.511940999724034e+01
|
||||
143 1 1 2.095250000000000e+01 7.115842067762137e-01 1.499411067303495e+01
|
||||
144 1 1 1.232500000000000e+00 7.115842067762137e-01 1.506494802778743e+01
|
||||
145 1 1 3.451000000000000e+01 1.992435778973398e+01 1.504957420337895e+01
|
||||
146 1 1 3.327750000000000e+01 1.921277358295777e+01 1.511072511003059e+01
|
||||
147 1 1 2.465000000000000e+00 0.000000000000000e+00 1.500837434607164e+01
|
||||
148 1 1 3.697500000000000e+00 7.115842067762137e-01 1.499541651074234e+01
|
||||
149 1 1 4.930000000000000e+00 0.000000000000000e+00 1.509518604163723e+01
|
||||
150 1 1 6.162500000000000e+00 7.115842067762137e-01 1.497074687620619e+01
|
||||
151 1 1 3.204500000000000e+01 1.992435778973398e+01 1.500792890976805e+01
|
||||
152 1 1 3.081250000000000e+01 1.921277358295777e+01 1.496690270418216e+01
|
||||
153 1 1 7.395000000000000e+00 0.000000000000000e+00 1.524069684472765e+01
|
||||
154 1 1 8.627500000000000e+00 7.115842067762137e-01 1.491839348334605e+01
|
||||
155 1 1 2.465000000000000e+01 1.992435778973398e+01 1.498895095057103e+01
|
||||
156 1 1 9.859999999999999e+00 0.000000000000000e+00 1.499465288102860e+01
|
||||
157 1 1 2.958000000000000e+01 1.992435778973398e+01 1.495366550654662e+01
|
||||
158 1 1 2.834750000000000e+01 1.921277358295777e+01 1.498688543050304e+01
|
||||
159 1 1 1.232500000000000e+01 0.000000000000000e+00 1.502461005163719e+01
|
||||
160 1 1 1.355750000000000e+01 7.115842067762137e-01 1.488675470180450e+01
|
||||
161 1 1 1.479000000000000e+01 0.000000000000000e+00 1.499317346174183e+01
|
||||
162 1 1 1.602250000000000e+01 7.115842067762137e-01 1.499167690758548e+01
|
||||
163 1 1 2.711499999999999e+01 1.992435778973398e+01 1.501975964337061e+01
|
||||
164 1 1 2.588250000000000e+01 1.921277358295777e+01 1.486203378273598e+01
|
||||
165 1 1 1.725500000000000e+01 0.000000000000000e+00 1.504809379785000e+01
|
||||
166 1 1 1.848750000000000e+01 7.115842067762137e-01 1.491114701451727e+01
|
||||
167 1 1 1.972000000000000e+01 0.000000000000000e+00 1.512011452965299e+01
|
||||
168 1 1 1.109250000000000e+01 7.115842067762137e-01 1.487408794621075e+01
|
||||
169 1 1 1.972000000000000e+01 2.846336827104855e+00 1.507831721537003e+01
|
||||
170 1 1 2.341750000000000e+01 1.352009992874806e+01 1.495718486297744e+01
|
||||
171 1 1 2.958000000000000e+01 1.707802096262913e+01 1.493147208418856e+01
|
||||
172 1 1 1.848750000000000e+01 4.981089447433495e+00 1.494913539471411e+01
|
||||
173 1 1 3.697500000000000e+00 4.981089447433495e+00 1.478998858443710e+01
|
||||
174 1 1 3.327750000000000e+01 1.778960516940534e+01 1.495502006800012e+01
|
||||
175 1 1 3.204500000000000e+01 1.707802096262913e+01 1.495051064694342e+01
|
||||
176 1 1 4.930000000000000e+00 4.269505240657282e+00 1.498350377115313e+01
|
||||
177 1 1 6.162500000000000e+00 4.981089447433495e+00 1.494667393795457e+01
|
||||
178 1 1 7.395000000000000e+00 4.269505240657282e+00 1.507985366541724e+01
|
||||
179 1 1 2.588250000000000e+01 1.778960516940534e+01 1.494716376988664e+01
|
||||
180 1 1 8.627500000000000e+00 4.981089447433495e+00 1.499320258596098e+01
|
||||
181 1 1 1.602250000000000e+01 4.981089447433495e+00 1.500127272897711e+01
|
||||
182 1 1 1.479000000000000e+01 4.269505240657282e+00 1.493241109430999e+01
|
||||
183 1 1 2.711500000000000e+01 1.707802096262913e+01 1.513215736063149e+01
|
||||
184 1 1 2.834750000000000e+01 1.778960516940534e+01 1.491995000096713e+01
|
||||
185 1 1 9.859999999999999e+00 4.269505240657282e+00 1.523967414046218e+01
|
||||
186 1 1 1.109250000000000e+01 4.981089447433495e+00 1.507658824600498e+01
|
||||
187 1 1 1.355750000000000e+01 4.981089447433495e+00 1.498019661433922e+01
|
||||
188 1 1 3.081250000000000e+01 1.778960516940534e+01 1.488921763404584e+01
|
||||
189 1 1 2.465000000000000e+01 1.707802096262913e+01 1.491522695293121e+01
|
||||
190 1 1 1.725500000000000e+01 4.269505240657282e+00 1.484531224085001e+01
|
||||
191 1 1 1.972000000000000e+01 4.269505240657282e+00 1.512087841047699e+01
|
||||
192 1 1 2.095250000000000e+01 2.134752620328641e+00 1.501366356379743e+01
|
||||
193 1 1 2.218500000000000e+01 2.846336827104855e+00 1.512768073569268e+01
|
||||
194 1 1 1.232500000000000e+01 1.992435778973398e+01 1.479694154125662e+01
|
||||
195 1 1 1.109250000000000e+01 1.921277358295777e+01 1.508375643482666e+01
|
||||
196 1 1 2.095250000000000e+01 4.981089447433495e+00 1.502213574954626e+01
|
||||
197 1 1 2.465000000000000e+00 4.269505240657282e+00 1.501785776522257e+01
|
||||
198 1 1 2.341750000000000e+01 2.134752620328641e+00 1.477223550033331e+01
|
||||
199 1 1 1.232500000000000e+01 4.269505240657282e+00 1.509476826791352e+01
|
||||
200 1 1 2.465000000000000e+01 2.846336827104855e+00 1.506451005381648e+01
|
||||
201 2 1 2.958000000000000e+01 1.423168413552428e+01 1.846233090874204e+01
|
||||
202 2 1 1.725500000000000e+01 1.850118937618155e+01 1.830892906667390e+01
|
||||
203 2 1 3.204500000000000e+01 1.992435778973398e+01 1.840011296435520e+01
|
||||
204 2 1 1.109250000000000e+01 1.636643675585292e+01 1.815423076555236e+01
|
||||
205 2 1 9.859999999999999e+00 1.565485254907670e+01 1.857780537003584e+01
|
||||
206 2 1 2.341750000000000e+01 1.352009992874806e+01 1.824080722484135e+01
|
||||
207 2 1 2.465000000000000e+01 1.423168413552428e+01 1.836017802635158e+01
|
||||
208 2 1 2.341750000000000e+01 1.778960516940534e+01 1.828410032494974e+01
|
||||
209 2 1 2.711499999999999e+01 1.992435778973398e+01 1.844731239573154e+01
|
||||
210 2 1 2.834750000000000e+01 2.063594199651019e+01 1.828146439901283e+01
|
||||
211 2 1 2.465000000000000e+01 1.850118937618155e+01 1.836242662973500e+01
|
||||
212 2 1 2.711500000000000e+01 1.423168413552428e+01 1.836150573422813e+01
|
||||
213 2 1 2.588250000000000e+01 1.352009992874806e+01 1.830533607491024e+01
|
||||
214 2 1 3.204499999999999e+01 1.423168413552428e+01 1.852693962525193e+01
|
||||
215 2 1 3.327750000000000e+01 2.063594199651019e+01 1.845057006323066e+01
|
||||
216 2 1 2.218500000000000e+01 1.850118937618155e+01 1.834530693106420e+01
|
||||
217 2 1 2.095250000000000e+01 1.778960516940534e+01 1.817360355124612e+01
|
||||
218 2 1 2.711500000000000e+01 1.850118937618155e+01 1.845768039438554e+01
|
||||
219 2 1 1.848750000000000e+01 1.778960516940534e+01 1.822837106768257e+01
|
||||
220 2 1 1.972000000000000e+01 1.850118937618155e+01 1.834146516606220e+01
|
||||
221 2 1 1.602250000000000e+01 1.778960516940534e+01 1.837935563986790e+01
|
||||
222 2 1 2.958000000000000e+01 1.992435778973398e+01 1.860134630351601e+01
|
||||
223 2 1 3.081250000000000e+01 2.063594199651019e+01 1.829143841375619e+01
|
||||
224 2 1 2.588250000000000e+01 1.778960516940534e+01 1.828834782396325e+01
|
||||
225 2 1 2.834750000000000e+01 1.352009992874806e+01 1.856412094918868e+01
|
||||
226 2 1 3.081250000000000e+01 1.352009992874806e+01 1.853801808786659e+01
|
||||
227 2 1 1.355750000000000e+01 2.063594199651019e+01 1.848883167175910e+01
|
||||
228 2 1 2.588250000000000e+01 2.063594199651019e+01 1.830177176844362e+01
|
||||
229 2 1 1.109250000000000e+01 1.778960516940534e+01 1.835319724200392e+01
|
||||
230 2 1 1.848750000000000e+01 2.063594199651019e+01 1.847119667517633e+01
|
||||
231 2 1 2.218500000000000e+01 1.565485254907670e+01 1.860318710827055e+01
|
||||
232 2 1 2.341750000000000e+01 1.636643675585292e+01 1.837094744555149e+01
|
||||
233 2 1 3.327750000000000e+01 1.778960516940534e+01 1.833243244791216e+01
|
||||
234 2 1 3.327750000000000e+01 1.636643675585292e+01 1.841374627283294e+01
|
||||
235 2 1 3.204499999999999e+01 1.565485254907670e+01 1.831879406900189e+01
|
||||
236 2 1 2.095250000000000e+01 1.636643675585292e+01 1.847406800172368e+01
|
||||
237 2 1 3.450999999999999e+01 1.850118937618155e+01 1.825509330024598e+01
|
||||
238 2 1 2.588250000000000e+01 1.636643675585292e+01 1.858281516013951e+01
|
||||
239 2 1 1.602250000000000e+01 2.063594199651019e+01 1.843602760618910e+01
|
||||
240 2 1 1.479000000000000e+01 1.992435778973398e+01 1.838252211650205e+01
|
||||
241 2 1 2.711499999999999e+01 1.565485254907670e+01 1.853744396051707e+01
|
||||
242 2 1 2.834750000000000e+01 1.636643675585292e+01 1.827644925946220e+01
|
||||
243 2 1 3.081250000000000e+01 1.636643675585292e+01 1.839489332257254e+01
|
||||
244 2 1 2.958000000000000e+01 1.565485254907670e+01 1.835082606731893e+01
|
||||
245 2 1 2.465000000000000e+01 1.565485254907670e+01 1.824093445834070e+01
|
||||
246 2 1 2.834750000000000e+01 1.778960516940534e+01 1.839125877129669e+01
|
||||
247 2 1 1.972000000000000e+01 1.565485254907670e+01 1.850135584349750e+01
|
||||
248 2 1 1.972000000000000e+01 1.992435778973398e+01 1.833453778991944e+01
|
||||
249 2 1 1.232500000000000e+01 1.565485254907670e+01 1.861569706632533e+01
|
||||
250 2 1 1.355750000000000e+01 1.636643675585292e+01 1.838074525366760e+01
|
||||
251 2 1 2.465000000000000e+01 1.992435778973398e+01 1.848031566286595e+01
|
||||
252 2 1 2.958000000000000e+01 1.850118937618155e+01 1.834558681120988e+01
|
||||
253 2 1 1.232500000000000e+01 1.992435778973398e+01 1.837502909143642e+01
|
||||
254 2 1 1.479000000000000e+01 1.850118937618155e+01 1.838311174584445e+01
|
||||
255 2 1 1.479000000000000e+01 1.565485254907670e+01 1.832442132291042e+01
|
||||
256 2 1 1.232500000000000e+01 1.850118937618155e+01 1.828810769113426e+01
|
||||
257 2 1 1.602250000000000e+01 1.636643675585292e+01 1.855251516549562e+01
|
||||
258 2 1 2.341750000000000e+01 2.063594199651019e+01 1.838894036475336e+01
|
||||
259 2 1 2.218500000000000e+01 1.992435778973398e+01 1.846784434616029e+01
|
||||
260 2 1 1.725500000000000e+01 1.565485254907670e+01 1.835189752692777e+01
|
||||
261 2 1 1.848750000000000e+01 1.636643675585292e+01 1.842967763285558e+01
|
||||
262 2 1 3.081250000000000e+01 1.778960516940534e+01 1.844833766662363e+01
|
||||
263 2 1 3.204499999999999e+01 1.850118937618155e+01 1.847737939507963e+01
|
||||
264 2 1 2.095250000000000e+01 2.063594199651019e+01 1.847095133969059e+01
|
||||
265 2 1 1.355750000000000e+01 1.778960516940534e+01 1.828894868367980e+01
|
||||
266 2 1 1.725500000000000e+01 1.992435778973398e+01 1.834596243435063e+01
|
||||
267 2 1 2.957999999999999e+01 9.962178894866991e+00 1.832354414995078e+01
|
||||
268 2 1 2.095250000000000e+01 1.352009992874806e+01 1.831118657380274e+01
|
||||
269 2 1 1.972000000000000e+01 2.846336827104855e+00 1.837664127263829e+01
|
||||
270 2 1 2.095250000000000e+01 3.557921033881068e+00 1.845927782292901e+01
|
||||
271 2 1 2.218500000000000e+01 2.846336827104855e+00 1.847140305919736e+01
|
||||
272 2 1 2.341750000000000e+01 3.557921033881068e+00 1.843247974382396e+01
|
||||
273 2 1 2.465000000000000e+01 2.846336827104855e+00 1.837823139065125e+01
|
||||
274 2 1 2.588250000000000e+01 3.557921033881068e+00 1.832687883090416e+01
|
||||
275 2 1 3.697500000000000e+00 4.981089447433495e+00 1.847217701470688e+01
|
||||
276 2 1 4.930000000000000e+00 5.692673654209710e+00 1.856242710641034e+01
|
||||
277 2 1 6.162500000000000e+00 4.981089447433495e+00 1.843965491743299e+01
|
||||
278 2 1 7.395000000000000e+00 5.692673654209710e+00 1.830667264718264e+01
|
||||
279 2 1 8.627500000000000e+00 4.981089447433495e+00 1.838064863521239e+01
|
||||
280 2 1 9.859999999999999e+00 5.692673654209710e+00 1.861740907316864e+01
|
||||
281 2 1 1.109250000000000e+01 4.981089447433495e+00 1.838405249119109e+01
|
||||
282 2 1 1.232500000000000e+01 5.692673654209710e+00 1.836039437384349e+01
|
||||
283 2 1 1.355750000000000e+01 4.981089447433495e+00 1.831221958504840e+01
|
||||
284 2 1 1.479000000000000e+01 5.692673654209710e+00 1.828617147888200e+01
|
||||
285 2 1 1.602250000000000e+01 4.981089447433495e+00 1.855140653175703e+01
|
||||
286 2 1 1.725500000000000e+01 5.692673654209710e+00 1.841767199745545e+01
|
||||
287 2 1 1.848750000000000e+01 4.981089447433495e+00 1.832477807209270e+01
|
||||
288 2 1 1.972000000000000e+01 5.692673654209710e+00 1.846923771304869e+01
|
||||
289 2 1 2.095250000000000e+01 4.981089447433495e+00 1.836832598911283e+01
|
||||
290 2 1 2.218500000000000e+01 5.692673654209710e+00 1.843546423544375e+01
|
||||
291 2 1 2.341750000000000e+01 4.981089447433495e+00 1.855277898292336e+01
|
||||
292 2 1 2.465000000000000e+01 5.692673654209710e+00 1.847587291495339e+01
|
||||
293 2 1 2.588250000000000e+01 4.981089447433495e+00 1.826375194964259e+01
|
||||
294 2 1 2.711499999999999e+01 5.692673654209710e+00 1.851411320915631e+01
|
||||
295 2 1 4.930000000000000e+00 7.115842067762138e+00 1.840825444435020e+01
|
||||
296 2 1 6.162500000000000e+00 7.827426274538350e+00 1.833047038974451e+01
|
||||
297 2 1 7.395000000000000e+00 7.115842067762138e+00 1.836426082429110e+01
|
||||
298 2 1 1.848750000000000e+01 3.557921033881068e+00 1.837403279549467e+01
|
||||
299 2 1 1.725500000000000e+01 2.846336827104855e+00 1.835268380461592e+01
|
||||
300 2 1 1.602250000000000e+01 3.557921033881068e+00 1.848952507034905e+01
|
||||
301 2 1 1.479000000000000e+01 2.846336827104855e+00 1.851644726747239e+01
|
||||
302 2 1 1.232500000000000e+00 7.115842067762137e-01 1.832611230156879e+01
|
||||
303 2 1 2.465000000000000e+00 1.423168413552427e+00 1.852709756577955e+01
|
||||
304 2 1 3.697500000000000e+00 7.115842067762137e-01 1.827857500530802e+01
|
||||
305 2 1 4.929999999999999e+00 1.423168413552427e+00 1.826136806124286e+01
|
||||
306 2 1 6.162500000000000e+00 7.115842067762137e-01 1.827242936292011e+01
|
||||
307 2 1 7.395000000000000e+00 1.423168413552427e+00 1.844551050904462e+01
|
||||
308 2 1 8.627500000000000e+00 7.115842067762137e-01 1.844984225027845e+01
|
||||
309 2 1 9.859999999999999e+00 1.423168413552427e+00 1.843114129409313e+01
|
||||
310 2 1 1.109250000000000e+01 7.115842067762137e-01 1.824449880776195e+01
|
||||
311 2 1 1.232500000000000e+01 1.423168413552427e+00 1.856224612585160e+01
|
||||
312 2 1 1.355750000000000e+01 7.115842067762137e-01 1.836481578357231e+01
|
||||
313 2 1 1.479000000000000e+01 1.423168413552427e+00 1.843036892933161e+01
|
||||
314 2 1 1.602250000000000e+01 7.115842067762137e-01 1.835067728786723e+01
|
||||
315 2 1 1.725500000000000e+01 1.423168413552427e+00 1.847697931942738e+01
|
||||
316 2 1 8.627499999999998e+00 7.827426274538350e+00 1.840542860269897e+01
|
||||
317 2 1 1.848750000000000e+01 7.115842067762137e-01 1.843036272469964e+01
|
||||
318 2 1 2.095250000000000e+01 7.115842067762137e-01 1.828037025055374e+01
