/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://lammps.sandia.gov/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Kristof Bal (University of Antwerp, Belgium) ------------------------------------------------------------------------- */ #include "fix_tfmc.h" #include #include #include #include "atom.h" #include "force.h" #include "group.h" #include "random_mars.h" #include "comm.h" #include "domain.h" #include "memory.h" #include "modify.h" #include "error.h" using namespace LAMMPS_NS; using namespace FixConst; /* ---------------------------------------------------------------------- */ FixTFMC::FixTFMC(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), xd(nullptr), rotflag(0), random_num(nullptr) { if (narg < 6) error->all(FLERR,"Illegal fix tfmc command"); // although we are not doing MD, we would like to use tfMC as an MD "drop in" time_integrate = 1; d_max = utils::numeric(FLERR,arg[3],false,lmp); T_set = utils::numeric(FLERR,arg[4],false,lmp); seed = utils::inumeric(FLERR,arg[5],false,lmp); if (d_max <= 0) error->all(FLERR,"Fix tfmc displacement length must be > 0"); if (T_set <= 0) error->all(FLERR,"Fix tfmc temperature must be > 0"); if (seed <= 0) error->all(FLERR,"Illegal fix tfmc random seed"); // additional keywords comflag = 0; rotflag = 0; xflag = yflag = zflag = 0; int iarg = 6; while (iarg < narg) { if (strcmp(arg[iarg],"com") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix tfmc command"); comflag = 1; xflag = utils::inumeric(FLERR,arg[iarg+1],false,lmp); yflag = utils::inumeric(FLERR,arg[iarg+2],false,lmp); zflag = utils::inumeric(FLERR,arg[iarg+3],false,lmp); iarg += 4; } else if (strcmp(arg[iarg],"rot") == 0) { if (iarg+1 > narg) error->all(FLERR,"Illegal fix tfmc command"); rotflag = 1; iarg += 1; } else error->all(FLERR,"Illegal fix tfmc command"); } // error checks if (comflag) if (xflag < 0 || xflag > 1 || yflag < 0 || yflag > 1 || zflag < 0 || zflag > 1) error->all(FLERR,"Illegal fix tfmc command"); if (xflag + yflag + zflag == 0) comflag = 0; if (rotflag) { xd = nullptr; nmax = -1; } random_num = new RanMars(lmp,seed + comm->me); } /* ---------------------------------------------------------------------- */ FixTFMC::~FixTFMC() { delete random_num; if (rotflag) { memory->destroy(xd); xd = nullptr; nmax = -1; } } /* ---------------------------------------------------------------------- */ int FixTFMC::setmask() { int mask = 0; mask |= INITIAL_INTEGRATE; return mask; } /* ---------------------------------------------------------------------- */ void FixTFMC::init() { // shake cannot be handled because it requires velocities // (and real MD in general) int has_shake = 0; for (int i = 0; i < modify->nfix; i++) if (strcmp(modify->fix[i]->style,"shake") == 0) ++has_shake; if (has_shake > 0) error->all(FLERR,"Fix tfmc is not compatible with fix shake"); // obtain lowest mass in the system // We do this here, in init(), rather than in initial_integrate(). // This might seem somewhat odd: after all, another atom could be added with a // mass smaller than mass_min (in the case of a per-particle mass), so mass_min // should change during the run. However, this would imply that the overall // meaning of the input Delta is not very well-defined, because its meaning // can change during the run. So we'll assume all particle types (in terms of // possible masses) are defined before the run starts double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; double mass_min_local = DBL_MAX; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (mass_min_local > rmass[i]) mass_min_local = rmass[i]; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (mass_min_local > mass[type[i]]) mass_min_local = mass[type[i]]; } } MPI_Allreduce(&mass_min_local,&mass_min,1,MPI_DOUBLE,MPI_MIN,world); } /* ---------------------------------------------------------------------- */ void FixTFMC::initial_integrate(int /*vflag*/) { double boltz = force->boltz; double **x = atom->x; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; double massone; double masstotal; double xcm_d[3], xcm_dall[3]; double d_i, xi; double gamma, gamma_exp, gamma_expi; double P_acc, P_ran; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // in case we wish to track (and zero) the com movement if (comflag) { xcm_d[0] = 0.0; xcm_d[1] = 0.0; xcm_d[2] = 0.0; } // displacement vector, needed to calculate (and zero) rotation if (rotflag && nmax < nlocal) { nmax = nlocal + 1; memory->destroy(xd); memory->create(xd,nmax,3,"tfmc:xd"); } // generate displacements for each atom for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { if (rmass) massone = rmass[i]; else massone = mass[type[i]]; d_i = d_max * pow(mass_min/massone, 0.25); for (int j = 0; j < 3; j++) { P_acc = 0.0; P_ran = 1.0; gamma = f[i][j] * d_i / (2.0*boltz*T_set); gamma_exp = exp(gamma); gamma_expi = 1.0/gamma_exp; // generate displacements according to the tfMC distribution while (P_acc < P_ran) { xi = 2.0*random_num->uniform() - 1.0; P_ran = random_num->uniform(); if (xi < 0) { P_acc = exp(2.0*xi*gamma) * gamma_exp - gamma_expi; P_acc = P_acc / (gamma_exp - gamma_expi); } else if (xi > 0) { P_acc = gamma_exp - exp(2.0*xi*gamma) * gamma_expi; P_acc = P_acc / (gamma_exp - gamma_expi); } else { P_acc = 1.0; } } // displace x[i][j] += xi * d_i; if (comflag) xcm_d[j] += xi * d_i * massone; if (rotflag) xd[i][j] = xi * d_i; } } } // if post factum zeroing of linear or rotational motion if (comflag || rotflag) masstotal = group->mass(igroup); // zero com motion if (comflag == 1 && group->count(igroup) != 0) { MPI_Allreduce(xcm_d,xcm_dall,3,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) { xcm_dall[0] /= masstotal; xcm_dall[1] /= masstotal; xcm_dall[2] /= masstotal; } else xcm_dall[0] = xcm_dall[1] = xcm_dall[2] = 0.0; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { if (xflag) x[i][0] -= xcm_dall[0]; if (yflag) x[i][1] -= xcm_dall[1]; if (zflag) x[i][2] -= xcm_dall[2]; } } } // zero rotation if (rotflag == 1 && group->count(igroup) != 0) { double dx, dy, dz; double unwrap[3]; double cm[3], angmom[3], inertia[3][3], omega[3]; tagint *image = atom->image; group->xcm(igroup,masstotal,cm); // to zero rotations, we can employ the same principles the // velocity command uses to zero the angular momentum. of course, // there is no (conserved) momentum in MC, but we can substitute // "velocities" by a displacement vector and proceed from there. // this of course requires "forking" group->angmom(), which is // what we do here. double p[3]; p[0] = p[1] = p[2] = 0.0; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; p[0] += massone * (dy*xd[i][2] - dz*xd[i][1]); p[1] += massone * (dz*xd[i][0] - dx*xd[i][2]); p[2] += massone * (dx*xd[i][1] - dy*xd[i][0]); } } MPI_Allreduce(p,angmom,3,MPI_DOUBLE,MPI_SUM,world); // end "angmom" calculation group->inertia(igroup,cm,inertia); group->omega(angmom,inertia,omega); // now, get rid of the rotation for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; x[i][0] -= omega[1]*dz - omega[2]*dy; x[i][1] -= omega[2]*dx - omega[0]*dz; x[i][2] -= omega[0]*dy - omega[1]*dx; } } } }