- added doc for read_data spin
- corrected an error in pack/unpack data hybrid
- added mask flags in fix_nve_spin::initial_integrate
- removed spin renormalization in min_spin (was causing a bug)
these new functions allow to choose between aborting with Error::one()
and exiting with Error::all(). in the long run those should replace
all of the functions in Force.
- fixed bug 1: precession_spin had no min_setup
- fixed bug 2: incorrect init of spins in neb/spin
- improved doc min_spin.txt (added eqs, and connected to related
files).
- corrected memory errors in pppm_dipole and pppm_dipole_spin
- created fm_long in atom_vec_spin
- fm_long added to fm in initial_integrate (in ComputeInteractionsSpin)
- created pppm_dipole_spin.h/cpp (child-class of pppm_dipole)
- improved pair_spin_long.h/cpp
- created documentation for pair_spin_long
- new 3xN fm_long vector in atom_vec_spin (with associated comm)
- improvements documentation (dmi and exchange)
- correction error cross product in pair_spin_dmi.cpp
- implementation mech. part in pair_spin_dmi.cpp
- correction in all pairs: init_one for [j][i] couples
- correction in atom_vec_spin.cpp: index error in read_data
- some improvements in pair_spin_dmi.cpp and pair_spin_magelec.cpp
To do:
- Remove all checks/prints used to debug
- Check all the flag set in the atom_vec_spin creator (very important for the reverse comm)
- Code DMI/ME interactions
- Start to work on parallel implementation of the integration
- For Paramag. simulations, the option "atom_modify" has to be set
ex: atom_modify sort 1000 4.0 (Freq,Dist).
- Actual time is now printed (c_mag[0] in compute_spin)
- Value of Gilbert's damping corrected
- Now even results for SD/Lammps comp. in purely paramg. or aniso. situations
- Pack and unpack reverse needed corrections (f only was set, not fm)
- Spin temperature is now computed (data c_mag[7] in spin_compute)
To do:
- Fcc with p p p bc is still not working
- If Zeeman/Aniso force not defined, error => to be removed
- Add DMI and ME (see if new file or add in the exchange file)
Changes to come:
-Exchange interaction computation to check (loop on neighbors),
-Temperature/random fluctuations to correct (effects too strong),
-Physical results to check,
-Add final interactions (DMI, ME, Dipolar),
-Compute spin temperature (Nurdin and Ma formslisms),
-Work on MPI parallelization,
-Ewald sums to implement (see with Stan's pakage),
-See for prefered magnetic axis (Mitchell's idea),