|
||||
319 2 1 2.218500000000000e+01 1.423168413552427e+00 1.847794227938386e+01
|
||||
320 2 1 2.341750000000000e+01 7.115842067762137e-01 1.836220929695125e+01
|
||||
321 2 1 2.465000000000000e+01 1.423168413552427e+00 1.856129777428492e+01
|
||||
322 2 1 2.465000000000000e+00 2.846336827104855e+00 1.828958750195393e+01
|
||||
323 2 1 3.697500000000000e+00 3.557921033881068e+00 1.848583325162553e+01
|
||||
324 2 1 4.930000000000000e+00 2.846336827104855e+00 1.838401024175294e+01
|
||||
325 2 1 6.162499999999999e+00 3.557921033881068e+00 1.837437624437527e+01
|
||||
326 2 1 7.395000000000000e+00 2.846336827104855e+00 1.841292915268399e+01
|
||||
327 2 1 8.627500000000000e+00 3.557921033881068e+00 1.848557970160289e+01
|
||||
328 2 1 9.859999999999999e+00 2.846336827104855e+00 1.842924761810127e+01
|
||||
329 2 1 1.109250000000000e+01 3.557921033881068e+00 1.831004365073452e+01
|
||||
330 2 1 1.232500000000000e+01 2.846336827104855e+00 1.818033371289823e+01
|
||||
331 2 1 1.355750000000000e+01 3.557921033881068e+00 1.844566501118075e+01
|
||||
332 2 1 1.972000000000000e+01 1.423168413552427e+00 1.846190975036447e+01
|
||||
333 2 1 2.218500000000000e+01 1.423168413552428e+01 1.835322517893207e+01
|
||||
334 2 1 9.859999999999999e+00 7.115842067762138e+00 1.839789371642158e+01
|
||||
335 2 1 1.232500000000000e+01 7.115842067762138e+00 1.847537444410727e+01
|
||||
336 2 1 8.627500000000000e+00 1.209693151519563e+01 1.829199174409380e+01
|
||||
337 2 1 9.859999999999999e+00 1.138534730841942e+01 1.829413303647114e+01
|
||||
338 2 1 1.109250000000000e+01 1.209693151519563e+01 1.856999584032139e+01
|
||||
339 2 1 1.232500000000000e+01 1.138534730841942e+01 1.851349651735582e+01
|
||||
340 2 1 1.355750000000000e+01 1.209693151519563e+01 1.831123823696192e+01
|
||||
341 2 1 1.479000000000000e+01 1.138534730841942e+01 1.843448433334394e+01
|
||||
342 2 1 1.602250000000000e+01 1.209693151519563e+01 1.839428881565063e+01
|
||||
343 2 1 1.725500000000000e+01 1.138534730841942e+01 1.849178099784848e+01
|
||||
344 2 1 1.848750000000000e+01 1.209693151519563e+01 1.824975358434335e+01
|
||||
345 2 1 1.972000000000000e+01 1.138534730841942e+01 1.839694145030204e+01
|
||||
346 2 1 2.095250000000000e+01 1.209693151519563e+01 1.829096787226717e+01
|
||||
347 2 1 2.218500000000000e+01 1.138534730841942e+01 1.840263887228008e+01
|
||||
348 2 1 2.341750000000000e+01 1.209693151519563e+01 1.837666030509410e+01
|
||||
349 2 1 2.465000000000000e+01 1.138534730841942e+01 1.835828025909527e+01
|
||||
350 2 1 2.588250000000000e+01 1.209693151519563e+01 1.833582168089864e+01
|
||||
351 2 1 2.711500000000000e+01 1.138534730841942e+01 1.836353031742933e+01
|
||||
352 2 1 2.834750000000000e+01 1.209693151519563e+01 1.845852602484125e+01
|
||||
353 2 1 2.958000000000000e+01 1.138534730841942e+01 1.853888136458308e+01
|
||||
354 2 1 3.081250000000000e+01 1.209693151519563e+01 1.831036168742244e+01
|
||||
355 2 1 8.627500000000000e+00 1.352009992874806e+01 1.835261188649090e+01
|
||||
356 2 1 9.859999999999999e+00 1.423168413552428e+01 1.821705864207346e+01
|
||||
357 2 1 1.109250000000000e+01 1.352009992874806e+01 1.831524712388831e+01
|
||||
358 2 1 1.232500000000000e+01 1.423168413552428e+01 1.852378179475058e+01
|
||||
359 2 1 1.355750000000000e+01 1.352009992874806e+01 1.852309441840510e+01
|
||||
360 2 1 1.479000000000000e+01 1.423168413552428e+01 1.836621027472939e+01
|
||||
361 2 1 1.602250000000000e+01 1.352009992874806e+01 1.849039311610116e+01
|
||||
362 2 1 1.725500000000000e+01 1.423168413552428e+01 1.842269825087092e+01
|
||||
363 2 1 1.848750000000000e+01 1.352009992874806e+01 1.825468998789840e+01
|
||||
364 2 1 1.972000000000000e+01 1.423168413552428e+01 1.849561590548242e+01
|
||||
365 2 1 7.395000000000000e+00 1.138534730841942e+01 1.859813014678126e+01
|
||||
366 2 1 3.451000000000000e+01 1.992435778973398e+01 1.813501916227946e+01
|
||||
367 2 1 2.834750000000000e+01 9.250594688090777e+00 1.847653992697568e+01
|
||||
368 2 1 2.711499999999999e+01 9.962178894866991e+00 1.849053529347614e+01
|
||||
369 2 1 1.355750000000000e+01 7.827426274538350e+00 1.835096749618396e+01
|
||||
370 2 1 1.479000000000000e+01 7.115842067762138e+00 1.844059942495262e+01
|
||||
371 2 1 1.602250000000000e+01 7.827426274538350e+00 1.844461353068087e+01
|
||||
372 2 1 1.725500000000000e+01 7.115842067762138e+00 1.836290600804645e+01
|
||||
373 2 1 1.848750000000000e+01 7.827426274538350e+00 1.825818280452995e+01
|
||||
374 2 1 1.972000000000000e+01 7.115842067762138e+00 1.837997086460227e+01
|
||||
375 2 1 2.095250000000000e+01 7.827426274538350e+00 1.826491847987811e+01
|
||||
376 2 1 2.218500000000000e+01 7.115842067762138e+00 1.841142851923555e+01
|
||||
377 2 1 2.341750000000000e+01 7.827426274538350e+00 1.826594520665525e+01
|
||||
378 2 1 2.465000000000000e+01 7.115842067762138e+00 1.838708488224049e+01
|
||||
379 2 1 2.588250000000000e+01 7.827426274538350e+00 1.830434555380351e+01
|
||||
380 2 1 2.711500000000000e+01 7.115842067762138e+00 1.859652575977937e+01
|
||||
381 2 1 2.834750000000000e+01 7.827426274538350e+00 1.844094595194482e+01
|
||||
382 2 1 6.162499999999999e+00 9.250594688090777e+00 1.856484810097502e+01
|
||||
383 2 1 1.109250000000000e+01 7.827426274538350e+00 1.847502232204046e+01
|
||||
384 2 1 7.395000000000000e+00 9.962178894866991e+00 1.854741705791729e+01
|
||||
385 2 1 9.859999999999999e+00 9.962178894866991e+00 1.837074522628645e+01
|
||||
386 2 1 1.109250000000000e+01 9.250594688090777e+00 1.846206781979952e+01
|
||||
387 2 1 1.232500000000000e+01 9.962178894866991e+00 1.823251181425658e+01
|
||||
388 2 1 1.355750000000000e+01 9.250594688090777e+00 1.834993099844037e+01
|
||||
389 2 1 1.479000000000000e+01 9.962178894866991e+00 1.843248036437880e+01
|
||||
390 2 1 1.602250000000000e+01 9.250594688090777e+00 1.855142577781635e+01
|
||||
391 2 1 1.725500000000000e+01 9.962178894866991e+00 1.847587547064991e+01
|
||||
392 2 1 1.848750000000000e+01 9.250594688090777e+00 1.850249139638135e+01
|
||||
393 2 1 1.972000000000000e+01 9.962178894866991e+00 1.841266132895000e+01
|
||||
394 2 1 2.095250000000000e+01 9.250594688090777e+00 1.837466808881276e+01
|
||||
395 2 1 2.218500000000000e+01 9.962178894866991e+00 1.834587370280250e+01
|
||||
396 2 1 2.341750000000000e+01 9.250594688090777e+00 1.846590574952954e+01
|
||||
397 2 1 2.465000000000000e+01 9.962178894866991e+00 1.835650105398410e+01
|
||||
398 2 1 2.588250000000000e+01 9.250594688090777e+00 1.838143174570202e+01
|
||||
399 2 1 8.627500000000000e+00 9.250594688090777e+00 1.843904853716322e+01
|
||||
400 2 1 3.574249999999999e+01 2.063594199651019e+01 1.839864514570517e+01
|
||||
562
examples/USER/misc/drip/data.CH
Normal file
@ -0,0 +1,562 @@
|
||||
LAMMPS data file
|
||||
|
||||
545 atoms
|
||||
2 atom types
|
||||
|
||||
0.0 2.465000000000000e+01 xlo xhi
|
||||
0.0 2.134752620328641e+01 ylo yhi
|
||||
0.0 3.000000000000000e+01 zlo zhi
|
||||
1.232500000000000e+01 0.000000000000000e+00 0.000000000000000e+00 xy xz yz
|
||||
|
||||
Masses
|
||||
|
||||
1 12.011
|
||||
2 1.0
|
||||
|
||||
Atoms # molecular
|
||||
|
||||
1 1 1 0.000000000000000e+00 0.000000000000000e+00 1.498097531971289e+01
|
||||
2 1 1 9.859999999999999e+00 1.707802096262913e+01 1.489139792549795e+01
|
||||
3 1 1 2.588250000000000e+01 6.404257860985923e+00 1.495586615731768e+01
|
||||
4 1 1 2.711500000000000e+01 7.115842067762138e+00 1.501795235919980e+01
|
||||
5 1 1 4.930000000000000e+00 8.539010481314564e+00 1.492827527515956e+01
|
||||
6 1 1 6.162499999999999e+00 9.250594688090777e+00 1.500678649580791e+01
|
||||
7 1 1 3.204499999999999e+01 1.565485254907670e+01 1.511662064028576e+01
|
||||
8 1 1 3.081250000000000e+01 1.494326834230049e+01 1.505500683988625e+01
|
||||
9 1 1 7.395000000000000e+00 8.539010481314564e+00 1.504923694256975e+01
|
||||
10 1 1 8.627500000000000e+00 9.250594688090777e+00 1.503332570633445e+01
|
||||
11 1 1 9.859999999999999e+00 8.539010481314564e+00 1.508137430939768e+01
|
||||
12 1 1 1.109250000000000e+01 9.250594688090777e+00 1.510475862694483e+01
|
||||
13 1 1 1.109250000000000e+01 1.778960516940534e+01 1.494613902888088e+01
|
||||
14 1 1 2.958000000000000e+01 1.565485254907670e+01 1.516279958068751e+01
|
||||
15 1 1 1.232500000000000e+01 8.539010481314564e+00 1.511276583208523e+01
|
||||
16 1 1 1.355750000000000e+01 9.250594688090777e+00 1.495632206546155e+01
|
||||
17 1 1 1.479000000000000e+01 8.539010481314564e+00 1.498291715828213e+01
|
||||
18 1 1 1.602250000000000e+01 9.250594688090777e+00 1.509801558902469e+01
|
||||
19 1 1 2.711499999999999e+01 1.565485254907670e+01 1.500089766276763e+01
|
||||
20 1 1 2.588250000000000e+01 1.494326834230049e+01 1.505114888970355e+01
|
||||
21 1 1 1.725500000000000e+01 8.539010481314564e+00 1.504495103103041e+01
|
||||
22 1 1 1.848750000000000e+01 9.250594688090777e+00 1.513527732850389e+01
|
||||
23 1 1 1.972000000000000e+01 8.539010481314564e+00 1.502400693288890e+01
|
||||
24 1 1 2.095250000000000e+01 9.250594688090777e+00 1.490419939433632e+01
|
||||
25 1 1 2.465000000000000e+01 1.565485254907670e+01 1.492998117758711e+01
|
||||
26 1 1 2.834750000000000e+01 1.494326834230049e+01 1.496091474579883e+01
|
||||
27 1 1 2.465000000000000e+01 7.115842067762138e+00 1.497394355694102e+01
|
||||
28 1 1 2.341750000000000e+01 6.404257860985923e+00 1.500235588455933e+01
|
||||
29 1 1 2.218500000000000e+01 7.115842067762138e+00 1.503766448268803e+01
|
||||
30 1 1 2.465000000000000e+01 4.269505240657282e+00 1.488340764495658e+01
|
||||
31 1 1 2.588250000000000e+01 4.981089447433495e+00 1.490587231994899e+01
|
||||
32 1 1 3.697500000000000e+00 6.404257860985923e+00 1.500462204163887e+01
|
||||
33 1 1 4.930000000000000e+00 7.115842067762138e+00 1.507823175629797e+01
|
||||
34 1 1 2.095250000000000e+01 1.778960516940534e+01 1.485635836857104e+01
|
||||
35 1 1 1.972000000000000e+01 1.707802096262913e+01 1.508733405608850e+01
|
||||
36 1 1 6.162500000000000e+00 6.404257860985923e+00 1.495657175139946e+01
|
||||
37 1 1 7.395000000000000e+00 7.115842067762138e+00 1.505630699893542e+01
|
||||
38 1 1 8.627500000000000e+00 6.404257860985923e+00 1.493710859708546e+01
|
||||
39 1 1 9.859999999999999e+00 7.115842067762138e+00 1.498031036104573e+01
|
||||
40 1 1 1.848750000000000e+01 1.778960516940534e+01 1.492663969598082e+01
|
||||
41 1 1 1.725500000000000e+01 1.707802096262913e+01 1.487928391741343e+01
|
||||
42 1 1 2.218500000000000e+01 1.280851572197185e+01 1.493339893560164e+01
|
||||
43 1 1 1.232500000000000e+01 7.115842067762138e+00 1.507943978677017e+01
|
||||
44 1 1 1.355750000000000e+01 6.404257860985923e+00 1.484914917113341e+01
|
||||
45 1 1 1.479000000000000e+01 7.115842067762138e+00 1.516663648122805e+01
|
||||
46 1 1 1.602250000000000e+01 1.778960516940534e+01 1.494170266401908e+01
|
||||
47 1 1 1.479000000000000e+01 1.707802096262913e+01 1.489834582180523e+01
|
||||
48 1 1 1.602250000000000e+01 6.404257860985923e+00 1.502658138746657e+01
|
||||
49 1 1 1.725500000000000e+01 7.115842067762138e+00 1.498697322036154e+01
|
||||
50 1 1 1.848750000000000e+01 6.404257860985923e+00 1.504573856434245e+01
|
||||
51 1 1 1.972000000000000e+01 7.115842067762138e+00 1.498510668772038e+01
|
||||
52 1 1 1.355750000000000e+01 1.778960516940534e+01 1.503160986637731e+01
|
||||
53 1 1 1.232500000000000e+01 1.707802096262913e+01 1.482446479934924e+01
|
||||
54 1 1 2.095250000000000e+01 6.404257860985923e+00 1.510811524523195e+01
|
||||
55 1 1 2.341750000000000e+01 1.494326834230049e+01 1.505440697642049e+01
|
||||
56 1 1 2.218500000000000e+01 1.707802096262913e+01 1.489480063588714e+01
|
||||
57 1 1 2.218500000000000e+01 8.539010481314564e+00 1.495045959051609e+01
|
||||
58 1 1 2.465000000000000e+01 8.539010481314564e+00 1.512601015985335e+01
|
||||
59 1 1 2.588250000000000e+01 1.067376310164321e+01 1.495691790117351e+01
|
||||
60 1 1 2.711500000000000e+01 1.138534730841942e+01 1.496195578420333e+01
|
||||
61 1 1 9.859999999999999e+00 1.565485254907670e+01 1.488138963237187e+01
|
||||
62 1 1 8.627500000000000e+00 1.494326834230049e+01 1.498700505084123e+01
|
||||
63 1 1 2.834750000000000e+01 1.067376310164321e+01 1.504459111637339e+01
|
||||
64 1 1 2.958000000000000e+01 1.138534730841942e+01 1.495098625433358e+01
|
||||
65 1 1 7.395000000000000e+00 1.280851572197185e+01 1.505608046573023e+01
|
||||
66 1 1 8.627500000000000e+00 1.352009992874806e+01 1.484199719552881e+01
|
||||
67 1 1 3.081250000000000e+01 1.352009992874806e+01 1.483451056838223e+01
|
||||
68 1 1 2.958000000000000e+01 1.280851572197185e+01 1.502332948089694e+01
|
||||
69 1 1 9.859999999999999e+00 1.280851572197185e+01 1.506286085730730e+01
|
||||
70 1 1 2.465000000000000e+01 1.138534730841942e+01 1.506305034228861e+01
|
||||
71 1 1 1.109250000000000e+01 1.352009992874806e+01 1.491918072685150e+01
|
||||
72 1 1 1.355750000000000e+01 1.352009992874806e+01 1.494644661191470e+01
|
||||
73 1 1 2.834750000000000e+01 1.352009992874806e+01 1.496099714517733e+01
|
||||
74 1 1 2.711500000000000e+01 1.280851572197185e+01 1.498298656405413e+01
|
||||
75 1 1 1.479000000000000e+01 1.280851572197185e+01 1.511808602386498e+01
|
||||
76 1 1 1.602250000000000e+01 1.352009992874806e+01 1.509196186449678e+01
|
||||
77 1 1 1.725500000000000e+01 1.280851572197185e+01 1.494017769280163e+01
|
||||
78 1 1 1.848750000000000e+01 1.352009992874806e+01 1.486540173862453e+01
|
||||
79 1 1 2.588250000000000e+01 1.352009992874806e+01 1.502414429870090e+01
|
||||
80 1 1 2.465000000000000e+01 1.280851572197185e+01 1.491189258035136e+01
|
||||
81 1 1 1.972000000000000e+01 1.280851572197185e+01 1.503451993485524e+01
|
||||
82 1 1 2.095250000000000e+01 1.352009992874806e+01 1.503423133885440e+01
|
||||
83 1 1 1.232500000000000e+01 1.280851572197185e+01 1.492432047742539e+01
|
||||
84 1 1 2.341750000000000e+01 1.067376310164321e+01 1.500488865182437e+01
|
||||
85 1 1 1.109250000000000e+01 1.494326834230049e+01 1.509530225402135e+01
|
||||
86 1 1 1.232500000000000e+01 1.565485254907670e+01 1.500246060086581e+01
|
||||
87 1 1 2.588250000000000e+01 9.250594688090777e+00 1.498734533172262e+01
|
||||
88 1 1 2.218500000000000e+01 1.565485254907670e+01 1.504729297899704e+01
|
||||
89 1 1 2.095250000000000e+01 1.494326834230049e+01 1.486622917148261e+01
|
||||
90 1 1 2.711500000000000e+01 8.539010481314564e+00 1.494373650471835e+01
