// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Luca Ferraro (CASPUR) email: luca.ferraro@caspur.it Tersoff Potential References: (referenced as tersoff_2 functional form in LAMMPS manual) 1) Tersoff, Phys. Rev. B 39, 5566 (1988) ------------------------------------------------------------------------- */ #include "pair_tersoff_table.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include "neigh_request.h" #include "neighbor.h" #include "potential_file_reader.h" #include "tokenizer.h" #include #include using namespace LAMMPS_NS; #define MAXLINE 1024 #define DELTA 4 #define GRIDSTART 0.1 #define GRIDDENSITY_FCUTOFF 5000 #define GRIDDENSITY_EXP 12000 #define GRIDDENSITY_GTETA 12000 #define GRIDDENSITY_BIJ 7500 // max number of interaction per atom for environment potential #define leadingDimensionInteractionList 64 /* ---------------------------------------------------------------------- */ PairTersoffTable::PairTersoffTable(LAMMPS *lmp) : Pair(lmp) { single_enable = 0; restartinfo = 0; one_coeff = 1; manybody_flag = 1; centroidstressflag = CENTROID_NOTAVAIL; unit_convert_flag = utils::get_supported_conversions(utils::ENERGY); params = nullptr; allocated = 0; preGtetaFunction = preGtetaFunctionDerived = nullptr; preCutoffFunction = preCutoffFunctionDerived = nullptr; exponential = nullptr; gtetaFunction = nullptr; gtetaFunctionDerived = nullptr; cutoffFunction = nullptr; cutoffFunctionDerived = nullptr; betaZetaPower = nullptr; betaZetaPowerDerived = nullptr; } /* ---------------------------------------------------------------------- check if allocated, since class can be destructed when incomplete ------------------------------------------------------------------------- */ PairTersoffTable::~PairTersoffTable() { memory->destroy(params); memory->destroy(elem3param); if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); } deallocateGrids(); deallocatePreLoops(); } /* ---------------------------------------------------------------------- */ void PairTersoffTable::compute(int eflag, int vflag) { int i,j,k,ii,inum,jnum; int itype,jtype,ktype,ijparam,ikparam,ijkparam; double xtmp,ytmp,ztmp; double fxtmp,fytmp,fztmp; int *ilist,*jlist,*numneigh,**firstneigh; int interpolIDX; double directorCos_ij_x, directorCos_ij_y, directorCos_ij_z, directorCos_ik_x, directorCos_ik_y, directorCos_ik_z; double invR_ij, invR_ik, cosTeta; double repulsivePotential, attractivePotential; double exponentRepulsivePotential, exponentAttractivePotential,interpolTMP,interpolDeltaX,interpolY1; double interpolY2, cutoffFunctionIJ, attractiveExponential, repulsiveExponential, cutoffFunctionDerivedIJ,zeta; double gtetaFunctionIJK,gtetaFunctionDerivedIJK,cutoffFunctionIK; double cutoffFunctionDerivedIK,factor_force3_ij,factor_1_force3_ik; double factor_2_force3_ik,betaZetaPowerIJK,betaZetaPowerDerivedIJK,factor_force_tot; double factor_force_ij; double gtetaFunctionDerived_temp,gtetaFunction_temp; double evdwl = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over full neighbor list of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; itype = map[type[i]]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; fxtmp = fytmp = fztmp = 0.0; jlist = firstneigh[i]; jnum = numneigh[i]; if (jnum > leadingDimensionInteractionList) error->one(FLERR,"Too many neighbors for interaction list: {} vs {}.