module LinFun2 !************************************************************************************ ! ! TMD Library: Bi-linear functions and their derivatives ! !--------------------------------------------------------------------------------------------------- ! ! Intel Fortran ! ! Alexey N. Volkov, University of Alabama, avolkov1@ua.edu, Version 09.01, 2017 ! !*************************************************************************************************** implicit none contains !****************************************************************************************** real*8 function CalcLinFun1_0 ( i, X, N, P, F ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! integer*4, intent(in) :: i, N real*8, intent(in) :: X real*8, dimension(0:N-1), intent(in) :: P real*8, dimension(0:N-1), intent(inout) :: F integer*4 :: i1 real*8 :: A, A0 !------------------------------------------------------------------------------------------- i1 = i - 1 A0 = ( P(i) - X ) / ( P(i) - P(i1) ) A = 1.0d+00 - A0 CalcLinFun1_0 = A0 * F(i1) + A * F(i) end function CalcLinFun1_0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine CalcLinFun1_1 ( S, Sx1, i, X, N, P, F, Fx ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! real*8, intent(out) :: S, Sx1 integer*4, intent(in) :: i, N real*8, intent(in) :: X real*8, dimension(0:N-1), intent(in) :: P real*8, dimension(0:N-1), intent(inout) :: F, Fx integer*4 :: i1 real*8 :: A, A0 !------------------------------------------------------------------------------------------- i1 = i - 1 A0 = ( P(i) - X ) / ( P(i) - P(i1) ) A = 1.0d+00 - A0 S = A0 * F(i1) + A * F(i) Sx1 = A0 * Fx(i1) + A * Fx(i) end subroutine CalcLinFun1_1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! real*8 function CalcLinFun2_0 ( i, j, X, Y, N1, N2, P1, P2, F ) !! integer*4, intent(in) :: i, j, N1, N2 real*8, intent(in) :: X, Y real*8, dimension(0:N1-1), intent(in) :: P1 real*8, dimension(0:N2-1), intent(in) :: P2 real*8, dimension(0:N1-1,0:N2-1), intent(inout) :: F integer*4 :: i1, j1 real*8 :: A, A0, B, B0, G, G0 !------------------------------------------------------------------------------------------- i1 = i - 1 j1 = j - 1 A0 = ( P1(i) - X ) / ( P1(i) - P1(i1) ) A = 1.0d+00 - A0 B0 = ( P2(j) - Y ) / ( P2(j) - P2(j1) ) B = 1.0d+00 - B0 G = B0 * F(i,j1) + B * F(i,j) G0 = B0 * F(i1,j1) + B * F(i1,j) CalcLinFun2_0 = A0 * G0 + A * G end function CalcLinFun2_0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine CalcLinFun2_1 ( S, Sx1, Sy1, i, j, X, Y, N1, N2, P1, P2, F, Fx, Fy ) !!!!!!!!!!!! real*8, intent(out) :: S, Sx1, Sy1 integer*4, intent(in) :: i, j, N1, N2 real*8, intent(in) :: X, Y real*8, dimension(0:N1-1), intent(in) :: P1 real*8, dimension(0:N2-1), intent(in) :: P2 real*8, dimension(0:N1-1,0:N2-1), intent(inout) :: F, Fx, Fy integer*4 :: i1, j1 real*8 :: A, A0, B, B0, G, G0 !------------------------------------------------------------------------------------------- i1 = i - 1 j1 = j - 1 A0 = ( P1(i) - X ) / ( P1(i) - P1(i1) ) A = 1.0d+00 - A0 B0 = ( P2(j) - Y ) / ( P2(j) - P2(j1) ) B = 1.0d+00 - B0 G = B0 * F(i,j1) + B * F(i,j) G0 = B0 * F(i1,j1) + B * F(i1,j) S = A0 * G0 + A * G G = B0 * Fx(i,j1) + B * Fx(i,j) G0 = B0 * Fx(i1,j1) + B * Fx(i1,j) Sx1 = A0 * G0 + A * G G = B0 * Fy(i,j1) + B * Fy(i,j) G0 = B0 * Fy(i1,j1) + B * Fy(i1,j) Sy1 = A0 * G0 + A * G end subroutine CalcLinFun2_1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! end module LinFun2 !********************************************************************************