|
||||
91 1 1 2.834750000000000e+01 9.250594688090777e+00 1.488792788684821e+01
|
||||
92 1 1 6.162500000000000e+00 1.067376310164321e+01 1.486731884367082e+01
|
||||
93 1 1 7.395000000000000e+00 1.138534730841942e+01 1.509646856144050e+01
|
||||
94 1 1 1.972000000000000e+01 1.565485254907670e+01 1.488798024124609e+01
|
||||
95 1 1 1.848750000000000e+01 1.494326834230049e+01 1.489558509878004e+01
|
||||
96 1 1 8.627500000000000e+00 1.067376310164321e+01 1.497336164791434e+01
|
||||
97 1 1 9.859999999999999e+00 1.138534730841942e+01 1.496081048392299e+01
|
||||
98 1 1 1.109250000000000e+01 1.067376310164321e+01 1.494580009249847e+01
|
||||
99 1 1 1.232500000000000e+01 1.138534730841942e+01 1.510396759497348e+01
|
||||
100 1 1 1.725500000000000e+01 1.565485254907670e+01 1.499338417222946e+01
|
||||
101 1 1 1.602250000000000e+01 1.494326834230049e+01 1.511840116374763e+01
|
||||
102 1 1 1.355750000000000e+01 1.067376310164321e+01 1.503281161003896e+01
|
||||
103 1 1 1.479000000000000e+01 1.138534730841942e+01 1.499843298302028e+01
|
||||
104 1 1 1.602250000000000e+01 1.067376310164321e+01 1.491311607132768e+01
|
||||
105 1 1 1.725500000000000e+01 1.138534730841942e+01 1.504030511972019e+01
|
||||
106 1 1 1.479000000000000e+01 1.565485254907670e+01 1.486944422096690e+01
|
||||
107 1 1 1.355750000000000e+01 1.494326834230049e+01 1.476511580670247e+01
|
||||
108 1 1 1.848750000000000e+01 1.067376310164321e+01 1.483733215135541e+01
|
||||
109 1 1 1.972000000000000e+01 1.138534730841942e+01 1.483307878319485e+01
|
||||
110 1 1 2.095250000000000e+01 1.067376310164321e+01 1.472377202887134e+01
|
||||
111 1 1 2.218500000000000e+01 1.138534730841942e+01 1.494032335018560e+01
|
||||
112 1 1 2.341750000000000e+01 9.250594688090777e+00 1.511930030385710e+01
|
||||
113 1 1 2.341750000000000e+01 1.778960516940534e+01 1.506163255648677e+01
|
||||
114 1 1 1.109250000000000e+01 6.404257860985923e+00 1.507183137955260e+01
|
||||
115 1 1 2.218500000000000e+01 4.269505240657282e+00 1.492921198534790e+01
|
||||
116 1 1 2.341750000000000e+01 7.115842067762137e-01 1.506491820629175e+01
|
||||
117 1 1 1.232500000000000e+00 2.134752620328641e+00 1.507012124249483e+01
|
||||
118 1 1 2.465000000000000e+00 2.846336827104855e+00 1.503655403336380e+01
|
||||
119 1 1 2.218500000000000e+01 1.992435778973398e+01 1.505948767536701e+01
|
||||
120 1 1 2.095250000000000e+01 1.921277358295777e+01 1.514330257618634e+01
|
||||
121 1 1 3.697500000000000e+00 2.134752620328641e+00 1.502497496406354e+01
|
||||
122 1 1 4.930000000000000e+00 2.846336827104855e+00 1.507374298221752e+01
|
||||
123 1 1 6.162500000000000e+00 2.134752620328641e+00 1.493733326297393e+01
|
||||
124 1 1 7.395000000000000e+00 2.846336827104855e+00 1.487495201368372e+01
|
||||
125 1 1 1.972000000000000e+01 1.992435778973398e+01 1.505808760634221e+01
|
||||
126 1 1 1.848750000000000e+01 1.921277358295777e+01 1.493872889432326e+01
|
||||
127 1 1 2.218500000000000e+01 0.000000000000000e+00 1.501312853963581e+01
|
||||
128 1 1 8.627500000000000e+00 2.134752620328641e+00 1.505205628279858e+01
|
||||
129 1 1 2.341750000000000e+01 4.981089447433495e+00 1.507571160792217e+01
|
||||
130 1 1 1.109250000000000e+01 2.134752620328641e+00 1.489358054803088e+01
|
||||
131 1 1 1.232500000000000e+01 2.846336827104855e+00 1.499912561242418e+01
|
||||
132 1 1 1.725500000000000e+01 1.992435778973398e+01 1.497577189332382e+01
|
||||
133 1 1 1.602250000000000e+01 1.921277358295777e+01 1.499040615876794e+01
|
||||
134 1 1 1.355750000000000e+01 2.134752620328641e+00 1.516072772863512e+01
|
||||
135 1 1 1.479000000000000e+01 2.846336827104855e+00 1.507211585538748e+01
|
||||
136 1 1 1.602250000000000e+01 2.134752620328641e+00 1.504045728176403e+01
|
||||
137 1 1 1.725500000000000e+01 2.846336827104855e+00 1.504684394670705e+01
|
||||
138 1 1 1.479000000000000e+01 1.992435778973398e+01 1.510384904069957e+01
|
||||
139 1 1 1.355750000000000e+01 1.921277358295777e+01 1.511446984282775e+01
|
||||
140 1 1 9.859999999999999e+00 2.846336827104855e+00 1.502182693962230e+01
|
||||
141 1 1 1.848750000000000e+01 2.134752620328641e+00 1.492115016417242e+01
|
||||
142 1 1 2.341750000000000e+01 1.921277358295777e+01 1.511940999724034e+01
|
||||
143 1 1 2.095250000000000e+01 7.115842067762137e-01 1.499411067303495e+01
|
||||
144 1 1 1.232500000000000e+00 7.115842067762137e-01 1.506494802778743e+01
|
||||
145 1 1 3.451000000000000e+01 1.992435778973398e+01 1.504957420337895e+01
|
||||
146 1 1 3.327750000000000e+01 1.921277358295777e+01 1.511072511003059e+01
|
||||
147 1 1 2.465000000000000e+00 0.000000000000000e+00 1.500837434607164e+01
|
||||
148 1 1 3.697500000000000e+00 7.115842067762137e-01 1.499541651074234e+01
|
||||
149 1 1 4.930000000000000e+00 0.000000000000000e+00 1.509518604163723e+01
|
||||
150 1 1 6.162500000000000e+00 7.115842067762137e-01 1.497074687620619e+01
|
||||
151 1 1 3.204500000000000e+01 1.992435778973398e+01 1.500792890976805e+01
|
||||
152 1 1 3.081250000000000e+01 1.921277358295777e+01 1.496690270418216e+01
|
||||
153 1 1 7.395000000000000e+00 0.000000000000000e+00 1.524069684472765e+01
|
||||
154 1 1 8.627500000000000e+00 7.115842067762137e-01 1.491839348334605e+01
|
||||
155 1 1 2.465000000000000e+01 1.992435778973398e+01 1.498895095057103e+01
|
||||
156 1 1 9.859999999999999e+00 0.000000000000000e+00 1.499465288102860e+01
|
||||
157 1 1 2.958000000000000e+01 1.992435778973398e+01 1.495366550654662e+01
|
||||
158 1 1 2.834750000000000e+01 1.921277358295777e+01 1.498688543050304e+01
|
||||
159 1 1 1.232500000000000e+01 0.000000000000000e+00 1.502461005163719e+01
|
||||
160 1 1 1.355750000000000e+01 7.115842067762137e-01 1.488675470180450e+01
|
||||
161 1 1 1.479000000000000e+01 0.000000000000000e+00 1.499317346174183e+01
|
||||
162 1 1 1.602250000000000e+01 7.115842067762137e-01 1.499167690758548e+01
|
||||
163 1 1 2.711499999999999e+01 1.992435778973398e+01 1.501975964337061e+01
|
||||
164 1 1 2.588250000000000e+01 1.921277358295777e+01 1.486203378273598e+01
|
||||
165 1 1 1.725500000000000e+01 0.000000000000000e+00 1.504809379785000e+01
|
||||
166 1 1 1.848750000000000e+01 7.115842067762137e-01 1.491114701451727e+01
|
||||
167 1 1 1.972000000000000e+01 0.000000000000000e+00 1.512011452965299e+01
|
||||
168 1 1 1.109250000000000e+01 7.115842067762137e-01 1.487408794621075e+01
|
||||
169 1 1 1.972000000000000e+01 2.846336827104855e+00 1.507831721537003e+01
|
||||
170 1 1 2.341750000000000e+01 1.352009992874806e+01 1.495718486297744e+01
|
||||
171 1 1 2.958000000000000e+01 1.707802096262913e+01 1.493147208418856e+01
|
||||
172 1 1 1.848750000000000e+01 4.981089447433495e+00 1.494913539471411e+01
|
||||
173 1 1 3.697500000000000e+00 4.981089447433495e+00 1.478998858443710e+01
|
||||
174 1 1 3.327750000000000e+01 1.778960516940534e+01 1.495502006800012e+01
|
||||
175 1 1 3.204500000000000e+01 1.707802096262913e+01 1.495051064694342e+01
|
||||
176 1 1 4.930000000000000e+00 4.269505240657282e+00 1.498350377115313e+01
|
||||
177 1 1 6.162500000000000e+00 4.981089447433495e+00 1.494667393795457e+01
|
||||
178 1 1 7.395000000000000e+00 4.269505240657282e+00 1.507985366541724e+01
|
||||
179 1 1 2.588250000000000e+01 1.778960516940534e+01 1.494716376988664e+01
|
||||
180 1 1 8.627500000000000e+00 4.981089447433495e+00 1.499320258596098e+01
|
||||
181 1 1 1.602250000000000e+01 4.981089447433495e+00 1.500127272897711e+01
|
||||
182 1 1 1.479000000000000e+01 4.269505240657282e+00 1.493241109430999e+01
|
||||
183 1 1 2.711500000000000e+01 1.707802096262913e+01 1.513215736063149e+01
|
||||
184 1 1 2.834750000000000e+01 1.778960516940534e+01 1.491995000096713e+01
|
||||
185 1 1 9.859999999999999e+00 4.269505240657282e+00 1.523967414046218e+01
|
||||
186 1 1 1.109250000000000e+01 4.981089447433495e+00 1.507658824600498e+01
|
||||
187 1 1 1.355750000000000e+01 4.981089447433495e+00 1.498019661433922e+01
|
||||
188 1 1 3.081250000000000e+01 1.778960516940534e+01 1.488921763404584e+01
|
||||
189 1 1 2.465000000000000e+01 1.707802096262913e+01 1.491522695293121e+01
|
||||
190 1 1 1.725500000000000e+01 4.269505240657282e+00 1.484531224085001e+01
|
||||
191 1 1 1.972000000000000e+01 4.269505240657282e+00 1.512087841047699e+01
|
||||
192 1 1 2.095250000000000e+01 2.134752620328641e+00 1.501366356379743e+01
|
||||
193 1 1 2.218500000000000e+01 2.846336827104855e+00 1.512768073569268e+01
|
||||
194 1 1 1.232500000000000e+01 1.992435778973398e+01 1.479694154125662e+01
|
||||
195 1 1 1.109250000000000e+01 1.921277358295777e+01 1.508375643482666e+01
|
||||
196 1 1 2.095250000000000e+01 4.981089447433495e+00 1.502213574954626e+01
|
||||
197 1 1 2.465000000000000e+00 4.269505240657282e+00 1.501785776522257e+01
|
||||
198 1 1 2.341750000000000e+01 2.134752620328641e+00 1.477223550033331e+01
|
||||
199 1 1 1.232500000000000e+01 4.269505240657282e+00 1.509476826791352e+01
|
||||
200 1 1 2.465000000000000e+01 2.846336827104855e+00 1.506451005381648e+01
|
||||
201 2 1 2.958000000000000e+01 1.423168413552428e+01 1.846233090874204e+01
|
||||
202 2 1 1.725500000000000e+01 1.850118937618155e+01 1.830892906667390e+01
|
||||
203 2 1 3.204500000000000e+01 1.992435778973398e+01 1.840011296435520e+01
|
||||
204 2 1 1.109250000000000e+01 1.636643675585292e+01 1.815423076555236e+01
|
||||
205 2 1 9.859999999999999e+00 1.565485254907670e+01 1.857780537003584e+01
|
||||
206 2 1 2.341750000000000e+01 1.352009992874806e+01 1.824080722484135e+01
|
||||
207 2 1 2.465000000000000e+01 1.423168413552428e+01 1.836017802635158e+01
|
||||
208 2 1 2.341750000000000e+01 1.778960516940534e+01 1.828410032494974e+01
|
||||
209 2 1 2.711499999999999e+01 1.992435778973398e+01 1.844731239573154e+01
|
||||
210 2 1 2.834750000000000e+01 2.063594199651019e+01 1.828146439901283e+01
|
||||
211 2 1 2.465000000000000e+01 1.850118937618155e+01 1.836242662973500e+01
|
||||
212 2 1 2.711500000000000e+01 1.423168413552428e+01 1.836150573422813e+01
|
||||
213 2 1 2.588250000000000e+01 1.352009992874806e+01 1.830533607491024e+01
|
||||
214 2 1 3.204499999999999e+01 1.423168413552428e+01 1.852693962525193e+01
|
||||
215 2 1 3.327750000000000e+01 2.063594199651019e+01 1.845057006323066e+01
|
||||
216 2 1 2.218500000000000e+01 1.850118937618155e+01 1.834530693106420e+01
|
||||
217 2 1 2.095250000000000e+01 1.778960516940534e+01 1.817360355124612e+01
|
||||
218 2 1 2.711500000000000e+01 1.850118937618155e+01 1.845768039438554e+01
|
||||
219 2 1 1.848750000000000e+01 1.778960516940534e+01 1.822837106768257e+01
|
||||
220 2 1 1.972000000000000e+01 1.850118937618155e+01 1.834146516606220e+01
|
||||
221 2 1 1.602250000000000e+01 1.778960516940534e+01 1.837935563986790e+01
|
||||
222 2 1 2.958000000000000e+01 1.992435778973398e+01 1.860134630351601e+01
|
||||
223 2 1 3.081250000000000e+01 2.063594199651019e+01 1.829143841375619e+01
|
||||
224 2 1 2.588250000000000e+01 1.778960516940534e+01 1.828834782396325e+01
|
||||
225 2 1 2.834750000000000e+01 1.352009992874806e+01 1.856412094918868e+01
|
||||
226 2 1 3.081250000000000e+01 1.352009992874806e+01 1.853801808786659e+01
|
||||
227 2 1 1.355750000000000e+01 2.063594199651019e+01 1.848883167175910e+01
|
||||
228 2 1 2.588250000000000e+01 2.063594199651019e+01 1.830177176844362e+01
|
||||
229 2 1 1.109250000000000e+01 1.778960516940534e+01 1.835319724200392e+01
|
||||
230 2 1 1.848750000000000e+01 2.063594199651019e+01 1.847119667517633e+01
|
||||
231 2 1 2.218500000000000e+01 1.565485254907670e+01 1.860318710827055e+01
|
||||
232 2 1 2.341750000000000e+01 1.636643675585292e+01 1.837094744555149e+01
|
||||
233 2 1 3.327750000000000e+01 1.778960516940534e+01 1.833243244791216e+01
|
||||
234 2 1 3.327750000000000e+01 1.636643675585292e+01 1.841374627283294e+01
|
||||
235 2 1 3.204499999999999e+01 1.565485254907670e+01 1.831879406900189e+01
|
||||
236 2 1 2.095250000000000e+01 1.636643675585292e+01 1.847406800172368e+01
|
||||
237 2 1 3.450999999999999e+01 1.850118937618155e+01 1.825509330024598e+01
|
||||
238 2 1 2.588250000000000e+01 1.636643675585292e+01 1.858281516013951e+01
|
||||
239 2 1 1.602250000000000e+01 2.063594199651019e+01 1.843602760618910e+01
|
||||
240 2 1 1.479000000000000e+01 1.992435778973398e+01 1.838252211650205e+01
|
||||
241 2 1 2.711499999999999e+01 1.565485254907670e+01 1.853744396051707e+01
|
||||
242 2 1 2.834750000000000e+01 1.636643675585292e+01 1.827644925946220e+01
|
||||
243 2 1 3.081250000000000e+01 1.636643675585292e+01 1.839489332257254e+01
|
||||
244 2 1 2.958000000000000e+01 1.565485254907670e+01 1.835082606731893e+01
|
||||
245 2 1 2.465000000000000e+01 1.565485254907670e+01 1.824093445834070e+01
|
||||
246 2 1 2.834750000000000e+01 1.778960516940534e+01 1.839125877129669e+01
|
||||
247 2 1 1.972000000000000e+01 1.565485254907670e+01 1.850135584349750e+01
|
||||
248 2 1 1.972000000000000e+01 1.992435778973398e+01 1.833453778991944e+01
|
||||
249 2 1 1.232500000000000e+01 1.565485254907670e+01 1.861569706632533e+01
|
||||
250 2 1 1.355750000000000e+01 1.636643675585292e+01 1.838074525366760e+01
|
||||
251 2 1 2.465000000000000e+01 1.992435778973398e+01 1.848031566286595e+01
|
||||
252 2 1 2.958000000000000e+01 1.850118937618155e+01 1.834558681120988e+01
|
||||
253 2 1 1.232500000000000e+01 1.992435778973398e+01 1.837502909143642e+01
|
||||
254 2 1 1.479000000000000e+01 1.850118937618155e+01 1.838311174584445e+01
|
||||
255 2 1 1.479000000000000e+01 1.565485254907670e+01 1.832442132291042e+01
|
||||
256 2 1 1.232500000000000e+01 1.850118937618155e+01 1.828810769113426e+01
|
||||
257 2 1 1.602250000000000e+01 1.636643675585292e+01 1.855251516549562e+01
|
||||
258 2 1 2.341750000000000e+01 2.063594199651019e+01 1.838894036475336e+01
|
||||
259 2 1 2.218500000000000e+01 1.992435778973398e+01 1.846784434616029e+01
|
||||
260 2 1 1.725500000000000e+01 1.565485254907670e+01 1.835189752692777e+01
|
||||
261 2 1 1.848750000000000e+01 1.636643675585292e+01 1.842967763285558e+01
|
||||
262 2 1 3.081250000000000e+01 1.778960516940534e+01 1.844833766662363e+01
|
||||
263 2 1 3.204499999999999e+01 1.850118937618155e+01 1.847737939507963e+01
|
||||
264 2 1 2.095250000000000e+01 2.063594199651019e+01 1.847095133969059e+01
|
||||
265 2 1 1.355750000000000e+01 1.778960516940534e+01 1.828894868367980e+01
|
||||
266 2 1 1.725500000000000e+01 1.992435778973398e+01 1.834596243435063e+01