\n" "Check your system or increase 'leadingDimensionInteractionList'", jnum, leadingDimensionInteractionList); // Pre-calculate gteta and cutoff function for (int neighbor_j = 0; neighbor_j < jnum; neighbor_j++) { double dr_ij[3], r_ij; j = jlist[neighbor_j]; j &= NEIGHMASK; dr_ij[0] = xtmp - x[j][0]; dr_ij[1] = ytmp - x[j][1]; dr_ij[2] = ztmp - x[j][2]; r_ij = dr_ij[0]*dr_ij[0] + dr_ij[1]*dr_ij[1] + dr_ij[2]*dr_ij[2]; jtype = map[type[j]]; ijparam = elem3param[itype][jtype][jtype]; if (r_ij > params[ijparam].cutsq) continue; r_ij = sqrt(r_ij); invR_ij = 1.0 / r_ij; directorCos_ij_x = invR_ij * dr_ij[0]; directorCos_ij_y = invR_ij * dr_ij[1]; directorCos_ij_z = invR_ij * dr_ij[2]; // preCutoffFunction interpolDeltaX = r_ij - GRIDSTART; interpolTMP = (interpolDeltaX * GRIDDENSITY_FCUTOFF); interpolIDX = (int) interpolTMP; interpolY1 = cutoffFunction[itype][jtype][interpolIDX]; interpolY2 = cutoffFunction[itype][jtype][interpolIDX+1]; preCutoffFunction[neighbor_j] = interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX); // preCutoffFunctionDerived interpolY1 = cutoffFunctionDerived[itype][jtype][interpolIDX]; interpolY2 = cutoffFunctionDerived[itype][jtype][interpolIDX+1]; preCutoffFunctionDerived[neighbor_j] = interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX); for (int neighbor_k = neighbor_j + 1; neighbor_k < jnum; neighbor_k++) { double dr_ik[3], r_ik; k = jlist[neighbor_k]; k &= NEIGHMASK; ktype = map[type[k]]; ikparam = elem3param[itype][ktype][ktype]; ijkparam = elem3param[itype][jtype][ktype]; dr_ik[0] = xtmp -x[k][0]; dr_ik[1] = ytmp -x[k][1]; dr_ik[2] = ztmp -x[k][2]; r_ik = dr_ik[0]*dr_ik[0] + dr_ik[1]*dr_ik[1] + dr_ik[2]*dr_ik[2]; if (r_ik > params[ikparam].cutsq) continue; r_ik = sqrt(r_ik); invR_ik = 1.0 / r_ik; directorCos_ik_x = invR_ik * dr_ik[0]; directorCos_ik_y = invR_ik * dr_ik[1]; directorCos_ik_z = invR_ik * dr_ik[2]; cosTeta = directorCos_ij_x * directorCos_ik_x + directorCos_ij_y * directorCos_ik_y + directorCos_ij_z * directorCos_ik_z; // preGtetaFunction interpolDeltaX=cosTeta+1.0; interpolTMP = (interpolDeltaX * GRIDDENSITY_GTETA); interpolIDX = (int) interpolTMP; interpolY1 = gtetaFunction[itype][interpolIDX]; interpolY2 = gtetaFunction[itype][interpolIDX+1]; gtetaFunction_temp = interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX); // preGtetaFunctionDerived interpolY1 = gtetaFunctionDerived[itype][interpolIDX]; interpolY2 = gtetaFunctionDerived[itype][interpolIDX+1]; gtetaFunctionDerived_temp = interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX); preGtetaFunction[neighbor_j][neighbor_k]=params[ijkparam].gamma*gtetaFunction_temp; preGtetaFunctionDerived[neighbor_j][neighbor_k]=params[ijkparam].gamma*gtetaFunctionDerived_temp; preGtetaFunction[neighbor_k][neighbor_j]=params[ijkparam].gamma*gtetaFunction_temp; preGtetaFunctionDerived[neighbor_k][neighbor_j]=params[ijkparam].gamma*gtetaFunctionDerived_temp; } // loop on K } // loop on J // loop over neighbors of atom i for (int neighbor_j = 0; neighbor_j < jnum; neighbor_j++) { double dr_ij[3], r_ij, f_ij[3]; j = jlist[neighbor_j]; j &= NEIGHMASK; dr_ij[0] = xtmp - x[j][0]; dr_ij[1] = ytmp - x[j][1]; dr_ij[2] = ztmp - x[j][2]; r_ij = dr_ij[0]*dr_ij[0] + dr_ij[1]*dr_ij[1] + dr_ij[2]*dr_ij[2]; jtype = map[type[j]]; ijparam = elem3param[itype][jtype][jtype]; if (r_ij > params[ijparam].cutsq) continue; r_ij = sqrt(r_ij); invR_ij = 1.0 / r_ij; directorCos_ij_x = invR_ij * dr_ij[0]; directorCos_ij_y = invR_ij * dr_ij[1]; directorCos_ij_z = invR_ij * dr_ij[2]; exponentRepulsivePotential = params[ijparam].lam1 * r_ij; exponentAttractivePotential = params[ijparam].lam2 * r_ij; // repulsiveExponential interpolDeltaX = exponentRepulsivePotential - minArgumentExponential; interpolTMP = (interpolDeltaX * GRIDDENSITY_EXP); interpolIDX = (int) interpolTMP; interpolY1 = exponential[interpolIDX]; interpolY2 = exponential[interpolIDX+1]; repulsiveExponential = interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX); // attractiveExponential interpolDeltaX = exponentAttractivePotential - minArgumentExponential; interpolTMP = (interpolDeltaX * GRIDDENSITY_EXP); interpolIDX = (int) interpolTMP; interpolY1 = exponential[interpolIDX]; interpolY2 = exponential[interpolIDX+1]; attractiveExponential = interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX); repulsivePotential = params[ijparam].biga * repulsiveExponential; attractivePotential = -params[ijparam].bigb * attractiveExponential; cutoffFunctionIJ = preCutoffFunction[neighbor_j]; cutoffFunctionDerivedIJ = preCutoffFunctionDerived[neighbor_j]; zeta = 0.0; // first loop over neighbors of atom i except j - part 1/2 for (int neighbor_k = 0; neighbor_k < neighbor_j; neighbor_k++) { double dr_ik[3], r_ik; k = jlist[neighbor_k]; k &= NEIGHMASK; ktype = map[type[k]]; ikparam = elem3param[itype][ktype][ktype]; ijkparam = elem3param[itype][jtype][ktype]; dr_ik[0] = xtmp -x[k][0]; dr_ik[1] = ytmp -x[k][1]; dr_ik[2] = ztmp -x[k][2]; r_ik = dr_ik[0]*dr_ik[0] + dr_ik[1]*dr_ik[1] + dr_ik[2]*dr_ik[2]; if (r_ik > params[ikparam].cutsq) continue; gtetaFunctionIJK = preGtetaFunction[neighbor_j][neighbor_k]; cutoffFunctionIK = preCutoffFunction[neighbor_k]; zeta += cutoffFunctionIK * gtetaFunctionIJK; } // first loop over neighbors of atom i except j - part 2/2 for (int neighbor_k = neighbor_j+1; neighbor_k < jnum; neighbor_k++) { double dr_ik[3], r_ik; k = jlist[neighbor_k]; k &= NEIGHMASK; ktype = map[type[k]]; ikparam = elem3param[itype][ktype][ktype]; ijkparam = elem3param[itype][jtype][ktype]; dr_ik[0] = xtmp -x[k][0]; dr_ik[1] = ytmp -x[k][1]; dr_ik[2] = ztmp -x[k][2]; r_ik = dr_ik[0]*dr_ik[0] + dr_ik[1]*dr_ik[1] + dr_ik[2]*dr_ik[2]; if (r_ik > params[ikparam].cutsq) continue; gtetaFunctionIJK = preGtetaFunction[neighbor_j][neighbor_k]; cutoffFunctionIK = preCutoffFunction[neighbor_k]; zeta += cutoffFunctionIK * gtetaFunctionIJK; } // betaZetaPowerIJK interpolDeltaX= params[ijparam].beta * zeta; interpolTMP = (interpolDeltaX * GRIDDENSITY_BIJ); interpolIDX = (int) interpolTMP; interpolY1 = betaZetaPower[itype][interpolIDX]; interpolY2 = betaZetaPower[itype][interpolIDX+1]; betaZetaPowerIJK = (interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX)); // betaZetaPowerDerivedIJK interpolY1 = betaZetaPowerDerived[itype][interpolIDX]; interpolY2 = betaZetaPowerDerived[itype][interpolIDX+1]; betaZetaPowerDerivedIJK = params[ijparam].beta*(interpolY1 + (interpolY2 - interpolY1) * (interpolTMP - interpolIDX)); // Forces and virial factor_force_ij = 0.5*cutoffFunctionDerivedIJ*(repulsivePotential + attractivePotential * betaZetaPowerIJK)+0.5*cutoffFunctionIJ*(-repulsivePotential*params[ijparam].lam1-betaZetaPowerIJK*attractivePotential*params[ijparam].lam2); f_ij[0] = factor_force_ij * directorCos_ij_x; f_ij[1] = factor_force_ij * directorCos_ij_y; f_ij[2] = factor_force_ij * directorCos_ij_z; f[j][0] += f_ij[0]; f[j][1] += f_ij[1]; f[j][2] += f_ij[2]; fxtmp -= f_ij[0]; fytmp -= f_ij[1]; fztmp -= f_ij[2]; // potential energy evdwl = cutoffFunctionIJ * repulsivePotential + cutoffFunctionIJ * attractivePotential * betaZetaPowerIJK; if (evflag) ev_tally(i, j, nlocal, newton_pair, 0.5 * evdwl, 0.0, -factor_force_ij*invR_ij, dr_ij[0], dr_ij[1], dr_ij[2]); factor_force_tot= 0.5*cutoffFunctionIJ*attractivePotential*betaZetaPowerDerivedIJK; // second loop over neighbors of atom i except j, forces and virial only - part 1/2 for (int neighbor_k = 0; neighbor_k < neighbor_j; neighbor_k++) { double dr_ik[3], r_ik, f_ik[3]; k = jlist[neighbor_k]; k &= NEIGHMASK; ktype = map[type[k]]; ikparam = elem3param[itype][ktype][ktype]; ijkparam = elem3param[itype][jtype][ktype]; dr_ik[0] = xtmp -x[k][0]; dr_ik[1] = ytmp -x[k][1]; dr_ik[2] = ztmp -x[k][2]; r_ik = dr_ik[0]*dr_ik[0] + dr_ik[1]*dr_ik[1] + dr_ik[2]*dr_ik[2]; if (r_ik > params[ikparam].cutsq) continue; r_ik = sqrt(r_ik); invR_ik = 1.0 / r_ik; directorCos_ik_x = invR_ik * dr_ik[0]; directorCos_ik_y = invR_ik * dr_ik[1]; directorCos_ik_z = invR_ik * dr_ik[2]; cosTeta = directorCos_ij_x * directorCos_ik_x + directorCos_ij_y * directorCos_ik_y + directorCos_ij_z * directorCos_ik_z; gtetaFunctionIJK = preGtetaFunction[neighbor_j][neighbor_k]; gtetaFunctionDerivedIJK = preGtetaFunctionDerived[neighbor_j][neighbor_k]; cutoffFunctionIK = preCutoffFunction[neighbor_k]; cutoffFunctionDerivedIK = preCutoffFunctionDerived[neighbor_k]; factor_force3_ij= cutoffFunctionIK * gtetaFunctionDerivedIJK * invR_ij *factor_force_tot; f_ij[0] = factor_force3_ij * (directorCos_ij_x*cosTeta - directorCos_ik_x); f_ij[1] = factor_force3_ij * (directorCos_ij_y*cosTeta - directorCos_ik_y); f_ij[2] = factor_force3_ij * (directorCos_ij_z*cosTeta - directorCos_ik_z); factor_1_force3_ik = (cutoffFunctionIK * gtetaFunctionDerivedIJK * invR_ik)*factor_force_tot; factor_2_force3_ik = -(cutoffFunctionDerivedIK * gtetaFunctionIJK)*factor_force_tot; f_ik[0] = factor_1_force3_ik * (directorCos_ik_x*cosTeta - directorCos_ij_x) + factor_2_force3_ik * directorCos_ik_x; f_ik[1] = factor_1_force3_ik * (directorCos_ik_y*cosTeta - directorCos_ij_y) + factor_2_force3_ik * directorCos_ik_y; f_ik[2] = factor_1_force3_ik * (directorCos_ik_z*cosTeta - directorCos_ij_z) + factor_2_force3_ik * directorCos_ik_z; f[j][0] -= f_ij[0]; f[j][1] -= f_ij[1]; f[j][2] -= f_ij[2]; f[k][0] -= f_ik[0]; f[k][1] -= f_ik[1]; f[k][2] -= f_ik[2]; fxtmp += f_ij[0] + f_ik[0]; fytmp += f_ij[1] + f_ik[1]; fztmp += f_ij[2] + f_ik[2]; if (vflag_either) v_tally3(i,j,k,f_ij,f_ik,dr_ij,dr_ik); } // second loop over neighbors of atom i except j, forces and virial only - part 2/2 for (int neighbor_k = neighbor_j+1; neighbor_k < jnum; neighbor_k++) { double dr_ik[3], r_ik, f_ik[3]; k = jlist[neighbor_k]; k &= NEIGHMASK; ktype = map[type[k]]; ikparam = elem3param[itype][ktype][ktype]; ijkparam = elem3param[itype][jtype][ktype]; dr_ik[0] = xtmp -x[k][0]; dr_ik[1] = ytmp -x[k][1]; dr_ik[2] = ztmp -x[k][2]; r_ik = dr_ik[0]*dr_ik[0] + dr_ik[1]*dr_ik[1] + dr_ik[2]*dr_ik[2]; if (r_ik > params[ikparam].cutsq) continue; r_ik = sqrt(r_ik); invR_ik = 1.0 / r_ik; directorCos_ik_x = invR_ik * dr_ik[0]; directorCos_ik_y = invR_ik * dr_ik[1]; directorCos_ik_z = invR_ik * dr_ik[2]; cosTeta = directorCos_ij_x * directorCos_ik_x + directorCos_ij_y * directorCos_ik_y + directorCos_ij_z * directorCos_ik_z; gtetaFunctionIJK = preGtetaFunction[neighbor_j][neighbor_k]; gtetaFunctionDerivedIJK = preGtetaFunctionDerived[neighbor_j][neighbor_k]; cutoffFunctionIK = preCutoffFunction[neighbor_k]; cutoffFunctionDerivedIK = preCutoffFunctionDerived[neighbor_k]; factor_force3_ij= cutoffFunctionIK * gtetaFunctionDerivedIJK * invR_ij *factor_force_tot; f_ij[0] = factor_force3_ij * (directorCos_ij_x*cosTeta - directorCos_ik_x); f_ij[1] = factor_force3_ij * (directorCos_ij_y*cosTeta - directorCos_ik_y); f_ij[2] = factor_force3_ij * (directorCos_ij_z*cosTeta - directorCos_ik_z); factor_1_force3_ik = (cutoffFunctionIK * gtetaFunctionDerivedIJK * invR_ik)*factor_force_tot; factor_2_force3_ik = -(cutoffFunctionDerivedIK * gtetaFunctionIJK)*factor_force_tot; f_ik[0] = factor_1_force3_ik * (directorCos_ik_x*cosTeta - directorCos_ij_x) + factor_2_force3_ik * directorCos_ik_x; f_ik[1] = factor_1_force3_ik * (directorCos_ik_y*cosTeta - directorCos_ij_y) + factor_2_force3_ik * directorCos_ik_y; f_ik[2] = factor_1_force3_ik * (directorCos_ik_z*cosTeta - directorCos_ij_z) + factor_2_force3_ik * directorCos_ik_z; f[j][0] -= f_ij[0]; f[j][1] -= f_ij[1]; f[j][2] -= f_ij[2]; f[k][0] -= f_ik[0]; f[k][1] -= f_ik[1]; f[k][2] -= f_ik[2]; fxtmp += f_ij[0] + f_ik[0]; fytmp += f_ij[1] + f_ik[1]; fztmp += f_ij[2] + f_ik[2]; if (vflag_either) v_tally3(i,j,k,f_ij,f_ik,dr_ij,dr_ik); } } // loop on J f[i][0] += fxtmp; f[i][1] += fytmp; f[i][2] += fztmp; } // loop on I if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- */ void PairTersoffTable::deallocatePreLoops(void) { memory->destroy(preGtetaFunction); memory->destroy(preGtetaFunctionDerived); memory->destroy(preCutoffFunction); memory->destroy(preCutoffFunctionDerived); } void PairTersoffTable::allocatePreLoops(void) { deallocatePreLoops(); memory->create(preGtetaFunction,leadingDimensionInteractionList, leadingDimensionInteractionList,"tersofftable:preGtetaFunction"); memory->create(preGtetaFunctionDerived,leadingDimensionInteractionList, leadingDimensionInteractionList,"tersofftable:preGtetaFunctionDerived"); memory->create(preCutoffFunction,leadingDimensionInteractionList, "tersofftable:preCutoffFunction"); memory->create(preCutoffFunctionDerived,leadingDimensionInteractionList, "tersofftable:preCutoffFunctionDerived"); } void PairTersoffTable::deallocateGrids() { memory->destroy(exponential); memory->destroy(gtetaFunction); memory->destroy(gtetaFunctionDerived); memory->destroy(cutoffFunction); memory->destroy(cutoffFunctionDerived); memory->destroy(betaZetaPower); memory->destroy(betaZetaPowerDerived); } void PairTersoffTable::allocateGrids(void) { int i, j, k, l; int numGridPointsExponential, numGridPointsGtetaFunction, numGridPointsOneCutoffFunction; int numGridPointsNotOneCutoffFunction, numGridPointsCutoffFunction, numGridPointsBetaZetaPower; // double minArgumentExponential; double deltaArgumentCutoffFunction, deltaArgumentExponential, deltaArgumentBetaZetaPower; double deltaArgumentGtetaFunction; double r, minMu, maxLambda, maxCutoff; double const PI=acos(-1.0); deallocateGrids(); // exponential // find min and max argument minMu=params[0].lam2; maxLambda=params[0].lam1; for (i=1; i maxLambda) maxLambda = params[i].lam1; } maxCutoff=cutmax; minArgumentExponential=minMu*GRIDSTART; numGridPointsExponential=(int)((maxLambda*maxCutoff-minArgumentExponential)*GRIDDENSITY_EXP)+2; memory->create(exponential,numGridPointsExponential,"tersofftable:exponential"); r = minArgumentExponential; deltaArgumentExponential = 1.0 / GRIDDENSITY_EXP; for (i = 0; i < numGridPointsExponential; i++) { exponential[i] = exp(-r); r += deltaArgumentExponential; } // gtetaFunction numGridPointsGtetaFunction=(int)(2.0*GRIDDENSITY_GTETA)+2; memory->create(gtetaFunction,nelements,numGridPointsGtetaFunction,"tersofftable:gtetaFunction"); memory->create(gtetaFunctionDerived,nelements,numGridPointsGtetaFunction,"tersofftable:gtetaFunctionDerived"); r = minArgumentExponential; for (i=0; icreate(cutoffFunction,nelements,nelements,ngrid_max,"tersoff:cutfunc"); memory->create(cutoffFunctionDerived,nelements,nelements,ngrid_max,"tersoff:cutfuncD"); // cutoffFunction, compute. for (i=0; icreate(betaZetaPower,nelements,zeta_max,"tersoff:zetafunc"); memory->create(betaZetaPowerDerived,nelements,zeta_max,"tersoff:zetafuncD"); for (i=0; intypes; memory->create(setflag,n+1,n+1,"pair:setflag"); memory->create(cutsq,n+1,n+1,"pair:cutsq"); map = new int[n+1]; } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairTersoffTable::settings(int narg, char **/*arg*/) { if (narg != 0) error->all(FLERR,"Illegal pair_style command"); } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairTersoffTable::coeff(int narg, char **arg) { if (!allocated) allocate(); map_element2type(narg-3,arg+3); // read potential file and initialize potential parameters read_file(arg[2]); setup_params(); // allocate tables and internal structures allocatePreLoops(); allocateGrids(); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairTersoffTable::init_style() { if (force->newton_pair == 0) error->all(FLERR,"Pair style tersoff/table requires newton pair on"); // need a full neighbor list int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairTersoffTable::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); return cutmax; } /* ---------------------------------------------------------------------- */ void PairTersoffTable::read_file(char *file) { memory->sfree(params); params = nullptr; nparams = maxparam = 0; // open file on proc 0 if (comm->me == 0) { PotentialFileReader reader(lmp, file, "tersoff/table", unit_convert_flag); char *line; // transparently convert units for supported conversions int unit_convert = reader.get_unit_convert(); double conversion_factor = utils::get_conversion_factor(utils::ENERGY, unit_convert); while ((line = reader.next_line(NPARAMS_PER_LINE))) { try { ValueTokenizer values(line); std::string iname = values.next_string(); std::string jname = values.next_string(); std::string kname = values.next_string(); // ielement,jelement,kelement = 1st args // if all 3 args are in element list, then parse this line // else skip to next entry in file int ielement, jelement, kelement; for (ielement = 0; ielement < nelements; ielement++) if (iname == elements[ielement]) break; if (ielement == nelements) continue; for (jelement = 0; jelement < nelements; jelement++) if (jname == elements[jelement]) break; if (jelement == nelements) continue; for (kelement = 0; kelement < nelements; kelement++) if (kname == elements[kelement]) break; if (kelement == nelements) continue; // load up