/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #define MY_PREFIX atom_vec_cuda #include "cuda_shared.h" #include "cuda_common.h" #include "cuda_wrapper_cu.h" #include "crm_cuda_utils.cu" #include "atom_vec_cuda_kernel.cu" int AtomVecCuda_CountDataItems(unsigned int data_mask) { int n=0; if(data_mask & X_MASK) n+=3; if(data_mask & V_MASK) n+=3; if(data_mask & F_MASK) n+=3; if(data_mask & TAG_MASK) n++; if(data_mask & TYPE_MASK) n++; if(data_mask & MASK_MASK) n++; if(data_mask & IMAGE_MASK) n++; if(data_mask & Q_MASK) n++; if(data_mask & MOLECULE_MASK) n++; if(data_mask & RMASS_MASK) n++; if(data_mask & RADIUS_MASK) n++; if(data_mask & DENSITY_MASK) n++; if(data_mask & OMEGA_MASK) n+=3; if(data_mask & TORQUE_MASK) n++; //if(data_mask & NSPECIAL_MASK) n+=3; return n; } void Cuda_AtomVecCuda_UpdateBuffer(cuda_shared_data* sdata,int size) { if(sdata->buffersizebuffer,sdata->buffersize);) CudaWrapper_FreeCudaData(sdata->buffer,sdata->buffersize); sdata->buffer = CudaWrapper_AllocCudaData(size); sdata->buffersize=size; sdata->buffer_new++; MYDBG(printf("New buffer at %p with %i kB\n",sdata->buffer,sdata->buffersize);) } cudaMemcpyToSymbol(MY_CONST(buffer), & sdata->buffer, sizeof(int*) ); } template void Cuda_AtomVecCuda_UpdateNmax(cuda_shared_data* sdata) { cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); cudaMemcpyToSymbol(MY_CONST(nmax) , & sdata->atom.nmax , sizeof(int) ); cudaMemcpyToSymbol(MY_CONST(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*) ); cudaMemcpyToSymbol(MY_CONST(v) , & sdata->atom.v .dev_data, sizeof(V_FLOAT*) ); cudaMemcpyToSymbol(MY_CONST(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*) ); cudaMemcpyToSymbol(MY_CONST(tag) , & sdata->atom.tag .dev_data, sizeof(int*) ); cudaMemcpyToSymbol(MY_CONST(type) , & sdata->atom.type .dev_data, sizeof(int*) ); cudaMemcpyToSymbol(MY_CONST(mask) , & sdata->atom.mask .dev_data, sizeof(int*) ); cudaMemcpyToSymbol(MY_CONST(image) , & sdata->atom.image.dev_data, sizeof(int*) ); if(data_mask & Q_MASK) cudaMemcpyToSymbol(MY_CONST(q) , & sdata->atom.q .dev_data, sizeof(F_FLOAT*) ); if(data_mask & MOLECULE_MASK) cudaMemcpyToSymbol(MY_CONST(molecule) , & sdata->atom.molecule.dev_data, sizeof(int*) ); if(data_mask & RADIUS_MASK) cudaMemcpyToSymbol(MY_CONST(radius) , & sdata->atom.radius.dev_data, sizeof(int*) ); if(data_mask & DENSITY_MASK) cudaMemcpyToSymbol(MY_CONST(density) , & sdata->atom.density.dev_data, sizeof(int*) ); if(data_mask & RMASS_MASK) cudaMemcpyToSymbol(MY_CONST(rmass) , & sdata->atom.rmass.dev_data, sizeof(int*) ); if(data_mask & OMEGA_MASK) cudaMemcpyToSymbol(MY_CONST(omega) , & sdata->atom.omega.dev_data, sizeof(int*) ); //if(data_mask & NSPECIAL_MASK) cudaMemcpyToSymbol(MY_CONST(nspecial) , & sdata->atom.nspecial.dev_data, sizeof(int*) ); cudaMemcpyToSymbol(MY_CONST(flag) , & sdata->flag, sizeof(int*) ); } template void Cuda_AtomVecCuda_Init(cuda_shared_data* sdata) { MYDBG( printf("# CUDA: Cuda_AtomVecCuda_Init ... start\n"); ) Cuda_AtomVecCuda_UpdateNmax(sdata); MYDBG( printf("# CUDA: Cuda_AtomVecCuda_Init ... post Nmax\n"); ) cudaMemcpyToSymbol(MY_CONST(prd) , sdata->domain.prd, 3*sizeof(X_FLOAT)); cudaMemcpyToSymbol(MY_CONST(sublo) , & sdata->domain.sublo, 3*sizeof(X_FLOAT) ); cudaMemcpyToSymbol(MY_CONST(subhi) , & sdata->domain.subhi, 3*sizeof(X_FLOAT) ); cudaMemcpyToSymbol(MY_CONST(flag) , & sdata->flag, sizeof(int*) ); MYDBG( printf("# CUDA: Cuda_AtomVecCuda_Init ... end\n"); ) } template int Cuda_AtomVecCuda_PackComm(cuda_shared_data* sdata,int n,int iswap,void* buf_send,int* pbc,int pbc_flag) { timespec time1,time2; if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int n_data_items=AtomVecCuda_CountDataItems(data_mask); int size=(n*n_data_items)*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz; dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz; dz = pbc[2]*sdata->domain.prd[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { cudaMemset( sdata->flag,0,sizeof(int)); clock_gettime(CLOCK_REALTIME,&time1); void* buf=sdata->overlap_comm?sdata->comm.buf_send_dev[iswap]:sdata->buffer; Cuda_AtomVecCuda_PackComm_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n ,sdata->comm.maxlistlength,iswap,dx,dy,dz,buf); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_kernel_pack+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed"); if(not sdata->overlap_comm) cudaMemcpy(buf_send, sdata->buffer, n*n_data_items*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); //cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_forward_download+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; int aflag; cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); if(aflag!