|
||||
267 2 1 2.957999999999999e+01 9.962178894866991e+00 1.832354414995078e+01
|
||||
268 2 1 2.095250000000000e+01 1.352009992874806e+01 1.831118657380274e+01
|
||||
269 2 1 1.972000000000000e+01 2.846336827104855e+00 1.837664127263829e+01
|
||||
270 2 1 2.095250000000000e+01 3.557921033881068e+00 1.845927782292901e+01
|
||||
271 2 1 2.218500000000000e+01 2.846336827104855e+00 1.847140305919736e+01
|
||||
272 2 1 2.341750000000000e+01 3.557921033881068e+00 1.843247974382396e+01
|
||||
273 2 1 2.465000000000000e+01 2.846336827104855e+00 1.837823139065125e+01
|
||||
274 2 1 2.588250000000000e+01 3.557921033881068e+00 1.832687883090416e+01
|
||||
275 2 1 3.697500000000000e+00 4.981089447433495e+00 1.847217701470688e+01
|
||||
276 2 1 4.930000000000000e+00 5.692673654209710e+00 1.856242710641034e+01
|
||||
277 2 1 6.162500000000000e+00 4.981089447433495e+00 1.843965491743299e+01
|
||||
278 2 1 7.395000000000000e+00 5.692673654209710e+00 1.830667264718264e+01
|
||||
279 2 1 8.627500000000000e+00 4.981089447433495e+00 1.838064863521239e+01
|
||||
280 2 1 9.859999999999999e+00 5.692673654209710e+00 1.861740907316864e+01
|
||||
281 2 1 1.109250000000000e+01 4.981089447433495e+00 1.838405249119109e+01
|
||||
282 2 1 1.232500000000000e+01 5.692673654209710e+00 1.836039437384349e+01
|
||||
283 2 1 1.355750000000000e+01 4.981089447433495e+00 1.831221958504840e+01
|
||||
284 2 1 1.479000000000000e+01 5.692673654209710e+00 1.828617147888200e+01
|
||||
285 2 1 1.602250000000000e+01 4.981089447433495e+00 1.855140653175703e+01
|
||||
286 2 1 1.725500000000000e+01 5.692673654209710e+00 1.841767199745545e+01
|
||||
287 2 1 1.848750000000000e+01 4.981089447433495e+00 1.832477807209270e+01
|
||||
288 2 1 1.972000000000000e+01 5.692673654209710e+00 1.846923771304869e+01
|
||||
289 2 1 2.095250000000000e+01 4.981089447433495e+00 1.836832598911283e+01
|
||||
290 2 1 2.218500000000000e+01 5.692673654209710e+00 1.843546423544375e+01
|
||||
291 2 1 2.341750000000000e+01 4.981089447433495e+00 1.855277898292336e+01
|
||||
292 2 1 2.465000000000000e+01 5.692673654209710e+00 1.847587291495339e+01
|
||||
293 2 1 2.588250000000000e+01 4.981089447433495e+00 1.826375194964259e+01
|
||||
294 2 1 2.711499999999999e+01 5.692673654209710e+00 1.851411320915631e+01
|
||||
295 2 1 4.930000000000000e+00 7.115842067762138e+00 1.840825444435020e+01
|
||||
296 2 1 6.162500000000000e+00 7.827426274538350e+00 1.833047038974451e+01
|
||||
297 2 1 7.395000000000000e+00 7.115842067762138e+00 1.836426082429110e+01
|
||||
298 2 1 1.848750000000000e+01 3.557921033881068e+00 1.837403279549467e+01
|
||||
299 2 1 1.725500000000000e+01 2.846336827104855e+00 1.835268380461592e+01
|
||||
300 2 1 1.602250000000000e+01 3.557921033881068e+00 1.848952507034905e+01
|
||||
301 2 1 1.479000000000000e+01 2.846336827104855e+00 1.851644726747239e+01
|
||||
302 2 1 1.232500000000000e+00 7.115842067762137e-01 1.832611230156879e+01
|
||||
303 2 1 2.465000000000000e+00 1.423168413552427e+00 1.852709756577955e+01
|
||||
304 2 1 3.697500000000000e+00 7.115842067762137e-01 1.827857500530802e+01
|
||||
305 2 1 4.929999999999999e+00 1.423168413552427e+00 1.826136806124286e+01
|
||||
306 2 1 6.162500000000000e+00 7.115842067762137e-01 1.827242936292011e+01
|
||||
307 2 1 7.395000000000000e+00 1.423168413552427e+00 1.844551050904462e+01
|
||||
308 2 1 8.627500000000000e+00 7.115842067762137e-01 1.844984225027845e+01
|
||||
309 2 1 9.859999999999999e+00 1.423168413552427e+00 1.843114129409313e+01
|
||||
310 2 1 1.109250000000000e+01 7.115842067762137e-01 1.824449880776195e+01
|
||||
311 2 1 1.232500000000000e+01 1.423168413552427e+00 1.856224612585160e+01
|
||||
312 2 1 1.355750000000000e+01 7.115842067762137e-01 1.836481578357231e+01
|
||||
313 2 1 1.479000000000000e+01 1.423168413552427e+00 1.843036892933161e+01
|
||||
314 2 1 1.602250000000000e+01 7.115842067762137e-01 1.835067728786723e+01
|
||||
315 2 1 1.725500000000000e+01 1.423168413552427e+00 1.847697931942738e+01
|
||||
316 2 1 8.627499999999998e+00 7.827426274538350e+00 1.840542860269897e+01
|
||||
317 2 1 1.848750000000000e+01 7.115842067762137e-01 1.843036272469964e+01
|
||||
318 2 1 2.095250000000000e+01 7.115842067762137e-01 1.828037025055374e+01
|
||||
319 2 1 2.218500000000000e+01 1.423168413552427e+00 1.847794227938386e+01
|
||||
320 2 1 2.341750000000000e+01 7.115842067762137e-01 1.836220929695125e+01
|
||||
321 2 1 2.465000000000000e+01 1.423168413552427e+00 1.856129777428492e+01
|
||||
322 2 1 2.465000000000000e+00 2.846336827104855e+00 1.828958750195393e+01
|
||||
323 2 1 3.697500000000000e+00 3.557921033881068e+00 1.848583325162553e+01
|
||||
324 2 1 4.930000000000000e+00 2.846336827104855e+00 1.838401024175294e+01
|
||||
325 2 1 6.162499999999999e+00 3.557921033881068e+00 1.837437624437527e+01
|
||||
326 2 1 7.395000000000000e+00 2.846336827104855e+00 1.841292915268399e+01
|
||||
327 2 1 8.627500000000000e+00 3.557921033881068e+00 1.848557970160289e+01
|
||||
328 2 1 9.859999999999999e+00 2.846336827104855e+00 1.842924761810127e+01
|
||||
329 2 1 1.109250000000000e+01 3.557921033881068e+00 1.831004365073452e+01
|
||||
330 2 1 1.232500000000000e+01 2.846336827104855e+00 1.818033371289823e+01
|
||||
331 2 1 1.355750000000000e+01 3.557921033881068e+00 1.844566501118075e+01
|
||||
332 2 1 1.972000000000000e+01 1.423168413552427e+00 1.846190975036447e+01
|
||||
333 2 1 2.218500000000000e+01 1.423168413552428e+01 1.835322517893207e+01
|
||||
334 2 1 9.859999999999999e+00 7.115842067762138e+00 1.839789371642158e+01
|
||||
335 2 1 1.232500000000000e+01 7.115842067762138e+00 1.847537444410727e+01
|
||||
336 2 1 8.627500000000000e+00 1.209693151519563e+01 1.829199174409380e+01
|
||||
337 2 1 9.859999999999999e+00 1.138534730841942e+01 1.829413303647114e+01
|
||||
338 2 1 1.109250000000000e+01 1.209693151519563e+01 1.856999584032139e+01
|
||||
339 2 1 1.232500000000000e+01 1.138534730841942e+01 1.851349651735582e+01
|
||||
340 2 1 1.355750000000000e+01 1.209693151519563e+01 1.831123823696192e+01
|
||||
341 2 1 1.479000000000000e+01 1.138534730841942e+01 1.843448433334394e+01
|
||||
342 2 1 1.602250000000000e+01 1.209693151519563e+01 1.839428881565063e+01
|
||||
343 2 1 1.725500000000000e+01 1.138534730841942e+01 1.849178099784848e+01
|
||||
344 2 1 1.848750000000000e+01 1.209693151519563e+01 1.824975358434335e+01
|
||||
345 2 1 1.972000000000000e+01 1.138534730841942e+01 1.839694145030204e+01
|
||||
346 2 1 2.095250000000000e+01 1.209693151519563e+01 1.829096787226717e+01
|
||||
347 2 1 2.218500000000000e+01 1.138534730841942e+01 1.840263887228008e+01
|
||||
348 2 1 2.341750000000000e+01 1.209693151519563e+01 1.837666030509410e+01
|
||||
349 2 1 2.465000000000000e+01 1.138534730841942e+01 1.835828025909527e+01
|
||||
350 2 1 2.588250000000000e+01 1.209693151519563e+01 1.833582168089864e+01
|
||||
351 2 1 2.711500000000000e+01 1.138534730841942e+01 1.836353031742933e+01
|
||||
352 2 1 2.834750000000000e+01 1.209693151519563e+01 1.845852602484125e+01
|
||||
353 2 1 2.958000000000000e+01 1.138534730841942e+01 1.853888136458308e+01
|
||||
354 2 1 3.081250000000000e+01 1.209693151519563e+01 1.831036168742244e+01
|
||||
355 2 1 8.627500000000000e+00 1.352009992874806e+01 1.835261188649090e+01
|
||||
356 2 1 9.859999999999999e+00 1.423168413552428e+01 1.821705864207346e+01
|
||||
357 2 1 1.109250000000000e+01 1.352009992874806e+01 1.831524712388831e+01
|
||||
358 2 1 1.232500000000000e+01 1.423168413552428e+01 1.852378179475058e+01
|
||||
359 2 1 1.355750000000000e+01 1.352009992874806e+01 1.852309441840510e+01
|
||||
360 2 1 1.479000000000000e+01 1.423168413552428e+01 1.836621027472939e+01
|
||||
361 2 1 1.602250000000000e+01 1.352009992874806e+01 1.849039311610116e+01
|
||||
362 2 1 1.725500000000000e+01 1.423168413552428e+01 1.842269825087092e+01
|
||||
363 2 1 1.848750000000000e+01 1.352009992874806e+01 1.825468998789840e+01
|
||||
364 2 1 1.972000000000000e+01 1.423168413552428e+01 1.849561590548242e+01
|
||||
365 2 1 7.395000000000000e+00 1.138534730841942e+01 1.859813014678126e+01
|
||||
366 2 1 3.451000000000000e+01 1.992435778973398e+01 1.813501916227946e+01
|
||||
367 2 1 2.834750000000000e+01 9.250594688090777e+00 1.847653992697568e+01
|
||||
368 2 1 2.711499999999999e+01 9.962178894866991e+00 1.849053529347614e+01
|
||||
369 2 1 1.355750000000000e+01 7.827426274538350e+00 1.835096749618396e+01
|
||||
370 2 1 1.479000000000000e+01 7.115842067762138e+00 1.844059942495262e+01
|
||||
371 2 1 1.602250000000000e+01 7.827426274538350e+00 1.844461353068087e+01
|
||||
372 2 1 1.725500000000000e+01 7.115842067762138e+00 1.836290600804645e+01
|
||||
373 2 1 1.848750000000000e+01 7.827426274538350e+00 1.825818280452995e+01
|
||||
374 2 1 1.972000000000000e+01 7.115842067762138e+00 1.837997086460227e+01
|
||||
375 2 1 2.095250000000000e+01 7.827426274538350e+00 1.826491847987811e+01
|
||||
376 2 1 2.218500000000000e+01 7.115842067762138e+00 1.841142851923555e+01
|
||||
377 2 1 2.341750000000000e+01 7.827426274538350e+00 1.826594520665525e+01
|
||||
378 2 1 2.465000000000000e+01 7.115842067762138e+00 1.838708488224049e+01
|
||||
379 2 1 2.588250000000000e+01 7.827426274538350e+00 1.830434555380351e+01
|
||||
380 2 1 2.711500000000000e+01 7.115842067762138e+00 1.859652575977937e+01
|
||||
381 2 1 2.834750000000000e+01 7.827426274538350e+00 1.844094595194482e+01
|
||||
382 2 1 6.162499999999999e+00 9.250594688090777e+00 1.856484810097502e+01
|
||||
383 2 1 1.109250000000000e+01 7.827426274538350e+00 1.847502232204046e+01
|
||||
384 2 1 7.395000000000000e+00 9.962178894866991e+00 1.854741705791729e+01
|
||||
385 2 1 9.859999999999999e+00 9.962178894866991e+00 1.837074522628645e+01
|
||||
386 2 1 1.109250000000000e+01 9.250594688090777e+00 1.846206781979952e+01
|
||||
387 2 1 1.232500000000000e+01 9.962178894866991e+00 1.823251181425658e+01
|
||||
388 2 1 1.355750000000000e+01 9.250594688090777e+00 1.834993099844037e+01
|
||||
389 2 1 1.479000000000000e+01 9.962178894866991e+00 1.843248036437880e+01
|
||||
390 2 1 1.602250000000000e+01 9.250594688090777e+00 1.855142577781635e+01
|
||||
391 2 1 1.725500000000000e+01 9.962178894866991e+00 1.847587547064991e+01
|
||||
392 2 1 1.848750000000000e+01 9.250594688090777e+00 1.850249139638135e+01
|
||||
393 2 1 1.972000000000000e+01 9.962178894866991e+00 1.841266132895000e+01
|
||||
394 2 1 2.095250000000000e+01 9.250594688090777e+00 1.837466808881276e+01
|
||||
395 2 1 2.218500000000000e+01 9.962178894866991e+00 1.834587370280250e+01
|
||||
396 2 1 2.341750000000000e+01 9.250594688090777e+00 1.846590574952954e+01
|
||||
397 2 1 2.465000000000000e+01 9.962178894866991e+00 1.835650105398410e+01
|
||||
398 2 1 2.588250000000000e+01 9.250594688090777e+00 1.838143174570202e+01
|
||||
399 2 1 8.627500000000000e+00 9.250594688090777e+00 1.843904853716322e+01
|
||||
400 2 1 3.574249999999999e+01 2.063594199651019e+01 1.839864514570517e+01
|
||||
401 2 2 2.958000000000000e+01 1.423168413552428e+01 2.000000000000000e+01
|
||||
402 2 2 1.725500000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
403 2 2 3.204500000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
404 2 2 1.109250000000000e+01 1.636643675585292e+01 2.000000000000000e+01
|
||||
405 2 2 9.859999999999999e+00 1.565485254907670e+01 2.000000000000000e+01
|
||||
406 2 2 2.341750000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
407 2 2 2.465000000000000e+01 1.423168413552428e+01 2.000000000000000e+01
|
||||
408 2 2 2.341750000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
409 2 2 2.711499999999999e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
410 2 2 2.834750000000000e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
411 2 2 2.465000000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
412 2 2 2.711500000000000e+01 1.423168413552428e+01 2.000000000000000e+01
|
||||
413 2 2 2.588250000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
414 2 2 3.204499999999999e+01 1.423168413552428e+01 2.000000000000000e+01
|
||||
415 2 2 3.327750000000000e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
416 2 2 2.218500000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
417 2 2 2.095250000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
418 2 2 2.711500000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
419 2 2 1.848750000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
420 2 2 1.972000000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
421 2 2 1.602250000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
422 2 2 2.958000000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
423 2 2 3.081250000000000e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
424 2 2 2.588250000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
425 2 2 2.834750000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
426 2 2 3.081250000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
427 2 2 1.355750000000000e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
428 2 2 2.588250000000000e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
429 2 2 1.109250000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
430 2 2 2.341750000000000e+01 1.636643675585292e+01 2.000000000000000e+01
|
||||
431 2 2 3.327750000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
432 2 2 3.327750000000000e+01 1.636643675585292e+01 2.000000000000000e+01
|
||||
433 2 2 3.204499999999999e+01 1.565485254907670e+01 2.000000000000000e+01
|
||||
434 2 2 2.588250000000000e+01 1.636643675585292e+01 2.000000000000000e+01
|
||||
435 2 2 1.602250000000000e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
436 2 2 1.479000000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
437 2 2 2.711499999999999e+01 1.565485254907670e+01 2.000000000000000e+01
|
||||
438 2 2 2.465000000000000e+01 1.565485254907670e+01 2.000000000000000e+01
|
||||
439 2 2 2.834750000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
440 2 2 1.972000000000000e+01 1.565485254907670e+01 2.000000000000000e+01
|
||||
441 2 2 1.972000000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
442 2 2 2.958000000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
443 2 2 1.232500000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
444 2 2 1.479000000000000e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
