/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_slice.h" #include "arg_info.h" #include "error.h" #include "fix.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeSlice::ComputeSlice(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg < 7) utils::missing_cmd_args(FLERR, "compute slice", error); nstart = utils::inumeric(FLERR, arg[3], false, lmp); nstop = utils::inumeric(FLERR, arg[4], false, lmp); nskip = utils::inumeric(FLERR, arg[5], false, lmp); if (nstart < 1) error->all(FLERR, "Invalid compute slice nstart value {} < 1", nstart); if (nstop < nstart) error->all(FLERR, "Invalid compute slice nstop value {} < {}", nstop, nstart); if (nskip < 1) error->all(FLERR, "Invalid compute slice nskip value < 1: {}", nskip); // parse values values.clear(); for (int iarg = 6; iarg < narg; iarg++) { ArgInfo argi(arg[iarg]); value_t val; val.which = argi.get_type(); val.argindex = argi.get_index1(); val.id = argi.get_name(); val.val.c = nullptr; if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR, "Illegal compute slice argument: {}", arg[iarg]); values.push_back(val); } // setup and error check for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR, "Compute ID {} for compute slice does not exist", val.id); if (val.val.c->vector_flag) { if (val.argindex) error->all(FLERR, "Compute slice compute {} does not calculate a global array", val.id); if (nstop > val.val.c->size_vector) error->all(FLERR, "Compute slice compute {} vector is accessed out-of-range", val.id); } else if (val.val.c->array_flag) { if (val.argindex == 0) error->all(FLERR, "Compute slice compute {} does not calculate a global vector", val.id); if (val.argindex > val.val.c->size_array_cols) error->all(FLERR, "Compute slice compute {} array is accessed out-of-range", val.id); if (nstop > val.val.c->size_array_rows) error->all(FLERR, "Compute slice compute {} array is accessed out-of-range", val.id); } else { error->all(FLERR, "Compute slice compute {} does not calculate global vector or array", val.id); } } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR, "Fix ID {} for compute slice does not exist", val.id); if (val.val.f->vector_flag) { if (val.argindex) error->all(FLERR, "Compute slice fix {} does not calculate a global array", val.id); if (nstop > val.val.f->size_vector) error->all(FLERR, "Compute slice fix {} vector is accessed out-of-range", val.id); } else if (val.val.f->array_flag) { if (val.argindex == 0) error->all(FLERR, "Compute slice fix {} does not calculate a global vector", val.id); if (val.argindex > val.val.f->size_array_cols) error->all(FLERR, "Compute slice fix {} array is accessed out-of-range", val.id); if (nstop > val.val.f->size_array_rows) error->all(FLERR, "Compute slice fix {} array is accessed out-of-range", val.id); } else { error->all(FLERR, "Compute slice fix {} does not calculate global vector or array", val.id); } } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR, "Variable name {} for compute slice does not exist", val.id); if (val.argindex == 0 && input->variable->vectorstyle(val.val.v) == 0) error->all(FLERR, "Compute slice variable {} is not vector-style variable", val.id); if (val.argindex) error->all(FLERR, "Compute slice vector variable {} cannot be indexed", val.id); } } // this compute produces either a vector or array // for vector, set intensive/extensive to mirror input values // for array, set intensive if all input values are intensive, else extensive if (values.size() == 1) { auto &val = values[0]; vector_flag = 1; size_vector = (nstop - nstart) / nskip; memory->create(vector, size_vector, "slice:vector"); if (val.which == ArgInfo::COMPUTE) { if (val.argindex == 0) { extvector = val.val.c->extvector; if (val.val.c->extvector == -1) { extlist = new int[size_vector]; int j = 0; for (int i = nstart; i < nstop; i += nskip) extlist[j++] = val.val.c->extlist[i - 1]; } } else extvector = val.val.c->extarray; } else if (val.which == ArgInfo::FIX) { if (val.argindex == 0) { extvector = val.val.f->extvector; if (val.val.f->extvector == -1) { extlist = new int[size_vector]; int j = 0; for (int i = nstart; i < nstop; i += nskip) extlist[j++] = val.val.f->extlist[i - 1]; } } else extvector = val.val.f->extarray; } else if (val.which == ArgInfo::VARIABLE) { extvector = 0; } } else { array_flag = 1; size_array_rows = (nstop - nstart) / nskip; size_array_cols = values.size(); memory->create(array, size_array_rows, size_array_cols, "slice:array"); extarray = 0; for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { if (val.argindex == 0) { if (val.val.c->extvector == 1) extarray = 1; if (val.val.c->extvector == -1) { for (int j = 0; j < val.val.c->size_vector; j++) if (val.val.c->extlist[j]) extarray = 1; } } else { if (val.val.c->extarray) extarray = 1; } } else if (val.which == ArgInfo::FIX) { if (val.argindex == 0) { if (val.val.f->extvector == 1) extarray = 1; if (val.val.f->extvector == -1) { for (int j = 0; j < val.val.f->size_vector; j++) if (val.val.f->extlist[j]) extarray = 1; } } else { if (val.val.f->extarray) extarray = 1; } } else if (val.which == ArgInfo::VARIABLE) { // variable is always intensive, does not change extarray } } } } /* ---------------------------------------------------------------------- */ ComputeSlice::~ComputeSlice() { delete[] extlist; memory->destroy(vector); memory->destroy(array); } /* ---------------------------------------------------------------------- */ void ComputeSlice::init() { // set indices and check validity of all computes,fixes for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR, "Compute ID {} for compute slice does not exist", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR, "Fix ID {} for compute slice does not exist", val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR, "Variable name {} for compute slice does not exist", val.id); } } } /* ---------------------------------------------------------------------- */ void ComputeSlice::compute_vector() { invoked_vector = update->ntimestep; extract_one(0, vector, 1); } /* ---------------------------------------------------------------------- */ void ComputeSlice::compute_array() { invoked_array = update->ntimestep; for (std::size_t m = 0; m < values.size(); m++) extract_one(0, &array[m][0], values.size()); } /* ---------------------------------------------------------------------- calculate sliced value for one input M and return it in vec vec may be array so that returned values are with stride ------------------------------------------------------------------------- */ void ComputeSlice::extract_one(int m, double *vec, int stride) { auto &val = values[m]; // invoke the appropriate compute if needed if (val.which == ArgInfo::COMPUTE) { if (val.argindex == 0) { if (!(val.val.c->invoked_flag & Compute::INVOKED_VECTOR)) { val.val.c->compute_vector(); val.val.c->invoked_flag |= Compute::INVOKED_VECTOR; } double *cvector = val.val.c->vector; int j = 0; for (int i = nstart; i < nstop; i += nskip) { vec[j] = cvector[i - 1]; j += stride; } } else { if (!(val.val.c->invoked_flag & Compute::INVOKED_ARRAY)) { val.val.c->compute_array(); val.val.c->invoked_flag |= Compute::INVOKED_ARRAY; } double **carray = val.val.c->array; int icol = val.argindex - 1; int j = 0; for (int i = nstart; i < nstop; i += nskip) { vec[j] = carray[i - 1][icol]; j += stride; } } // access fix fields, check if fix frequency is a match } else if (val.which == ArgInfo::FIX) { if (update->ntimestep % val.val.f->global_freq) error->all(FLERR, "Fix {} used in compute slice not computed at compatible time", val.id); if (val.argindex == 0) { int j = 0; for (int i = nstart; i < nstop; i += nskip) { vec[j] = val.val.f->compute_vector(i - 1); j += stride; } } else { int icol = val.argindex - 1; int j = 0; for (int i = nstart; i < nstop; i += nskip) { vec[j] = val.val.f->compute_array(i - 1, icol); j += stride; } } // invoke vector-style variable } else if (val.which == ArgInfo::VARIABLE) { double *varvec; int nvec = input->variable->compute_vector(val.val.v, &varvec); if (nvec < nstop) error->all(FLERR, "Compute slice variable {} is not long enough", val.id); int j = 0; for (int i = nstart; i < nstop; i += nskip) { vec[j] = varvec[i - 1]; j += stride; } } }