=0) printf("aflag PackComm: %i\n",aflag); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed"); } return n_data_items*n; } template int Cuda_AtomVecCuda_PackComm_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag) { MYDBG(printf(" # CUDA: AtomVecCuda_PackComm_Self\n");) timespec time1,time2; if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int n_data_items=AtomVecCuda_CountDataItems(data_mask); int size=(n*n_data_items)*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); static int count=-1; count++; X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz; dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz; dz = pbc[2]*sdata->domain.prd[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { clock_gettime(CLOCK_REALTIME,&time1); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self:Pre Kernel execution failed"); Cuda_AtomVecCuda_PackComm_Self_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_kernel_self+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self: Kernel execution failed"); } return n_data_items*n; } template void Cuda_AtomVecCuda_UnpackComm(cuda_shared_data* sdata,int n,int first,void* buf_recv,int iswap) { timespec time1,time2; if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int n_data_items=AtomVecCuda_CountDataItems(data_mask); int size=(n*n_data_items)*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { clock_gettime(CLOCK_REALTIME,&time1); if(not sdata->overlap_comm||iswap<0) cudaMemcpy(sdata->buffer,(void*)buf_recv, n_data_items*n*sizeof(X_FLOAT), cudaMemcpyHostToDevice); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_upload+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; void* buf=(sdata->overlap_comm&&iswap>=0)?sdata->comm.buf_recv_dev[iswap]:sdata->buffer; Cuda_AtomVecCuda_UnpackComm_Kernel<<>>(n,first,buf); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_forward_kernel_unpack+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackComm: Kernel execution failed"); } } template int Cuda_AtomVecCuda_PackExchangeList(cuda_shared_data* sdata,int n,int dim,void* buf_send) { MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... start dim %i \n",dim); ) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); Cuda_AtomVecCuda_Init(sdata); int size=n*sizeof(double); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); cudaMemset((int*) (sdata->buffer),0,sizeof(int)); int3 layout=getgrid(sdata->atom.nlocal,sizeof(int),256,true); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); timespec time1,time2; clock_gettime(CLOCK_REALTIME,&time1); Cuda_AtomVecCuda_PackExchangeList_Kernel<<>>(n-1,dim); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: Kernel execution failed"); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_exchange_kernel_pack+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; cudaMemcpy(buf_send, sdata->buffer, sizeof(double), cudaMemcpyDeviceToHost); int return_value = ((int*) buf_send)[0]; cudaMemcpy(buf_send, sdata->buffer, (1+return_value)*sizeof(double), cudaMemcpyDeviceToHost); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_exchange_download+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... done\n"); ) return return_value; } template int Cuda_AtomVecCuda_PackExchange(cuda_shared_data* sdata,int nsend,void* buf_send,void* copylist) { MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... start \n"); ) Cuda_AtomVecCuda_UpdateNmax(sdata); cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int n_data_items=AtomVecCuda_CountDataItems(data_mask)+1; int size=(nsend*n_data_items+1)*sizeof(double); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); cudaMemset((int*) (sdata->buffer),0,sizeof(int)); int3 layout=getgrid(nsend,0); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); timespec time1,time2; clock_gettime(CLOCK_REALTIME,&time1); Cuda_AtomVecCuda_PackExchange_Kernel<<>>(nsend,(int*) copylist); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: Kernel execution failed"); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_exchange_kernel_pack+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_exchange_download+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... done\n"); ) return nsend*n_data_items+1; } template int Cuda_AtomVecCuda_UnpackExchange(cuda_shared_data* sdata,int