445 2 2 1.479000000000000e+01 1.565485254907670e+01 2.000000000000000e+01
|
||||
446 2 2 2.218500000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
447 2 2 1.725500000000000e+01 1.565485254907670e+01 2.000000000000000e+01
|
||||
448 2 2 1.848750000000000e+01 1.636643675585292e+01 2.000000000000000e+01
|
||||
449 2 2 3.081250000000000e+01 1.778960516940534e+01 2.000000000000000e+01
|
||||
450 2 2 3.204499999999999e+01 1.850118937618155e+01 2.000000000000000e+01
|
||||
451 2 2 2.957999999999999e+01 9.962178894866991e+00 2.000000000000000e+01
|
||||
452 2 2 2.095250000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
453 2 2 1.972000000000000e+01 2.846336827104855e+00 2.000000000000000e+01
|
||||
454 2 2 2.095250000000000e+01 3.557921033881068e+00 2.000000000000000e+01
|
||||
455 2 2 2.218500000000000e+01 2.846336827104855e+00 2.000000000000000e+01
|
||||
456 2 2 3.697500000000000e+00 4.981089447433495e+00 2.000000000000000e+01
|
||||
457 2 2 4.930000000000000e+00 5.692673654209710e+00 2.000000000000000e+01
|
||||
458 2 2 6.162500000000000e+00 4.981089447433495e+00 2.000000000000000e+01
|
||||
459 2 2 7.395000000000000e+00 5.692673654209710e+00 2.000000000000000e+01
|
||||
460 2 2 8.627500000000000e+00 4.981089447433495e+00 2.000000000000000e+01
|
||||
461 2 2 1.355750000000000e+01 4.981089447433495e+00 2.000000000000000e+01
|
||||
462 2 2 1.479000000000000e+01 5.692673654209710e+00 2.000000000000000e+01
|
||||
463 2 2 1.602250000000000e+01 4.981089447433495e+00 2.000000000000000e+01
|
||||
464 2 2 1.725500000000000e+01 5.692673654209710e+00 2.000000000000000e+01
|
||||
465 2 2 1.848750000000000e+01 4.981089447433495e+00 2.000000000000000e+01
|
||||
466 2 2 2.341750000000000e+01 4.981089447433495e+00 2.000000000000000e+01
|
||||
467 2 2 2.465000000000000e+01 5.692673654209710e+00 2.000000000000000e+01
|
||||
468 2 2 6.162500000000000e+00 7.827426274538350e+00 2.000000000000000e+01
|
||||
469 2 2 7.395000000000000e+00 7.115842067762138e+00 2.000000000000000e+01
|
||||
470 2 2 1.848750000000000e+01 3.557921033881068e+00 2.000000000000000e+01
|
||||
471 2 2 1.725500000000000e+01 2.846336827104855e+00 2.000000000000000e+01
|
||||
472 2 2 1.602250000000000e+01 3.557921033881068e+00 2.000000000000000e+01
|
||||
473 2 2 1.479000000000000e+01 2.846336827104855e+00 2.000000000000000e+01
|
||||
474 2 2 1.232500000000000e+00 7.115842067762137e-01 2.000000000000000e+01
|
||||
475 2 2 2.465000000000000e+00 1.423168413552427e+00 2.000000000000000e+01
|
||||
476 2 2 3.697500000000000e+00 7.115842067762137e-01 2.000000000000000e+01
|
||||
477 2 2 4.929999999999999e+00 1.423168413552427e+00 2.000000000000000e+01
|
||||
478 2 2 9.859999999999999e+00 1.423168413552427e+00 2.000000000000000e+01
|
||||
479 2 2 1.109250000000000e+01 7.115842067762137e-01 2.000000000000000e+01
|
||||
480 2 2 1.232500000000000e+01 1.423168413552427e+00 2.000000000000000e+01
|
||||
481 2 2 1.355750000000000e+01 7.115842067762137e-01 2.000000000000000e+01
|
||||
482 2 2 1.479000000000000e+01 1.423168413552427e+00 2.000000000000000e+01
|
||||
483 2 2 1.602250000000000e+01 7.115842067762137e-01 2.000000000000000e+01
|
||||
484 2 2 2.095250000000000e+01 7.115842067762137e-01 2.000000000000000e+01
|
||||
485 2 2 2.218500000000000e+01 1.423168413552427e+00 2.000000000000000e+01
|
||||
486 2 2 2.341750000000000e+01 7.115842067762137e-01 2.000000000000000e+01
|
||||
487 2 2 2.465000000000000e+01 1.423168413552427e+00 2.000000000000000e+01
|
||||
488 2 2 2.465000000000000e+00 2.846336827104855e+00 2.000000000000000e+01
|
||||
489 2 2 3.697500000000000e+00 3.557921033881068e+00 2.000000000000000e+01
|
||||
490 2 2 8.627500000000000e+00 3.557921033881068e+00 2.000000000000000e+01
|
||||
491 2 2 9.859999999999999e+00 2.846336827104855e+00 2.000000000000000e+01
|
||||
492 2 2 1.109250000000000e+01 3.557921033881068e+00 2.000000000000000e+01
|
||||
493 2 2 1.232500000000000e+01 2.846336827104855e+00 2.000000000000000e+01
|
||||
494 2 2 1.355750000000000e+01 3.557921033881068e+00 2.000000000000000e+01
|
||||
495 2 2 1.972000000000000e+01 1.423168413552427e+00 2.000000000000000e+01
|
||||
496 2 2 8.627500000000000e+00 1.209693151519563e+01 2.000000000000000e+01
|
||||
497 2 2 9.859999999999999e+00 1.138534730841942e+01 2.000000000000000e+01
|
||||
498 2 2 1.109250000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
499 2 2 1.232500000000000e+01 1.138534730841942e+01 2.000000000000000e+01
|
||||
500 2 2 1.355750000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
501 2 2 1.479000000000000e+01 1.138534730841942e+01 2.000000000000000e+01
|
||||
502 2 2 1.602250000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
503 2 2 2.095250000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
504 2 2 2.218500000000000e+01 1.138534730841942e+01 2.000000000000000e+01
|
||||
505 2 2 2.341750000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
506 2 2 2.465000000000000e+01 1.138534730841942e+01 2.000000000000000e+01
|
||||
507 2 2 2.588250000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
508 2 2 2.711500000000000e+01 1.138534730841942e+01 2.000000000000000e+01
|
||||
509 2 2 2.834750000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
510 2 2 2.958000000000000e+01 1.138534730841942e+01 2.000000000000000e+01
|
||||
511 2 2 3.081250000000000e+01 1.209693151519563e+01 2.000000000000000e+01
|
||||
512 2 2 8.627500000000000e+00 1.352009992874806e+01 2.000000000000000e+01
|
||||
513 2 2 9.859999999999999e+00 1.423168413552428e+01 2.000000000000000e+01
|
||||
514 2 2 1.109250000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
515 2 2 1.602250000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
516 2 2 1.725500000000000e+01 1.423168413552428e+01 2.000000000000000e+01
|
||||
517 2 2 1.848750000000000e+01 1.352009992874806e+01 2.000000000000000e+01
|
||||
518 2 2 1.972000000000000e+01 1.423168413552428e+01 2.000000000000000e+01
|
||||
519 2 2 7.395000000000000e+00 1.138534730841942e+01 2.000000000000000e+01
|
||||
520 2 2 3.451000000000000e+01 1.992435778973398e+01 2.000000000000000e+01
|
||||
521 2 2 2.834750000000000e+01 9.250594688090777e+00 2.000000000000000e+01
|
||||
522 2 2 2.711499999999999e+01 9.962178894866991e+00 2.000000000000000e+01
|
||||
523 2 2 1.355750000000000e+01 7.827426274538350e+00 2.000000000000000e+01
|
||||
524 2 2 1.479000000000000e+01 7.115842067762138e+00 2.000000000000000e+01
|
||||
525 2 2 1.972000000000000e+01 7.115842067762138e+00 2.000000000000000e+01
|
||||
526 2 2 2.095250000000000e+01 7.827426274538350e+00 2.000000000000000e+01
|
||||
527 2 2 2.218500000000000e+01 7.115842067762138e+00 2.000000000000000e+01
|
||||
528 2 2 2.341750000000000e+01 7.827426274538350e+00 2.000000000000000e+01
|
||||
529 2 2 2.465000000000000e+01 7.115842067762138e+00 2.000000000000000e+01
|
||||
530 2 2 2.588250000000000e+01 7.827426274538350e+00 2.000000000000000e+01
|
||||
531 2 2 2.711500000000000e+01 7.115842067762138e+00 2.000000000000000e+01
|
||||
532 2 2 2.834750000000000e+01 7.827426274538350e+00 2.000000000000000e+01
|
||||
533 2 2 6.162499999999999e+00 9.250594688090777e+00 2.000000000000000e+01
|
||||
534 2 2 1.109250000000000e+01 7.827426274538350e+00 2.000000000000000e+01
|
||||
535 2 2 1.232500000000000e+01 9.962178894866991e+00 2.000000000000000e+01
|
||||
536 2 2 1.355750000000000e+01 9.250594688090777e+00 2.000000000000000e+01
|
||||
537 2 2 1.479000000000000e+01 9.962178894866991e+00 2.000000000000000e+01
|
||||
538 2 2 1.602250000000000e+01 9.250594688090777e+00 2.000000000000000e+01
|
||||
539 2 2 1.725500000000000e+01 9.962178894866991e+00 2.000000000000000e+01
|
||||
540 2 2 1.848750000000000e+01 9.250594688090777e+00 2.000000000000000e+01
|
||||
541 2 2 2.341750000000000e+01 9.250594688090777e+00 2.000000000000000e+01
|
||||
542 2 2 2.465000000000000e+01 9.962178894866991e+00 2.000000000000000e+01
|
||||
543 2 2 2.588250000000000e+01 9.250594688090777e+00 2.000000000000000e+01
|
||||
544 2 2 8.627500000000000e+00 9.250594688090777e+00 2.000000000000000e+01
|
||||
545 2 2 3.574249999999999e+01 2.063594199651019e+01 2.000000000000000e+01
|
||||
30
examples/USER/misc/drip/in.CH_drip
Normal file
@ -0,0 +1,30 @@
|
||||
# Define unit set and class of atomic model
|
||||
units metal
|
||||
atom_style molecular
|
||||
|
||||
# BC
|
||||
boundary p p s
|
||||
|
||||
# read config
|
||||
read_data data.CH
|
||||
|
||||
|
||||
# potential
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C NULL # only applies to species 1, i.e. C
|
||||
pair_coeff * * rebo CH.rebo C H # species 1 is C and species 2 is H
|
||||
|
||||
|
||||
compute peratom all pe/atom
|
||||
|
||||
# set what thermodynamic information to print to log
|
||||
thermo 10 # print every 1 timestep
|
||||
|
||||
# set what information to write to dump file
|
||||
dump id all custom 1 lammps.dump id type x y z fx fy fz c_peratom
|
||||
dump_modify id every 10 format line "%d %d %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e"
|
||||
dump_modify id sort id
|
||||
|
||||
# minimize energy
|
||||
minimize 1.0e-15 1.0e-15 100 100
|
||||
|
||||
29
examples/USER/misc/drip/in.C_drip
Normal file
@ -0,0 +1,29 @@
|
||||
# Define unit set and class of atomic model
|
||||
units metal
|
||||
atom_style molecular
|
||||
|
||||
# BC
|
||||
boundary p p s
|
||||
|
||||
# read config
|
||||
read_data data.C
|
||||
|
||||
|
||||
# potential
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C
|
||||
pair_coeff * * rebo CH.rebo C
|
||||
|
||||
compute peratom all pe/atom
|
||||
|
||||
# set what thermodynamic information to print to log
|
||||
thermo 10 # print every 1 timestep
|
||||
|
||||
# set what information to write to dump file
|
||||
dump id all custom 1 lammps.dump id type x y z fx fy fz c_peratom
|
||||
dump_modify id every 10 format line "%d %d %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e"
|
||||
dump_modify id sort id
|
||||
|
||||
# minimize energy
|
||||
minimize 1.0e-15 1.0e-15 100 100
|
||||
|
||||
111
examples/USER/misc/drip/log.30Apr19.CH_drip.g++.1
Normal file
@ -0,0 +1,111 @@
|
||||
LAMMPS (30 Apr 2019)
|
||||
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:88)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Define unit set and class of atomic model
|
||||
units metal
|
||||
atom_style molecular
|
||||
|
||||
# BC
|
||||
boundary p p s
|
||||
|
||||
# read config
|
||||
read_data data.CH
|
||||
triclinic box = (0 0 0) to (24.65 21.3475 30) with tilt (12.325 0 0)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
545 atoms
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
special bonds CPU = 0.000152826 secs
|
||||
read_data CPU = 0.000973701 secs
|
||||
|
||||
|
||||
# potential
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C NULL # only applies to species 1, i.e. C
|
||||
Reading potential file C.drip with DATE: 2019-04-19
|
||||
pair_coeff * * rebo CH.rebo C H # species 1 is C and species 2 is H
|
||||
Reading potential file CH.rebo with DATE: 2018-7-3
|
||||
|
||||
|
||||
compute peratom all pe/atom
|
||||
|
||||
# set what thermodynamic information to print to log
|
||||
thermo 10 # print every 1 timestep
|
||||
|
||||
# set what information to write to dump file
|
||||
dump id all custom 1 lammps.dump id type x y z fx fy fz c_peratom
|
||||
dump_modify id every 10 format line "%d %d %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e"
|
||||
dump_modify id sort id
|
||||
|
||||
# minimize energy
|
||||
minimize 1.0e-15 1.0e-15 100 100
|
||||
WARNING: Using 'neigh_modify every 1 delay 0 check yes' setting during minimization (src/min.cpp:168)
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17.7
|
||||
ghost atom cutoff = 17.7
|
||||
binsize = 8.85, bins = 5 3 1
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair drip, perpetual, skip from (2)
|
||||
attributes: full, newton on, ghost
|
||||
pair build: skip/ghost
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair rebo, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 12.92 | 12.92 | 12.92 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 0 -2884.3731 0 -2884.3731 366196.9 2779.5956
|
||||
10 0 -3240.4807 0 -3240.4807 -20237.368 2779.5956
|
||||
20 0 -3281.0671 0 -3281.0671 -13303.696 2779.5956
|
||||
30 0 -3282.2176 0 -3282.2176 -19187.215 2779.5956
|
||||
40 0 -3282.4004 0 -3282.4004 -21740.059 2779.5956
|
||||
50 0 -3282.4755 0 -3282.4755 -22659.554 2779.5956
|
||||
57 0 -3282.5011 0 -3282.5011 -23313.198 2779.5956
|
||||
Loop time of 3.04218 on 1 procs for 57 steps with 545 atoms
|
||||
|
||||
99.8% CPU use with 1 MPI tasks x 1 OpenMP threads
|
||||
|
||||
Minimization stats:
|
||||
Stopping criterion = max force evaluations
|
||||
Energy initial, next-to-last, final =
|
||||
-2884.37307546 -3282.49993222 -3282.5010627
|
||||
Force two-norm initial, final = 115.342 0.193154
|
||||
Force max component initial, final = 12.0934 0.03617
|
||||
Final line search alpha, max atom move = 1 0.03617
|
||||
Iterations, force evaluations = 57 100
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 3.0291 | 3.0291 | 3.0291 | 0.0 | 99.57
|
||||
Bond | 1.8835e-05 | 1.8835e-05 | 1.8835e-05 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.0016081 | 0.0016081 | 0.0016081 | 0.0 | 0.05
|
||||
Output | 0.0079796 | 0.0079796 | 0.0079796 | 0.0 | 0.26
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 0.003517 | | | 0.12
|
||||
|
||||
Nlocal: 545 ave 545 max 545 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 3175 ave 3175 max 3175 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 294122 ave 294122 max 294122 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 294122
|
||||
Ave neighs/atom = 539.673
|
||||
Ave special neighs/atom = 0
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:03
|
||||
111
examples/USER/misc/drip/log.30Apr19.CH_drip.g++.4
Normal file
@ -0,0 +1,111 @@
|
||||
LAMMPS (30 Apr 2019)
|
||||
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:88)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Define unit set and class of atomic model
|
||||
units metal
|
||||
atom_style molecular
|
||||
|
||||
# BC
|
||||
boundary p p s
|
||||
|
||||
# read config
|
||||
read_data data.CH
|
||||
triclinic box = (0 0 0) to (24.65 21.3475 30) with tilt (12.325 0 0)
|
||||
1 by 2 by 2 MPI processor grid
|
||||
reading atoms ...
