/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://lammps.sandia.gov/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Axel Kohlmeyer and Richard Berger (Temple U) ------------------------------------------------------------------------- */ #include "pair_python.h" #include "atom.h" #include "error.h" #include "force.h" #include "lmppython.h" #include "memory.h" #include "neigh_list.h" #include "python_compat.h" #include "python_utils.h" #include "update.h" #include #include // IWYU pragma: export using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairPython::PairPython(LAMMPS *lmp) : Pair(lmp) { respa_enable = 0; single_enable = 1; writedata = 0; restartinfo = 0; one_coeff = 1; reinitflag = 0; cut_global = 0.0; centroidstressflag = CENTROID_SAME; py_potential = nullptr; skip_types = nullptr; python->init(); // add current directory to PYTHONPATH PyUtils::GIL lock; PyObject *py_path = PySys_GetObject((char *)"path"); PyList_Append(py_path, PY_STRING_FROM_STRING(".")); // if LAMMPS_POTENTIALS environment variable is set, // add it to PYTHONPATH as well const char *potentials_path = getenv("LAMMPS_POTENTIALS"); if (potentials_path != nullptr) { PyList_Append(py_path, PY_STRING_FROM_STRING(potentials_path)); } } /* ---------------------------------------------------------------------- */ PairPython::~PairPython() { PyUtils::GIL lock; Py_CLEAR(py_potential); delete[] skip_types; if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); } } /* ---------------------------------------------------------------------- */ void PairPython::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double rsq,factor_lj; int *ilist,*jlist,*numneigh,**firstneigh; evdwl = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // prepare access to compute_force and compute_energy functions PyUtils::GIL lock; PyObject *py_pair_instance = (PyObject *) py_potential; PyObject *py_compute_force = PyObject_GetAttrString(py_pair_instance,"compute_force"); if (!py_compute_force) { PyUtils::Print_Errors(); error->all(FLERR,"Could not find 'compute_force' method'"); } if (!PyCallable_Check(py_compute_force)) { PyUtils::Print_Errors(); error->all(FLERR,"Python 'compute_force' is not callable"); } PyObject *py_compute_energy = PyObject_GetAttrString(py_pair_instance,"compute_energy"); if (!py_compute_energy) { PyUtils::Print_Errors(); error->all(FLERR,"Could not find 'compute_energy' method'"); } if (!PyCallable_Check(py_compute_energy)) { PyUtils::Print_Errors(); error->all(FLERR,"Python 'compute_energy' is not callable"); } PyObject *py_compute_args = PyTuple_New(3); if (!py_compute_args) { PyUtils::Print_Errors(); error->all(FLERR,"Could not create tuple for 'compute' function arguments"); } PyObject *py_rsq, *py_itype, *py_jtype, *py_value; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; py_itype = PY_INT_FROM_LONG(itype); PyTuple_SetItem(py_compute_args,1,py_itype); for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; // with hybrid/overlay we might get called for skipped types if (skip_types[itype] || skip_types[jtype]) continue; py_jtype = PY_INT_FROM_LONG(jtype); PyTuple_SetItem(py_compute_args,2,py_jtype); if (rsq < cutsq[itype][jtype]) { py_rsq = PyFloat_FromDouble(rsq); PyTuple_SetItem(py_compute_args,0,py_rsq); py_value = PyObject_CallObject(py_compute_force,py_compute_args); if (!py_value) { PyUtils::Print_Errors(); error->all(FLERR,"Calling 'compute_force' function failed"); } fpair = factor_lj*PyFloat_AsDouble(py_value); Py_CLEAR(py_value); f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { py_value = PyObject_CallObject(py_compute_energy,py_compute_args); if (!py_value) { PyUtils::Print_Errors(); error->all(FLERR,"Calling 'compute_energy' function failed"); } evdwl = factor_lj*PyFloat_AsDouble(py_value); Py_CLEAR(py_value); } else evdwl = 0.0; if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } Py_CLEAR(py_compute_args); if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairPython::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairPython::settings(int narg, char **arg) { if (narg != 1) error->all(FLERR,"Illegal pair_style command"); cut_global = utils::numeric(FLERR,arg[0],false,lmp); } /* ---------------------------------------------------------------------- set coeffs for all type pairs ------------------------------------------------------------------------- */ void PairPython::coeff(int narg, char **arg) { const int ntypes = atom->ntypes; if (narg != 3+ntypes) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); // make sure I,J args are * * if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0) error->all(FLERR,"Incorrect args for pair coefficients"); // check if python potential file exists and source it std::string full_cls_name = arg[2]; size_t lastpos = full_cls_name.rfind("."); if (lastpos == std::string::npos) { error->all(FLERR,"Python pair style requires fully qualified class name"); } std::string module_name = full_cls_name.substr(0, lastpos); std::string cls_name = full_cls_name.substr(lastpos+1); PyUtils::GIL lock; PyObject * pModule = PyImport_ImportModule(module_name.c_str()); if (!pModule) { PyUtils::Print_Errors(); error->all(FLERR,"Loading python pair style module failure"); } // create LAMMPS atom type to potential file type mapping in python class // by calling 'lammps_pair_style.map_coeff(name,type)' PyObject *py_pair_type = PyObject_GetAttrString(pModule, cls_name.c_str()); if (!py_pair_type) { PyUtils::Print_Errors(); error->all(FLERR,"Could not find pair style class in module'"); } PyObject * py_pair_instance = PyObject_CallObject(py_pair_type, nullptr); if (!py_pair_instance) { PyUtils::Print_Errors(); error->all(FLERR,"Could not instantiate instance of pair style class'"); } py_potential = (void *) py_pair_instance; PyObject *py_value = PyObject_CallMethod(py_pair_instance, "check_units", "s", update->unit_style); if (!py_value) { PyUtils::Print_Errors(); error->all(FLERR,"Calling 'check_units' function failed"); } Py_CLEAR(py_value); delete[] skip_types; skip_types = new int[ntypes+1]; skip_types[0] = 1; for (int i = 1; i <= ntypes ; i++) { if (strcmp(arg[2+i],"NULL") == 0) { skip_types[i] = 1; continue; } else skip_types[i] = 0; const int type = i; const char * name = arg[2+i]; py_value = PyObject_CallMethod(py_pair_instance, "map_coeff", "si", name, type); if (!py_value) { PyUtils::Print_Errors(); error->all(FLERR,"Calling 'map_coeff' function failed"); } Py_CLEAR(py_value); for (int j = i; j <= ntypes ; j++) { setflag[i][j] = 1; cutsq[i][j] = cut_global*cut_global; } } } /* ---------------------------------------------------------------------- */ double PairPython::init_one(int, int) { return cut_global; } /* ---------------------------------------------------------------------- */ double PairPython::single(int /* i */, int /* j */, int itype, int jtype, double rsq, double /* factor_coul */, double factor_lj, double &fforce) { // with hybrid/overlay we might get called for skipped types if (skip_types[itype] || skip_types[jtype]) { fforce = 0.0; return 0.0; } // prepare access to compute_force and compute_energy functions PyUtils::GIL lock; PyObject *py_pair_instance = (PyObject *) py_potential; PyObject *py_compute_force = (PyObject *) get_member_function("compute_force"); PyObject *py_compute_energy = (PyObject *) get_member_function("compute_energy"); PyObject *py_compute_args = Py_BuildValue("(dii)", rsq, itype, jtype); if (!py_compute_args) { PyUtils::Print_Errors(); error->all(FLERR,"Could not create tuple for 'compute' function arguments"); } PyObject * py_value = PyObject_CallObject(py_compute_force, py_compute_args); if (!py_value) { PyUtils::Print_Errors(); error->all(FLERR,"Calling 'compute_force' function failed"); } fforce = factor_lj*PyFloat_AsDouble(py_value); Py_CLEAR(py_value); py_value = PyObject_CallObject(py_compute_energy, py_compute_args); if (!py_value) { PyUtils::Print_Errors(); error->all(FLERR,"Calling 'compute_energy' function failed"); } double evdwl = factor_lj*PyFloat_AsDouble(py_value); Py_CLEAR(py_value); Py_CLEAR(py_compute_args); return evdwl; } /* ---------------------------------------------------------------------- */ void * PairPython::get_member_function(const char * name) { PyUtils::GIL lock; PyObject *py_pair_instance = (PyObject *) py_potential; PyObject * py_mfunc = PyObject_GetAttrString(py_pair_instance, name); if (!py_mfunc) { PyUtils::Print_Errors(); error->all(FLERR, fmt::format("Could not find '{}' method'", name)); } if (!PyCallable_Check(py_mfunc)) { PyUtils::Print_Errors(); error->all(FLERR, fmt::format("Python '{}' is not callable", name)); } return py_mfunc; }