nsend,void* buf_send,void* copylist) { Cuda_AtomVecCuda_UpdateNmax(sdata); cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int n_data_items=AtomVecCuda_CountDataItems(data_mask)+1; int size=(nsend*n_data_items+1)*sizeof(double); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); cudaMemcpyToSymbol(MY_CONST(flag) , & sdata->flag, sizeof(int*) ); cudaMemset((int*) (sdata->flag),0,sizeof(int)); if(nsend) { int3 layout=getgrid(nsend,0); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { timespec time1,time2; clock_gettime(CLOCK_REALTIME,&time1); cudaMemcpy(sdata->buffer,buf_send , size, cudaMemcpyHostToDevice); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_exchange_upload+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; Cuda_AtomVecCuda_UnpackExchange_Kernel<<>>(sdata->exchange_dim,nsend,(int*) copylist); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_exchange_kernel_unpack+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackExchange: Kernel execution failed"); } } int naccept; cudaMemcpy((void*)&naccept, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); return naccept; } template int Cuda_AtomVecCuda_PackBorder(cuda_shared_data* sdata,int nsend,int iswap,void* buf_send,int* pbc,int pbc_flag) { timespec atime1,atime2; clock_gettime(CLOCK_REALTIME,&atime1); if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); clock_gettime(CLOCK_REALTIME,&atime2); sdata->cuda_timings.test1+= atime2.tv_sec-atime1.tv_sec+1.0*(atime2.tv_nsec-atime1.tv_nsec)/1000000000; int n_data_items=AtomVecCuda_CountDataItems(data_mask); int size=nsend*n_data_items*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]; dy = pbc[1]; dz = pbc[2]; }} int3 layout=getgrid(nsend); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { timespec time1,time2; clock_gettime(CLOCK_REALTIME,&time1); Cuda_AtomVecCuda_PackBorder_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,nsend,sdata->comm.maxlistlength,iswap,dx,dy,dz); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_border_kernel_pack+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost); CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder: Kernel execution failed"); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_border_download+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; } return nsend*n_data_items; } template int Cuda_AtomVecCuda_PackBorder_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag) { if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int n_data_items=AtomVecCuda_CountDataItems(data_mask); int size=n*n_data_items*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]; dy = pbc[1]; dz = pbc[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { timespec time1,time2; clock_gettime(CLOCK_REALTIME,&time1); Cuda_AtomVecCuda_PackBorder_Self_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_border_kernel_self+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder_Self: Kernel execution failed"); } return n*n_data_items; } template int Cuda_AtomVecCuda_UnpackBorder(cuda_shared_data* sdata,int n,int first,void* buf_recv) { timespec atime1,atime2; clock_gettime(CLOCK_REALTIME,&atime1); if(sdata->atom.update_nmax) Cuda_AtomVecCuda_UpdateNmax(sdata); //if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); clock_gettime(CLOCK_REALTIME,&atime2); sdata->cuda_timings.test1+= atime2.tv_sec-atime1.tv_sec+1.0*(atime2.tv_nsec-atime1.tv_nsec)/1000000000; int n_data_items=AtomVecCuda_CountDataItems(data_mask); int size=n*n_data_items*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_AtomVecCuda_UpdateBuffer(sdata,size); int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { timespec time1,time2; clock_gettime(CLOCK_REALTIME,&time1); cudaMemset((int*) (sdata->flag),0,sizeof(int)); cudaMemcpy(sdata->buffer,(void*)buf_recv, size, cudaMemcpyHostToDevice); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_border_upload+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; Cuda_AtomVecCuda_UnpackBorder_Kernel<<>>(n,first); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_border_kernel_unpack+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; cudaMemcpy(&sdata->comm.grow_flag,sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackBorder: Kernel execution failed"); } return sdata->comm.grow_flag; } #include "atom_vec_angle_cuda.cu" #include "atom_vec_atomic_cuda.cu" #include "atom_vec_charge_cuda.cu" #include "atom_vec_full_cuda.cu" //#include "atom_vec_granular_cuda.cu"