|
||||
545 atoms
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
special bonds CPU = 0.000135422 secs
|
||||
read_data CPU = 0.00368595 secs
|
||||
|
||||
|
||||
# potential
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C NULL # only applies to species 1, i.e. C
|
||||
Reading potential file C.drip with DATE: 2019-04-19
|
||||
pair_coeff * * rebo CH.rebo C H # species 1 is C and species 2 is H
|
||||
Reading potential file CH.rebo with DATE: 2018-7-3
|
||||
|
||||
|
||||
compute peratom all pe/atom
|
||||
|
||||
# set what thermodynamic information to print to log
|
||||
thermo 10 # print every 1 timestep
|
||||
|
||||
# set what information to write to dump file
|
||||
dump id all custom 1 lammps.dump id type x y z fx fy fz c_peratom
|
||||
dump_modify id every 10 format line "%d %d %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e"
|
||||
dump_modify id sort id
|
||||
|
||||
# minimize energy
|
||||
minimize 1.0e-15 1.0e-15 100 100
|
||||
WARNING: Using 'neigh_modify every 1 delay 0 check yes' setting during minimization (src/min.cpp:168)
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17.7
|
||||
ghost atom cutoff = 17.7
|
||||
binsize = 8.85, bins = 5 3 1
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair drip, perpetual, skip from (2)
|
||||
attributes: full, newton on, ghost
|
||||
pair build: skip/ghost
|
||||
stencil: none
|
||||
bin: none
|
||||
(2) pair rebo, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 11.03 | 11.1 | 11.16 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 0 -2884.3731 0 -2884.3731 366196.9 2779.5956
|
||||
10 0 -3240.4807 0 -3240.4807 -20237.368 2779.5956
|
||||
20 0 -3281.0671 0 -3281.0671 -13303.696 2779.5956
|
||||
30 0 -3282.2176 0 -3282.2176 -19187.216 2779.5956
|
||||
40 0 -3282.4004 0 -3282.4004 -21740.027 2779.5956
|
||||
50 0 -3282.4753 0 -3282.4753 -22682.604 2779.5956
|
||||
57 0 -3282.5023 0 -3282.5023 -23355.081 2779.5956
|
||||
Loop time of 1.66218 on 4 procs for 57 steps with 545 atoms
|
||||
|
||||
99.0% CPU use with 4 MPI tasks x 1 OpenMP threads
|
||||
|
||||
Minimization stats:
|
||||
Stopping criterion = max force evaluations
|
||||
Energy initial, next-to-last, final =
|
||||
-2884.37307546 -3282.50070864 -3282.50227121
|
||||
Force two-norm initial, final = 115.342 0.228488
|
||||
Force max component initial, final = 12.0934 0.03365
|
||||
Final line search alpha, max atom move = 1 0.03365
|
||||
Iterations, force evaluations = 57 100
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.5571 | 1.5945 | 1.6314 | 2.3 | 95.93
|
||||
Bond | 2.265e-05 | 2.9087e-05 | 3.4571e-05 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.020248 | 0.05608 | 0.092328 | 11.8 | 3.37
|
||||
Output | 0.0053282 | 0.0054213 | 0.0056982 | 0.2 | 0.33
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 0.006172 | | | 0.37
|
||||
|
||||
Nlocal: 136.25 ave 177 max 100 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 1 1
|
||||
Nghost: 2874.75 ave 2912 max 2835 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
Neighs: 0 ave 0 max 0 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 73530.5 ave 73544 max 73517 min
|
||||
Histogram: 1 0 0 0 1 1 0 0 0 1
|
||||
|
||||
Total # of neighbors = 294122
|
||||
Ave neighs/atom = 539.673
|
||||
Ave special neighs/atom = 0
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:01
|
||||
110
examples/USER/misc/drip/log.30Apr19.C_drip.g++.1
Normal file
@ -0,0 +1,110 @@
|
||||
LAMMPS (30 Apr 2019)
|
||||
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:88)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Define unit set and class of atomic model
|
||||
units metal
|
||||
atom_style molecular
|
||||
|
||||
# BC
|
||||
boundary p p s
|
||||
|
||||
# read config
|
||||
read_data data.C
|
||||
triclinic box = (0 0 0) to (24.65 21.3475 30) with tilt (12.325 0 0)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
400 atoms
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
special bonds CPU = 0.000912905 secs
|
||||
read_data CPU = 0.00252986 secs
|
||||
|
||||
|
||||
# potential
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C
|
||||
Reading potential file C.drip with DATE: 2019-04-19
|
||||
pair_coeff * * rebo CH.rebo C
|
||||
Reading potential file CH.rebo with DATE: 2018-7-3
|
||||
|
||||
compute peratom all pe/atom
|
||||
|
||||
# set what thermodynamic information to print to log
|
||||
thermo 10 # print every 1 timestep
|
||||
|
||||
# set what information to write to dump file
|
||||
dump id all custom 1 lammps.dump id type x y z fx fy fz c_peratom
|
||||
dump_modify id every 10 format line "%d %d %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e"
|
||||
dump_modify id sort id
|
||||
|
||||
# minimize energy
|
||||
minimize 1.0e-15 1.0e-15 100 100
|
||||
WARNING: Using 'neigh_modify every 1 delay 0 check yes' setting during minimization (src/min.cpp:168)
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17.7
|
||||
ghost atom cutoff = 17.7
|
||||
binsize = 8.85, bins = 5 3 1
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair drip, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
(2) pair rebo, perpetual, copy from (1)
|
||||
attributes: full, newton on, ghost
|
||||
pair build: copy
|
||||
stencil: none
|
||||
bin: none
|
||||
Per MPI rank memory allocation (min/avg/max) = 12.21 | 12.21 | 12.21 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 0 -2941.0549 0 -2941.0549 -52204.715 2052.0534
|
||||
10 0 -2966.9787 0 -2966.9787 -29717.01 2052.0534
|
||||
20 0 -2967.0695 0 -2967.0695 -29614.636 2052.0534
|
||||
30 0 -2967.0859 0 -2967.0859 -29867.385 2052.0534
|
||||
40 0 -2967.0888 0 -2967.0888 -29997.486 2052.0534
|
||||
50 0 -2967.0896 0 -2967.0896 -30072.387 2052.0534
|
||||
51 0 -2967.0896 0 -2967.0896 -30076.548 2052.0534
|
||||
Loop time of 2.93337 on 1 procs for 51 steps with 400 atoms
|
||||
|
||||
99.8% CPU use with 1 MPI tasks x 1 OpenMP threads
|
||||
|
||||
Minimization stats:
|
||||
Stopping criterion = max force evaluations
|
||||
Energy initial, next-to-last, final =
|
||||
-2941.05486197 -2967.08958376 -2967.08962073
|
||||
Force two-norm initial, final = 35.5666 0.0471918
|
||||
Force max component initial, final = 6.23617 0.0050012
|
||||
Final line search alpha, max atom move = 1 0.0050012
|
||||
Iterations, force evaluations = 51 101
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 2.9239 | 2.9239 | 2.9239 | 0.0 | 99.68
|
||||
Bond | 1.2398e-05 | 1.2398e-05 | 1.2398e-05 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.0010808 | 0.0010808 | 0.0010808 | 0.0 | 0.04
|
||||
Output | 0.0059283 | 0.0059283 | 0.0059283 | 0.0 | 0.20
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 0.002466 | | | 0.08
|
||||
|
||||
Nlocal: 400 ave 400 max 400 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 2357 ave 2357 max 2357 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 294122 ave 294122 max 294122 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 294122
|
||||
Ave neighs/atom = 735.305
|
||||
Ave special neighs/atom = 0
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:03
|
||||
111
examples/USER/misc/drip/log.30Apr19.C_drip.g++.4
Normal file
@ -0,0 +1,111 @@
|
||||
LAMMPS (30 Apr 2019)
|
||||
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:88)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Define unit set and class of atomic model
|
||||
units metal
|
||||
atom_style molecular
|
||||
|
||||
# BC
|
||||
boundary p p s
|
||||
|
||||
# read config
|
||||
read_data data.C
|
||||
triclinic box = (0 0 0) to (24.65 21.3475 30) with tilt (12.325 0 0)
|
||||
1 by 2 by 2 MPI processor grid
|
||||
reading atoms ...
|
||||
400 atoms
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
special bonds CPU = 0.0003407 secs
|
||||
read_data CPU = 0.00411105 secs
|
||||
|
||||
|
||||
# potential
|
||||
pair_style hybrid/overlay drip rebo
|
||||
pair_coeff * * drip C.drip C
|
||||
Reading potential file C.drip with DATE: 2019-04-19
|
||||
pair_coeff * * rebo CH.rebo C
|
||||
Reading potential file CH.rebo with DATE: 2018-7-3
|
||||
|
||||
compute peratom all pe/atom
|
||||
|
||||
# set what thermodynamic information to print to log
|
||||
thermo 10 # print every 1 timestep
|
||||
|
||||
# set what information to write to dump file
|
||||
dump id all custom 1 lammps.dump id type x y z fx fy fz c_peratom
|
||||
dump_modify id every 10 format line "%d %d %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e %13.5e"
|
||||
dump_modify id sort id
|
||||
|
||||
# minimize energy
|
||||
minimize 1.0e-15 1.0e-15 100 100
|
||||
WARNING: Using 'neigh_modify every 1 delay 0 check yes' setting during minimization (src/min.cpp:168)
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17.7
|
||||
ghost atom cutoff = 17.7
|
||||
binsize = 8.85, bins = 5 3 1
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair drip, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
(2) pair rebo, perpetual, copy from (1)
|
||||
attributes: full, newton on, ghost
|
||||
pair build: copy
|
||||
stencil: none
|
||||
bin: none
|
||||
WARNING: Proc sub-domain size < neighbor skin, could lead to lost atoms (src/domain.cpp:934)
|
||||
Per MPI rank memory allocation (min/avg/max) = 10.7 | 10.77 | 10.83 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 0 -2941.0549 0 -2941.0549 -52204.715 2052.0534
|
||||
10 0 -2966.9787 0 -2966.9787 -29717.01 2052.0534
|
||||
20 0 -2967.0695 0 -2967.0695 -29614.636 2052.0534
|
||||
30 0 -2967.0859 0 -2967.0859 -29867.385 2052.0534
|
||||
40 0 -2967.0888 0 -2967.0888 -29997.486 2052.0534
|
||||
50 0 -2967.0896 0 -2967.0896 -30072.387 2052.0534
|
||||
51 0 -2967.0896 0 -2967.0896 -30076.548 2052.0534
|
||||
Loop time of 1.47901 on 4 procs for 51 steps with 400 atoms
|
||||
|
||||
99.1% CPU use with 4 MPI tasks x 1 OpenMP threads
|
||||
|
||||
Minimization stats:
|
||||
Stopping criterion = max force evaluations
|
||||
Energy initial, next-to-last, final =
|
||||
-2941.05486197 -2967.08958376 -2967.08962073
|
||||
Force two-norm initial, final = 35.5666 0.0471918
|
||||
Force max component initial, final = 6.23617 0.0050012
|
||||
Final line search alpha, max atom move = 1 0.0050012
|
||||
Iterations, force evaluations = 51 101
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.4314 | 1.4405 | 1.4548 | 0.8 | 97.40
|
||||
Bond | 1.955e-05 | 2.265e-05 | 2.4796e-05 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.014506 | 0.029363 | 0.038964 | 5.5 | 1.99
|
||||
Output | 0.00424 | 0.0043345 | 0.0046172 | 0.2 | 0.29
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 0.004772 | | | 0.32
|
||||
|
||||
Nlocal: 100 ave 100 max 100 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 2132 ave 2132 max 2132 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0 ave 0 max 0 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 73530.5 ave 73544 max 73517 min
|
||||
Histogram: 1 0 0 0 1 1 0 0 0 1
|
||||
|
||||
Total # of neighbors = 294122
|
||||
Ave neighs/atom = 735.305
|
||||
Ave special neighs/atom = 0
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:01
|
||||
@ -1 +0,0 @@
|
||||
../../../../potentials/CH.airebo
|
||||
1
examples/USER/misc/kolmogorov_crespi_z/CH.rebo
Symbolic link
@ -0,0 +1 @@
|
||||
../../../../potentials/CH.rebo
|
||||
@ -22,7 +22,7 @@ group adsorbant type 2
|
||||
######################## Potential defition ########################
|
||||
pair_style hybrid/overlay rebo kolmogorov/crespi/z 14.0
|
||||
####################################################################
|
||||
pair_coeff * * rebo CH.airebo C C # chemical
|
||||
pair_coeff * * rebo CH.rebo C C # chemical
|
||||
pair_coeff 1 2 kolmogorov/crespi/z CC.KC C C # long-range
|
||||
####################################################################
|
||||
|
||||
|
||||
@ -1,208 +0,0 @@
|
||||
LAMMPS (8 Mar 2018)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style atomic
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use 2 atom types so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data data.bilayer-graphene # read lammps data file
|
||||
orthogonal box = (0 0 -20) to (17.04 19.6761 40)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
256 atoms
|
||||
mass 1 12.0107 # carbon mass (g/mole) | membrane
|
||||
mass 2 12.0107 # carbon mass (g/mole) | adsorbate
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
# Separate atom groups
|
||||
group membrane type 1
|
||||
128 atoms in group membrane
|
||||
group adsorbant type 2
|
||||
128 atoms in group adsorbant
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style hybrid/overlay rebo kolmogorov/crespi/z 14.0
|
||||
####################################################################
|
||||
pair_coeff * * rebo CH.airebo C C # chemical
|
||||
Reading potential file CH.airebo with DATE: 2011-10-25
|
||||
pair_coeff 1 2 kolmogorov/crespi/z CC.KC C C # long-range
|
||||
####################################################################
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.0001
|
||||
velocity all create 300.0 12345
|
||||
fix thermostat all nve
|
||||
compute COM1 membrane com
|
||||
compute COM2 adsorbant com
|
||||
############################
|
||||
|
||||
# Output
|
||||
#dump 1 all xyz 100 trajec.xyz
|
||||
#dump_modify 1 format line "%s %12.6f %12.6f %12.6f" element "C" "C"
|
||||
thermo 10
|
||||
thermo_style custom step time etotal pe temp c_COM1[3] c_COM2[3] # spcpu
|
||||
thermo_modify line one format float %14.8f
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 16
|
||||
ghost atom cutoff = 16
|
||||
binsize = 8, bins = 3 3 8
|
||||
3 neighbor lists, perpetual/occasional/extra = 3 0 0
|
||||
(1) pair rebo, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
(2) pair kolmogorov/crespi/z, perpetual, skip from (3)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(3) neighbor class addition, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/atomonly/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 4.998 | 4.998 | 4.998 Mbytes
|
||||
Step Time TotEng PotEng Temp c_COM1[3] c_COM2[3]
|
||||
0 0.00000000 -1888.67041214 -1898.55881323 300.00000000 0.00000000 3.30000000
|
||||
10 0.00100000 -1888.67037221 -1898.21029897 289.42778520 -0.00020126 3.30020126
|
||||
20 0.00200000 -1888.67021541 -1897.22943612 259.67456089 -0.00041357 3.30041357
|
||||
30 0.00300000 -1888.66999308 -1895.86681311 218.34126559 -0.00063673 3.30063673
|
||||
40 0.00400000 -1888.66978354 -1894.47163830 176.02000692 -0.00087055 3.30087055
|
||||
50 0.00500000 -1888.66966068 -1893.37123377 142.63902862 -0.00111486 3.30111486
|
||||
60 0.00600000 -1888.66966132 -1892.75822749 124.04127205 -0.00136952 3.30136952
|
||||
70 0.00700000 -1888.66976974 -1892.63445751 120.28297808 -0.00163441 3.30163441
|
||||
80 0.00800000 -1888.66992867 -1892.83467462 126.35245792 -0.00190946 3.30190946
|
||||
90 0.00900000 -1888.67006868 -1893.11387069 134.81862145 -0.00219458 3.30219458
|
||||
100 0.01000000 -1888.67013621 -1893.25481851 139.09272853 -0.00248973 3.30248973
|
||||
110 0.01100000 -1888.67011201 -1893.15155790 135.96068294 -0.00279489 3.30279489
|
||||
120 0.01200000 -1888.67001496 -1892.84002960 126.51230266 -0.00311004 3.30311004
|
||||
130 0.01300000 -1888.66988997 -1892.47004238 115.29120968 -0.00343519 3.30343519
|
||||
140 0.01400000 -1888.66979230 -1892.23503116 108.16426723 -0.00377038 3.30377038
|
||||
150 0.01500000 -1888.66976478 -1892.28630583 109.72070257 -0.00411562 3.30411562
|
||||
160 0.01600000 -1888.66982054 -1892.66640611 121.25071190 -0.00447099 3.30447099
|
||||
170 0.01700000 -1888.66993790 -1893.28862637 140.12442721 -0.00483654 3.30483654
|
||||
180 0.01800000 -1888.67007017 -1893.97029258 160.80119589 -0.00521235 3.30521235
|
||||
190 0.01900000 -1888.67016712 -1894.50458787 177.00801243 -0.00559851 3.30559851
|
||||
200 0.02000000 -1888.67019459 -1894.73890106 184.11590729 -0.00599512 3.30599512
|
||||
210 0.02100000 -1888.67014420 -1894.62906014 180.78501932 -0.00640230 3.30640230
|
||||
220 0.02200000 -1888.67003680 -1894.25249103 169.36370738 -0.00682016 3.30682016
|
||||
230 0.02300000 -1888.66991386 -1893.77601613 154.91186767 -0.00724883 3.30724883
|
||||