parameter settings and error check their values if (nparams == maxparam) { maxparam += DELTA; params = (Param *) memory->srealloc(params,maxparam*sizeof(Param), "pair:params"); // make certain all addional allocated storage is initialized // to avoid false positives when checking with valgrind memset(params + nparams, 0, DELTA*sizeof(Param)); } // some parameters are not used since only Tersoff_2 is implemented params[nparams].ielement = ielement; params[nparams].jelement = jelement; params[nparams].kelement = kelement; params[nparams].powerm = values.next_double(); // not used params[nparams].gamma = values.next_double(); // not used params[nparams].lam3 = values.next_double(); // not used params[nparams].c = values.next_double(); params[nparams].d = values.next_double(); params[nparams].h = values.next_double(); params[nparams].powern = values.next_double(); params[nparams].beta = values.next_double(); params[nparams].lam2 = values.next_double(); params[nparams].bigb = values.next_double(); double bigr = values.next_double(); double bigd = values.next_double(); params[nparams].cutoffR = bigr - bigd; params[nparams].cutoffS = bigr + bigd; params[nparams].lam1 = values.next_double(); params[nparams].biga = values.next_double(); if (unit_convert) { params[nparams].biga *= conversion_factor; params[nparams].bigb *= conversion_factor; } } catch (TokenizerException &e) { error->one(FLERR, e.what()); } if (params[nparams].c < 0.0 || params[nparams].d < 0.0 || params[nparams].powern < 0.0 || params[nparams].beta < 0.0 || params[nparams].lam2 < 0.0 || params[nparams].bigb < 0.0 || params[nparams].cutoffR < 0.0 || params[nparams].cutoffS < 0.0 || params[nparams].cutoffR > params[nparams].cutoffS || params[nparams].lam1 < 0.0 || params[nparams].biga < 0.0 ) error->one(FLERR,"Illegal Tersoff parameter"); // only tersoff_2 parametrization is implemented if (params[nparams].gamma != 1.0 || params[nparams].lam3 != 0.0) error->one(FLERR,"Currently the tersoff/table pair_style only " "implements the Tersoff_2 parametrization"); nparams++; } } MPI_Bcast(&nparams, 1, MPI_INT, 0, world); MPI_Bcast(&maxparam, 1, MPI_INT, 0, world); if (comm->me != 0) params = (Param *) memory->srealloc(params,maxparam*sizeof(Param), "pair:params"); MPI_Bcast(params, maxparam*sizeof(Param), MPI_BYTE, 0, world); } /* ---------------------------------------------------------------------- */ void PairTersoffTable::setup_params() { int i,j,k,m,n; // set elem3param for all triplet combinations // must be a single exact match to lines read from file // do not allow for ACB in place of ABC memory->destroy(elem3param); memory->create(elem3param,nelements,nelements,nelements,"pair:elem3param"); for (i = 0; i < nelements; i++) for (j = 0; j < nelements; j++) for (k = 0; k < nelements; k++) { n = -1; for (m = 0; m < nparams; m++) { if (i == params[m].ielement && j == params[m].jelement && k == params[m].kelement) { if (n >= 0) error->all(FLERR,"Potential file has duplicate entry"); n = m; } } if (n < 0) error->all(FLERR,"Potential file is missing an entry"); elem3param[i][j][k] = n; } // set cutoff square for (m = 0; m < nparams; m++) { params[m].cut = params[m].cutoffS; params[m].cutsq = params[m].cut*params[m].cut; } // set cutmax to max of all params cutmax = 0.0; for (m = 0; m < nparams; m++) { if (params[m].cut > cutmax) cutmax = params[m].cut; } }