240 0.02400000 -1888.66982525 -1893.38995084 143.20188490 -0.00768845 3.30768845
|
||||
250 0.02500000 -1888.66980630 -1893.23138936 138.39193056 -0.00813913 3.30813913
|
||||
260 0.02600000 -1888.66986130 -1893.32993923 141.38012476 -0.00860097 3.30860097
|
||||
270 0.02700000 -1888.66996305 -1893.60070606 149.59171763 -0.00907408 3.30907408
|
||||
280 0.02800000 -1888.67006686 -1893.88587226 158.24010433 -0.00955849 3.30955849
|
||||
290 0.02900000 -1888.67012981 -1894.02402669 162.42960292 -0.01005424 3.31005424
|
||||
300 0.03000000 -1888.67012722 -1893.91715234 159.18726627 -0.01056129 3.31056129
|
||||
310 0.03100000 -1888.67005731 -1893.57037242 148.66857852 -0.01107957 3.31107957
|
||||
320 0.03200000 -1888.66994573 -1893.09358619 134.20694883 -0.01160898 3.31160898
|
||||
330 0.03300000 -1888.66983589 -1892.66132663 121.09614207 -0.01214935 3.31214935
|
||||
340 0.03400000 -1888.66977410 -1892.44446345 114.51869676 -0.01270046 3.31270046
|
||||
350 0.03500000 -1888.66978826 -1892.53901235 117.38674604 -0.01326207 3.31326207
|
||||
360 0.03600000 -1888.66987439 -1892.92337288 129.04508371 -0.01383390 3.31383390
|
||||
370 0.03700000 -1888.66999800 -1893.46445570 145.45701555 -0.01441561 3.31441561
|
||||
380 0.03800000 -1888.67010960 -1893.97065516 160.81100020 -0.01500688 3.31500688
|
||||
390 0.03900000 -1888.67016540 -1894.26835818 169.84119247 -0.01560734 3.31560734
|
||||
400 0.04000000 -1888.67014667 -1894.26967975 169.88185546 -0.01621664 3.31621664
|
||||
410 0.04100000 -1888.67006166 -1894.00321069 161.80014280 -0.01683442 3.31683442
|
||||
420 0.04200000 -1888.66994367 -1893.60086324 149.59707418 -0.01746033 3.31746033
|
||||
430 0.04300000 -1888.66984058 -1893.24559841 138.82197275 -0.01809405 3.31809405
|
||||
440 0.04400000 -1888.66979399 -1893.09727874 134.32357877 -0.01873527 3.31873527
|
||||
450 0.04500000 -1888.66982139 -1893.22837442 138.30000378 -0.01938373 3.31938373
|
||||
460 0.04600000 -1888.66990972 -1893.59670383 149.47191354 -0.02003918 3.32003918
|
||||
470 0.04700000 -1888.67002173 -1894.06542598 163.68887743 -0.02070143 3.32070143
|
||||
480 0.04800000 -1888.67011389 -1894.46010842 175.66018439 -0.02137030 3.32137030
|
||||
490 0.04900000 -1888.67015175 -1894.63688098 181.02206322 -0.02204565 3.32204565
|
||||
500 0.05000000 -1888.67012158 -1894.53632221 177.97216882 -0.02272740 3.32272740
|
||||
510 0.05100000 -1888.67003762 -1894.20444731 167.90610436 -0.02341547 3.32341547
|
||||
520 0.05200000 -1888.66993151 -1893.77231066 154.79891353 -0.02410981 3.32410981
|
||||
530 0.05300000 -1888.66984505 -1893.40525927 143.66572038 -0.02481040 3.32481040
|
||||
540 0.05400000 -1888.66981408 -1893.23762083 138.58074854 -0.02551724 3.32551724
|
||||
550 0.05500000 -1888.66985005 -1893.31793594 141.01630317 -0.02623032 3.32623032
|
||||
560 0.05600000 -1888.66993737 -1893.59069013 149.28862751 -0.02694963 3.32694963
|
||||
570 0.05700000 -1888.67003852 -1893.92089571 159.30352588 -0.02767517 3.32767517
|
||||
580 0.05800000 -1888.67011322 -1894.15124753 166.28980524 -0.02840691 3.32840691
|
||||
590 0.05900000 -1888.67013192 -1894.16548041 166.72104345 -0.02914478 3.32914478
|
||||
600 0.06000000 -1888.67008713 -1893.93443318 159.71275856 -0.02988871 3.32988871
|
||||
610 0.06100000 -1888.66999438 -1893.52841656 147.39760646 -0.03063856 3.33063856
|
||||
620 0.06200000 -1888.66988809 -1893.09235021 134.17119963 -0.03139416 3.33139416
|
||||
630 0.06300000 -1888.66980996 -1892.79172016 125.05288240 -0.03215531 3.33215531
|
||||
640 0.06400000 -1888.66979261 -1892.74755390 123.71346730 -0.03292176 3.33292176
|
||||
650 0.06500000 -1888.66984332 -1892.98665459 130.96590324 -0.03369323 3.33369323
|
||||
660 0.06600000 -1888.66994245 -1893.42999868 144.41332389 -0.03446937 3.33446937
|
||||
670 0.06700000 -1888.67005233 -1893.92310681 159.37018806 -0.03524986 3.33524986
|
||||
680 0.06800000 -1888.67013309 -1894.29451581 170.63575808 -0.03603430 3.33603430
|
||||
690 0.06900000 -1888.67015452 -1894.41878117 174.40514192 -0.03682229 3.33682229
|
||||
700 0.07000000 -1888.67010897 -1894.26288036 169.67671530 -0.03761343 3.33761343
|
||||
710 0.07100000 -1888.67001367 -1893.89812904 158.61357114 -0.03840729 3.33840729
|
||||
720 0.07200000 -1888.66990378 -1893.47348746 145.73388454 -0.03920344 3.33920344
|
||||
730 0.07300000 -1888.66982212 -1893.15984839 136.22099960 -0.04000148 3.34000148
|
||||
740 0.07400000 -1888.66980109 -1893.08373746 133.91254029 -0.04080098 3.34080098
|
||||
750 0.07500000 -1888.66984794 -1893.27755511 139.79127024 -0.04160156 3.34160156
|
||||
760 0.07600000 -1888.66994215 -1893.66837365 151.64528967 -0.04240282 3.34240282
|
||||
770 0.07700000 -1888.67004554 -1894.10941206 165.02263027 -0.04320441 3.34320441
|
||||
780 0.07800000 -1888.67011702 -1894.43947545 175.03411436 -0.04400599 3.34400599
|
||||
790 0.07900000 -1888.67013297 -1894.54590471 178.26254255 -0.04480726 3.34480726
|
||||
800 0.08000000 -1888.67008751 -1894.40384142 173.95392406 -0.04560792 3.34560792
|
||||
810 0.08100000 -1888.66999923 -1894.08389003 164.24973321 -0.04640773 3.34640773
|
||||
820 0.08200000 -1888.66990447 -1893.72313979 153.30795965 -0.04720647 3.34720647
|
||||
830 0.08300000 -1888.66984367 -1893.46839190 145.58111626 -0.04800393 3.34800393
|
||||
840 0.08400000 -1888.66984156 -1893.41412536 143.93481093 -0.04879995 3.34879995
|
||||
850 0.08500000 -1888.66989670 -1893.56426154 148.48805553 -0.04959439 3.34959439
|
||||
860 0.08600000 -1888.66998222 -1893.83463719 156.68827294 -0.05038713 3.35038713
|
||||
870 0.08700000 -1888.67006171 -1894.09325045 164.53181920 -0.05117805 3.35117805
|
||||
880 0.08800000 -1888.67010273 -1894.21712661 168.28880100 -0.05196706 3.35196706
|
||||
890 0.08900000 -1888.67008993 -1894.14263950 166.02935656 -0.05275408 3.35275408
|
||||
900 0.09000000 -1888.67002891 -1893.89014571 158.37090587 -0.05353904 3.35353904
|
||||
910 0.09100000 -1888.66994326 -1893.55535709 148.21649469 -0.05432186 3.35432186
|
||||
920 0.09200000 -1888.66986526 -1893.27257949 139.63979178 -0.05510247 3.35510247
|
||||
930 0.09300000 -1888.66982730 -1893.16330891 136.32582949 -0.05588078 3.35588078
|
||||
940 0.09400000 -1888.66984631 -1893.28643285 140.06065785 -0.05665670 3.35665670
|
||||
950 0.09500000 -1888.66991503 -1893.61245342 149.94957268 -0.05743015 3.35743015
|
||||
960 0.09600000 -1888.67000691 -1894.03423922 162.74316516 -0.05820101 3.35820101
|
||||
970 0.09700000 -1888.67008649 -1894.40848025 174.09469037 -0.05896915 3.35896915
|
||||
980 0.09800000 -1888.67012436 -1894.61056767 180.22458605 -0.05973444 3.35973444
|
||||
990 0.09900000 -1888.67010608 -1894.58107659 179.33042338 -0.06049672 3.36049672
|
||||
1000 0.10000000 -1888.67003981 -1894.34773305 172.25312330 -0.06125581 3.36125581
|
||||
Loop time of 3.90147 on 1 procs for 1000 steps with 256 atoms
|
||||
|
||||
Performance: 2.215 ns/day, 10.837 hours/ns, 256.314 timesteps/s
|
||||
99.4% CPU use with 1 MPI tasks x 1 OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 3.8786 | 3.8786 | 3.8786 | 0.0 | 99.41
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.010816 | 0.010816 | 0.010816 | 0.0 | 0.28
|
||||
Output | 0.002461 | 0.002461 | 0.002461 | 0.0 | 0.06
|
||||
Modify | 0.0051703 | 0.0051703 | 0.0051703 | 0.0 | 0.13
|
||||
Other | | 0.004447 | | | 0.11
|
||||
|
||||
Nlocal: 256 ave 256 max 256 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 1721 ave 1721 max 1721 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 37312 ave 37312 max 37312 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 94592 ave 94592 max 94592 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 94592
|
||||
Ave neighs/atom = 369.5
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:03
|
||||
@ -1,208 +0,0 @@
|
||||
LAMMPS (8 Mar 2018)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style atomic
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use 2 atom types so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data data.bilayer-graphene # read lammps data file
|
||||
orthogonal box = (0 0 -20) to (17.04 19.6761 40)
|
||||
2 by 2 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
256 atoms
|
||||
mass 1 12.0107 # carbon mass (g/mole) | membrane
|
||||
mass 2 12.0107 # carbon mass (g/mole) | adsorbate
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
# Separate atom groups
|
||||
group membrane type 1
|
||||
128 atoms in group membrane
|
||||
group adsorbant type 2
|
||||
128 atoms in group adsorbant
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style hybrid/overlay rebo kolmogorov/crespi/z 14.0
|
||||
####################################################################
|
||||
pair_coeff * * rebo CH.airebo C C # chemical
|
||||
Reading potential file CH.airebo with DATE: 2011-10-25
|
||||
pair_coeff 1 2 kolmogorov/crespi/z CC.KC C C # long-range
|
||||
####################################################################
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.0001
|
||||
velocity all create 300.0 12345
|
||||
fix thermostat all nve
|
||||
compute COM1 membrane com
|
||||
compute COM2 adsorbant com
|
||||
############################
|
||||
|
||||
# Output
|
||||
#dump 1 all xyz 100 trajec.xyz
|
||||
#dump_modify 1 format line "%s %12.6f %12.6f %12.6f" element "C" "C"
|
||||
thermo 10
|
||||
thermo_style custom step time etotal pe temp c_COM1[3] c_COM2[3] # spcpu
|
||||
thermo_modify line one format float %14.8f
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 16
|
||||
ghost atom cutoff = 16
|
||||
binsize = 8, bins = 3 3 8
|
||||
3 neighbor lists, perpetual/occasional/extra = 3 0 0
|
||||
(1) pair rebo, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
(2) pair kolmogorov/crespi/z, perpetual, skip from (3)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(3) neighbor class addition, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/atomonly/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 4.572 | 4.572 | 4.572 Mbytes
|
||||
Step Time TotEng PotEng Temp c_COM1[3] c_COM2[3]
|
||||
0 0.00000000 -1888.67041214 -1898.55881323 300.00000000 0.00000000 3.30000000
|
||||
10 0.00100000 -1888.67037221 -1898.21029897 289.42778520 -0.00020126 3.30020126
|
||||
20 0.00200000 -1888.67021541 -1897.22943612 259.67456089 -0.00041357 3.30041357
|
||||
30 0.00300000 -1888.66999308 -1895.86681311 218.34126559 -0.00063673 3.30063673
|
||||
40 0.00400000 -1888.66978354 -1894.47163830 176.02000692 -0.00087055 3.30087055
|
||||
50 0.00500000 -1888.66966068 -1893.37123377 142.63902862 -0.00111486 3.30111486
|
||||
60 0.00600000 -1888.66966132 -1892.75822749 124.04127205 -0.00136952 3.30136952
|
||||
70 0.00700000 -1888.66976974 -1892.63445751 120.28297808 -0.00163441 3.30163441
|
||||
80 0.00800000 -1888.66992867 -1892.83467462 126.35245792 -0.00190946 3.30190946
|
||||
90 0.00900000 -1888.67006868 -1893.11387069 134.81862145 -0.00219458 3.30219458
|
||||
100 0.01000000 -1888.67013621 -1893.25481851 139.09272853 -0.00248973 3.30248973
|
||||
110 0.01100000 -1888.67011201 -1893.15155790 135.96068294 -0.00279489 3.30279489
|
||||
120 0.01200000 -1888.67001496 -1892.84002960 126.51230266 -0.00311004 3.30311004
|
||||
130 0.01300000 -1888.66988997 -1892.47004238 115.29120968 -0.00343519 3.30343519
|
||||
140 0.01400000 -1888.66979230 -1892.23503116 108.16426723 -0.00377038 3.30377038
|
||||
150 0.01500000 -1888.66976478 -1892.28630583 109.72070257 -0.00411562 3.30411562
|
||||
160 0.01600000 -1888.66982054 -1892.66640611 121.25071190 -0.00447099 3.30447099
|
||||
170 0.01700000 -1888.66993790 -1893.28862637 140.12442721 -0.00483654 3.30483654
|
||||
180 0.01800000 -1888.67007017 -1893.97029258 160.80119589 -0.00521235 3.30521235
|
||||
190 0.01900000 -1888.67016712 -1894.50458787 177.00801243 -0.00559851 3.30559851
|
||||
200 0.02000000 -1888.67019459 -1894.73890106 184.11590729 -0.00599512 3.30599512
|
||||
210 0.02100000 -1888.67014420 -1894.62906014 180.78501932 -0.00640230 3.30640230
|
||||
220 0.02200000 -1888.67003680 -1894.25249103 169.36370738 -0.00682016 3.30682016
|
||||
230 0.02300000 -1888.66991386 -1893.77601613 154.91186767 -0.00724883 3.30724883
|
||||
240 0.02400000 -1888.66982525 -1893.38995084 143.20188490 -0.00768845 3.30768845
|
||||
250 0.02500000 -1888.66980630 -1893.23138936 138.39193056 -0.00813913 3.30813913
|
||||
260 0.02600000 -1888.66986130 -1893.32993923 141.38012476 -0.00860097 3.30860097
|
||||
270 0.02700000 -1888.66996305 -1893.60070606 149.59171763 -0.00907408 3.30907408
|
||||
280 0.02800000 -1888.67006686 -1893.88587226 158.24010433 -0.00955849 3.30955849
|
||||
290 0.02900000 -1888.67012981 -1894.02402669 162.42960292 -0.01005424 3.31005424
|
||||
300 0.03000000 -1888.67012722 -1893.91715234 159.18726627 -0.01056129 3.31056129
|
||||
310 0.03100000 -1888.67005731 -1893.57037242 148.66857852 -0.01107957 3.31107957
|
||||
320 0.03200000 -1888.66994573 -1893.09358619 134.20694883 -0.01160898 3.31160898
|
||||
330 0.03300000 -1888.66983589 -1892.66132663 121.09614207 -0.01214935 3.31214935
|
||||
340 0.03400000 -1888.66977410 -1892.44446345 114.51869676 -0.01270046 3.31270046
|
||||
350 0.03500000 -1888.66978826 -1892.53901235 117.38674604 -0.01326207 3.31326207
|
||||
360 0.03600000 -1888.66987439 -1892.92337288 129.04508371 -0.01383390 3.31383390
|
||||
370 0.03700000 -1888.66999800 -1893.46445570 145.45701555 -0.01441561 3.31441561
|
||||
380 0.03800000 -1888.67010960 -1893.97065516 160.81100020 -0.01500688 3.31500688
|
||||
390 0.03900000 -1888.67016540 -1894.26835818 169.84119247 -0.01560734 3.31560734
|
||||
400 0.04000000 -1888.67014667 -1894.26967975 169.88185546 -0.01621664 3.31621664
|
||||
410 0.04100000 -1888.67006166 -1894.00321069 161.80014280 -0.01683442 3.31683442
|
||||
420 0.04200000 -1888.66994367 -1893.60086324 149.59707418 -0.01746033 3.31746033
|
||||
430 0.04300000 -1888.66984058 -1893.24559841 138.82197275 -0.01809405 3.31809405
|
||||
440 0.04400000 -1888.66979399 -1893.09727874 134.32357877 -0.01873527 3.31873527
|
||||
450 0.04500000 -1888.66982139 -1893.22837442 138.30000378 -0.01938373 3.31938373
|
||||
460 0.04600000 -1888.66990972 -1893.59670383 149.47191354 -0.02003918 3.32003918
|
||||
470 0.04700000 -1888.67002173 -1894.06542598 163.68887743 -0.02070143 3.32070143
|
||||
480 0.04800000 -1888.67011389 -1894.46010842 175.66018439 -0.02137030 3.32137030
|
||||
490 0.04900000 -1888.67015175 -1894.63688098 181.02206322 -0.02204565 3.32204565
|
||||
500 0.05000000 -1888.67012158 -1894.53632221 177.97216882 -0.02272740 3.32272740
|
||||
510 0.05100000 -1888.67003762 -1894.20444731 167.90610436 -0.02341547 3.32341547
|
||||
520 0.05200000 -1888.66993151 -1893.77231066 154.79891353 -0.02410981 3.32410981
|
||||
530 0.05300000 -1888.66984505 -1893.40525927 143.66572038 -0.02481040 3.32481040
|
||||
540 0.05400000 -1888.66981408 -1893.23762083 138.58074854 -0.02551724 3.32551724
|
||||
550 0.05500000 -1888.66985005 -1893.31793594 141.01630317 -0.02623032 3.32623032
|
||||
560 0.05600000 -1888.66993737 -1893.59069013 149.28862751 -0.02694963 3.32694963
|
||||
570 0.05700000 -1888.67003852 -1893.92089571 159.30352588 -0.02767517 3.32767517
|
||||
580 0.05800000 -1888.67011322 -1894.15124753 166.28980524 -0.02840691 3.32840691
|
||||
590 0.05900000 -1888.67013192 -1894.16548041 166.72104345 -0.02914478 3.32914478
|
||||
600 0.06000000 -1888.67008713 -1893.93443318 159.71275856 -0.02988871 3.32988871
|
||||
610 0.06100000 -1888.66999438 -1893.52841656 147.39760646 -0.03063856 3.33063856
|
||||
620 0.06200000 -1888.66988809 -1893.09235021 134.17119963 -0.03139416 3.33139416
|
||||
630 0.06300000 -1888.66980996 -1892.79172016 125.05288240 -0.03215531 3.33215531
|
||||
640 0.06400000 -1888.66979261 -1892.74755390 123.71346730 -0.03292176 3.33292176
|
||||
650 0.06500000 -1888.66984332 -1892.98665459 130.96590324 -0.03369323 3.33369323
|
||||
660 0.06600000 -1888.66994245 -1893.42999868 144.41332389 -0.03446937 3.33446937
|
||||
670 0.06700000 -1888.67005233 -1893.92310681 159.37018806 -0.03524986 3.33524986
|
||||
680 0.06800000 -1888.67013309 -1894.29451581 170.63575808 -0.03603430 3.33603430
|
||||
690 0.06900000 -1888.67015452 -1894.41878117 174.40514192 -0.03682229 3.33682229
|
||||
700 0.07000000 -1888.67010897 -1894.26288036 169.67671530 -0.03761343 3.33761343
|
||||
710 0.07100000 -1888.67001367 -1893.89812904 158.61357114 -0.03840729 3.33840729
|
||||
720 0.07200000 -1888.66990378 -1893.47348746 145.73388454 -0.03920344 3.33920344
|
||||
730 0.07300000 -1888.66982212 -1893.15984839 136.22099960 -0.04000148 3.34000148
|
||||
740 0.07400000 -1888.66980109 -1893.08373746 133.91254029 -0.04080098 3.34080098
|
||||
750 0.07500000 -1888.66984794 -1893.27755511 139.79127024 -0.04160156 3.34160156
|
||||
760 0.07600000 -1888.66994215 -1893.66837365 151.64528967 -0.04240282 3.34240282
|
||||
770 0.07700000 -1888.67004554 -1894.10941206 165.02263027 -0.04320441 3.34320441
|
||||
780 0.07800000 -1888.67011702 -1894.43947545 175.03411436 -0.04400599 3.34400599
|
||||
790 0.07900000 -1888.67013297 -1894.54590471 178.26254255 -0.04480726 3.34480726
|
||||
800 0.08000000 -1888.67008751 -1894.40384142 173.95392406 -0.04560792 3.34560792
|
||||
810 0.08100000 -1888.66999923 -1894.08389003 164.24973321 -0.04640773 3.34640773
|
||||
820 0.08200000 -1888.66990447 -1893.72313979 153.30795965 -0.04720647 3.34720647
|
||||
830 0.08300000 -1888.66984367 -1893.46839190 145.58111626 -0.04800393 3.34800393
|
||||
840 0.08400000 -1888.66984156 -1893.41412536 143.93481093 -0.04879995 3.34879995
|
||||
850 0.08500000 -1888.66989670 -1893.56426154 148.48805553 -0.04959439 3.34959439
|
||||
860 0.08600000 -1888.66998222 -1893.83463719 156.68827294 -0.05038713 3.35038713
|
||||
870 0.08700000 -1888.67006171 -1894.09325045 164.53181920 -0.05117805 3.35117805
|
||||
880 0.08800000 -1888.67010273 -1894.21712661 168.28880100 -0.05196706 3.35196706
|
||||
890 0.08900000 -1888.67008993 -1894.14263950 166.02935656 -0.05275408 3.35275408
|
||||
900 0.09000000 -1888.67002891 -1893.89014571 158.37090587 -0.05353904 3.35353904
|
||||
910 0.09100000 -1888.66994326 -1893.55535709 148.21649469 -0.05432186 3.35432186
|
||||
920 0.09200000 -1888.66986526 -1893.27257949 139.63979178 -0.05510247 3.35510247
|
||||
930 0.09300000 -1888.66982730 -1893.16330891 136.32582949 -0.05588078 3.35588078
|
||||
940 0.09400000 -1888.66984631 -1893.28643285 140.06065785 -0.05665670 3.35665670
|
||||
950 0.09500000 -1888.66991503 -1893.61245342 149.94957268 -0.05743015 3.35743015
|
||||
960 0.09600000 -1888.67000691 -1894.03423922 162.74316516 -0.05820101 3.35820101
|
||||
970 0.09700000 -1888.67008649 -1894.40848025 174.09469037 -0.05896915 3.35896915
|
||||
980 0.09800000 -1888.67012436 -1894.61056767 180.22458605 -0.05973444 3.35973444
|
||||
990 0.09900000 -1888.67010608 -1894.58107659 179.33042338 -0.06049672 3.36049672
|
||||
1000 0.10000000 -1888.67003981 -1894.34773305 172.25312330 -0.06125581 3.36125581
|
||||
Loop time of 1.32192 on 4 procs for 1000 steps with 256 atoms
|
||||
|
||||
Performance: 6.536 ns/day, 3.672 hours/ns, 756.476 timesteps/s
|
||||
98.6% CPU use with 4 MPI tasks x 1 OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1157 | 1.172 | 1.2369 | 4.0 | 88.66
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.071678 | 0.13667 | 0.19304 | 11.8 | 10.34
|
||||
Output | 0.0029244 | 0.0031272 | 0.0035112 | 0.4 | 0.24
|
||||
Modify | 0.0016961 | 0.0017477 | 0.0017846 | 0.1 | 0.13
|
||||
Other | | 0.008334 | | | 0.63
|
||||
|
||||
Nlocal: 64 ave 64 max 64 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 1265 ave 1265 max 1265 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 9328 ave 9328 max 9328 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 23648 ave 23648 max 23648 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 94592
|
||||
Ave neighs/atom = 369.5
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:01
|
||||
@ -0,0 +1,210 @@
|
||||
LAMMPS (30 Apr 2019)
|
||||
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:88)
|
||||
using 1 OpenMP thread(s) per MPI task
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style atomic
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use 2 atom types so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data data.bilayer-graphene # read lammps data file
|
||||
orthogonal box = (0 0 -20) to (17.04 19.6761 40)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
256 atoms
|
||||
read_data CPU = 0.000291348 secs
|
||||
mass 1 12.0107 # carbon mass (g/mole) | membrane
|
||||
mass 2 12.0107 # carbon mass (g/mole) | adsorbate
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
# Separate atom groups
|
||||
group membrane type 1
|
||||
128 atoms in group membrane
|
||||
group adsorbant type 2
|
||||
128 atoms in group adsorbant
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style hybrid/overlay rebo kolmogorov/crespi/z 14.0
|
||||
####################################################################
|
||||
pair_coeff * * rebo CH.rebo C C # chemical
|
||||
Reading potential file CH.rebo with DATE: 2018-7-3
|
||||
pair_coeff 1 2 kolmogorov/crespi/z CC.KC C C # long-range
|
||||
####################################################################
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.0001
|
||||
velocity all create 300.0 12345
|
||||
fix thermostat all nve
|
||||
compute COM1 membrane com
|
||||
compute COM2 adsorbant com
|
||||
############################
|
||||
|
||||
# Output
|
||||
#dump 1 all xyz 100 trajec.xyz
|
||||
#dump_modify 1 format line "%s %12.6f %12.6f %12.6f" element "C" "C"
|
||||
thermo 10
|
||||
thermo_style custom step time etotal pe temp c_COM1[3] c_COM2[3] # spcpu
|
||||
thermo_modify line one format float %14.8f
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 16
|
||||
ghost atom cutoff = 16
|
||||
binsize = 8, bins = 3 3 8
|
||||
3 neighbor lists, perpetual/occasional/extra = 3 0 0
|
||||
(1) pair rebo, perpetual
|
||||
attributes: full, newton on, ghost
|
||||
pair build: full/bin/ghost
|
||||
stencil: full/ghost/bin/3d
|
||||
bin: standard
|
||||
(2) pair kolmogorov/crespi/z, perpetual, skip from (3)
|
||||
attributes: half, newton on
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
(3) neighbor class addition, perpetual
|
||||
attributes: half, newton on
|
||||
pair build: half/bin/atomonly/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 4.998 | 4.998 | 4.998 Mbytes
|
||||
Step Time TotEng PotEng Temp c_COM1[3] c_COM2[3]
|
||||
0 0.00000000 -1888.67041233 -1898.55881343 300.00000000 0.00000000 3.30000000
|
||||
10 0.00100000 -1888.67037240 -1898.21029916 289.42778520 -0.00020126 3.30020126
|
||||
20 0.00200000 -1888.67021561 -1897.22943631 259.67456089 -0.00041357 3.30041357
|
||||
30 0.00300000 -1888.66999327 -1895.86681330 218.34126559 -0.00063673 3.30063673
|
||||
40 0.00400000 -1888.66978373 -1894.47163849 176.02000692 -0.00087055 3.30087055
|
||||
50 0.00500000 -1888.66966087 -1893.37123396 142.63902861 -0.00111486 3.30111486
|
||||
60 0.00600000 -1888.66966151 -1892.75822768 124.04127204 -0.00136952 3.30136952
|
||||
70 0.00700000 -1888.66976993 -1892.63445770 120.28297806 -0.00163441 3.30163441
|
||||
80 0.00800000 -1888.66992887 -1892.83467481 126.35245790 -0.00190946 3.30190946
|
||||
90 0.00900000 -1888.67006887 -1893.11387088 134.81862143 -0.00219458 3.30219458
|
||||
100 0.01000000 -1888.67013641 -1893.25481870 139.09272852 -0.00248973 3.30248973
|
||||
110 0.01100000 -1888.67011221 -1893.15155809 135.96068294 -0.00279489 3.30279489
|
||||
120 0.01200000 -1888.67001516 -1892.84002980 126.51230266 -0.00311004 3.30311004
|
||||
130 0.01300000 -1888.66989017 -1892.47004258 115.29120969 -0.00343519 3.30343519
|
||||
140 0.01400000 -1888.66979250 -1892.23503136 108.16426724 -0.00377038 3.30377038
|
||||
150 0.01500000 -1888.66976498 -1892.28630603 109.72070258 -0.00411562 3.30411562
|
||||
160 0.01600000 -1888.66982073 -1892.66640631 121.25071190 -0.00447099 3.30447099
|
||||
170 0.01700000 -1888.66993810 -1893.28862656 140.12442720 -0.00483654 3.30483654
|
||||
180 0.01800000 -1888.67007037 -1893.97029277 160.80119589 -0.00521235 3.30521235
|
||||
190 0.01900000 -1888.67016732 -1894.50458806 177.00801243 -0.00559851 3.30559851
|
||||
200 0.02000000 -1888.67019479 -1894.73890125 184.11590729 -0.00599512 3.30599512
|
||||
210 0.02100000 -1888.67014440 -1894.62906034 180.78501933 -0.00640230 3.30640230
|
||||
220 0.02200000 -1888.67003699 -1894.25249122 169.36370739 -0.00682016 3.30682016
|
||||
230 0.02300000 -1888.66991405 -1893.77601632 154.91186768 -0.00724883 3.30724883
|
||||
240 0.02400000 -1888.66982545 -1893.38995103 143.20188490 -0.00768845 3.30768845
|
||||
250 0.02500000 -1888.66980650 -1893.23138955 138.39193054 -0.00813913 3.30813913
|
||||
260 0.02600000 -1888.66986149 -1893.32993943 141.38012473 -0.00860097 3.30860097
|
||||
270 0.02700000 -1888.66996324 -1893.60070625 149.59171759 -0.00907408 3.30907408
|
||||
280 0.02800000 -1888.67006705 -1893.88587245 158.24010430 -0.00955849 3.30955849
|
||||
290 0.02900000 -1888.67013001 -1894.02402688 162.42960290 -0.01005424 3.31005424
|
||||
300 0.03000000 -1888.67012741 -1893.91715254 159.18726627 -0.01056129 3.31056129
|
||||
310 0.03100000 -1888.67005750 -1893.57037262 148.66857854 -0.01107957 3.31107957
|
||||
320 0.03200000 -1888.66994592 -1893.09358639 134.20694885 -0.01160898 3.31160898
|
||||
330 0.03300000 -1888.66983608 -1892.66132683 121.09614209 -0.01214935 3.31214935
|
||||
340 0.03400000 -1888.66977429 -1892.44446364 114.51869677 -0.01270046 3.31270046
|
||||
350 0.03500000 -1888.66978845 -1892.53901254 117.38674604 -0.01326207 3.31326207
|
||||
360 0.03600000 -1888.66987459 -1892.92337308 129.04508370 -0.01383390 3.31383390
|
||||
370 0.03700000 -1888.66999819 -1893.46445589 145.45701553 -0.01441561 3.31441561
|
||||
380 0.03800000 -1888.67010979 -1893.97065536 160.81100019 -0.01500688 3.31500688
|
||||
390 0.03900000 -1888.67016559 -1894.26835837 169.84119248 -0.01560734 3.31560734
|
||||
400 0.04000000 -1888.67014686 -1894.26967995 169.88185548 -0.01621664 3.31621664
|
||||
410 0.04100000 -1888.67006186 -1894.00321089 161.80014284 -0.01683442 3.31683442
|
||||
420 0.04200000 -1888.66994386 -1893.60086344 149.59707422 -0.01746033 3.31746033
|
||||
430 0.04300000 -1888.66984078 -1893.24559860 138.82197278 -0.01809405 3.31809405
|
||||
440 0.04400000 -1888.66979419 -1893.09727893 134.32357877 -0.01873527 3.31873527
|
||||
450 0.04500000 -1888.66982159 -1893.22837461 138.30000376 -0.01938373 3.31938373
|
||||
460 0.04600000 -1888.66990991 -1893.59670402 149.47191350 -0.02003918 3.32003918
|
||||
470 0.04700000 -1888.67002193 -1894.06542618 163.68887740 -0.02070143 3.32070143
|
||||
480 0.04800000 -1888.67011408 -1894.46010861 175.66018436 -0.02137030 3.32137030
|
||||
490 0.04900000 -1888.67015195 -1894.63688117 181.02206322 -0.02204565 3.32204565
|
||||
500 0.05000000 -1888.67012178 -1894.53632241 177.97216884 -0.02272740 3.32272740
|
||||
510 0.05100000 -1888.67003782 -1894.20444750 167.90610440 -0.02341547 3.32341547
|
||||
520 0.05200000 -1888.66993171 -1893.77231086 154.79891357 -0.02410981 3.32410981
|
||||
530 0.05300000 -1888.66984524 -1893.40525947 143.66572040 -0.02481040 3.32481040
|
||||
540 0.05400000 -1888.66981428 -1893.23762103 138.58074854 -0.02551724 3.32551724
|
||||
550 0.05500000 -1888.66985024 -1893.31793613 141.01630314 -0.02623032 3.32623032
|
||||
560 0.05600000 -1888.66993756 -1893.59069032 149.28862746 -0.02694963 3.32694963
|
||||
570 0.05700000 -1888.67003871 -1893.92089591 159.30352583 -0.02767517 3.32767517
|
||||
580 0.05800000 -1888.67011342 -1894.15124772 166.28980520 -0.02840691 3.32840691
|
||||
590 0.05900000 -1888.67013211 -1894.16548061 166.72104344 -0.02914478 3.32914478
|
||||
600 0.06000000 -1888.67008732 -1893.93443338 159.71275857 -0.02988871 3.32988871
|
||||
610 0.06100000 -1888.66999458 -1893.52841675 147.39760649 -0.03063856 3.33063856
|
||||
620 0.06200000 -1888.66988829 -1893.09235041 134.17119966 -0.03139416 3.33139416
|
||||
630 0.06300000 -1888.66981016 -1892.79172036 125.05288241 -0.03215531 3.33215531
|
||||
640 0.06400000 -1888.66979281 -1892.74755409 123.71346729 -0.03292176 3.33292176
|
||||
650 0.06500000 -1888.66984352 -1892.98665478 130.96590321 -0.03369323 3.33369323
|
||||
660 0.06600000 -1888.66994264 -1893.42999887 144.41332385 -0.03446937 3.33446937
|
||||
670 0.06700000 -1888.67005253 -1893.92310700 159.37018803 -0.03524986 3.33524986
|
||||
680 0.06800000 -1888.67013328 -1894.29451600 170.63575807 -0.03603430 3.33603430
|
||||
690 0.06900000 -1888.67015472 -1894.41878137 174.40514195 -0.03682229 3.33682229
|
||||
700 0.07000000 -1888.67010916 -1894.26288055 169.67671536 -0.03761343 3.33761343
|
||||
710 0.07100000 -1888.67001386 -1893.89812923 158.61357122 -0.03840729 3.33840729
|
||||
720 0.07200000 -1888.66990397 -1893.47348765 145.73388461 -0.03920344 3.33920344
|
||||
730 0.07300000 -1888.66982231 -1893.15984859 136.22099965 -0.04000148 3.34000148
|
||||
740 0.07400000 -1888.66980129 -1893.08373765 133.91254030 -0.04080098 3.34080098
|
||||
750 0.07500000 -1888.66984814 -1893.27755530 139.79127022 -0.04160156 3.34160156
|
||||
760 0.07600000 -1888.66994235 -1893.66837384 151.64528962 -0.04240282 3.34240282
|
||||
770 0.07700000 -1888.67004573 -1894.10941225 165.02263022 -0.04320441 3.34320441
|
||||
780 0.07800000 -1888.67011722 -1894.43947564 175.03411433 -0.04400599 3.34400599
|
||||
790 0.07900000 -1888.67013317 -1894.54590490 178.26254255 -0.04480726 3.34480726
|
||||
800 0.08000000 -1888.67008771 -1894.40384162 173.95392409 -0.04560792 3.34560792
|
||||
810 0.08100000 -1888.66999942 -1894.08389023 164.24973325 -0.04640773 3.34640773
|
||||
820 0.08200000 -1888.66990467 -1893.72313999 153.30795968 -0.04720647 3.34720647
|
||||
830 0.08300000 -1888.66984387 -1893.46839210 145.58111627 -0.04800393 3.34800393
|
||||
840 0.08400000 -1888.66984175 -1893.41412556 143.93481091 -0.04879995 3.34879995
|
||||
850 0.08500000 -1888.66989690 -1893.56426173 148.48805548 -0.04959439 3.34959439
|
||||
860 0.08600000 -1888.66998242 -1893.83463738 156.68827289 -0.05038713 3.35038713
|
||||
870 0.08700000 -1888.67006191 -1894.09325064 164.53181916 -0.05117805 3.35117805
|
||||
880 0.08800000 -1888.67010292 -1894.21712680 168.28880099 -0.05196706 3.35196706
|
||||
890 0.08900000 -1888.67009013 -1894.14263970 166.02935659 -0.05275408 3.35275408
|
||||
900 0.09000000 -1888.67002911 -1893.89014590 158.37090593 -0.05353904 3.35353904
|
||||
910 0.09100000 -1888.66994346 -1893.55535729 148.21649476 -0.05432186 3.35432186
|
||||
920 0.09200000 -1888.66986545 -1893.27257968 139.63979183 -0.05510247 3.35510247
|
||||
930 0.09300000 -1888.66982750 -1893.16330910 136.32582951 -0.05588078 3.35588078
|
||||
940 0.09400000 -1888.66984650 -1893.28643304 140.06065783 -0.05665670 3.35665670
|
||||
950 0.09500000 -1888.66991522 -1893.61245361 149.94957262 -0.05743015 3.35743015
|
||||
960 0.09600000 -1888.67000710 -1894.03423941 162.74316510 -0.05820101 3.35820101
|
||||
970 0.09700000 -1888.67008668 -1894.40848044 174.09469033 -0.05896915 3.35896915
|
||||
980 0.09800000 -1888.67012456 -1894.61056787 180.22458605 -0.05973444 3.35973444
|
||||
990 0.09900000 -1888.67010627 -1894.58107679 179.33042341 -0.06049672 3.36049672
|
||||
1000 0.10000000 -1888.67004000 -1894.34773324 172.25312335 -0.06125581 3.36125581
|
||||
Loop time of 2.60456 on 1 procs for 1000 steps with 256 atoms
|
||||
|
||||
Performance: 3.317 ns/day, 7.235 hours/ns, 383.942 timesteps/s
|
||||
99.7% CPU use with 1 MPI tasks x 1 OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 2.5864 | 2.5864 | 2.5864 | 0.0 | 99.30
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.0079134 | 0.0079134 | 0.0079134 | 0.0 | 0.30
|
||||
Output | 0.0027175 | 0.0027175 | 0.0027175 | 0.0 | 0.10
|
||||
Modify | 0.00419 | 0.00419 | 0.00419 | 0.0 | 0.16
|
||||
Other | | 0.00331 | | | 0.13
|
||||
|
||||
Nlocal: 256 ave 256 max 256 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 1721 ave 1721 max 1721 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 37312 ave 37312 max 37312 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 94592 ave 94592 max 94592 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 94592
|
||||
Ave neighs/atom = 369.5
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:02
|
||||