// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_snav_atom.h" #include #include "sna.h" #include "atom.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "neigh_request.h" #include "force.h" #include "comm.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; ComputeSNAVAtom::ComputeSNAVAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), cutsq(nullptr), list(nullptr), snav(nullptr), radelem(nullptr), wjelem(nullptr) { double rfac0, rmin0; int twojmax, switchflag, bzeroflag, bnormflag, wselfallflag; radelem = nullptr; wjelem = nullptr; int ntypes = atom->ntypes; int nargmin = 6+2*ntypes; if (narg < nargmin) error->all(FLERR,"Illegal compute snav/atom command"); // default values rmin0 = 0.0; switchflag = 1; bzeroflag = 1; bnormflag = 0; quadraticflag = 0; chemflag = 0; bnormflag = 0; wselfallflag = 0; switchinnerflag = 1; nelements = 1; // process required arguments memory->create(radelem,ntypes+1,"sna/atom:radelem"); // offset by 1 to match up with types memory->create(wjelem,ntypes+1,"sna/atom:wjelem"); rcutfac = atof(arg[3]); rfac0 = atof(arg[4]); twojmax = atoi(arg[5]); for (int i = 0; i < ntypes; i++) radelem[i+1] = atof(arg[6+i]); for (int i = 0; i < ntypes; i++) wjelem[i+1] = atof(arg[6+ntypes+i]); // construct cutsq double cut; memory->create(cutsq,ntypes+1,ntypes+1,"sna/atom:cutsq"); for (int i = 1; i <= ntypes; i++) { cut = 2.0*radelem[i]*rcutfac; cutsq[i][i] = cut*cut; for (int j = i+1; j <= ntypes; j++) { cut = (radelem[i]+radelem[j])*rcutfac; cutsq[i][j] = cutsq[j][i] = cut*cut; } } // process optional args int iarg = nargmin; while (iarg < narg) { if (strcmp(arg[iarg],"rmin0") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute snav/atom command"); rmin0 = atof(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"switchflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute snav/atom command"); switchflag = atoi(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"bzeroflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute snav/atom command"); bzeroflag = atoi(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"quadraticflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute snav/atom command"); quadraticflag = atoi(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"chem") == 0) { if (iarg+2+ntypes > narg) error->all(FLERR,"Illegal compute sna/atom command"); chemflag = 1; memory->create(map,ntypes+1,"compute_sna_atom:map"); nelements = utils::inumeric(FLERR,arg[iarg+1],false,lmp); for (int i = 0; i < ntypes; i++) { int jelem = utils::inumeric(FLERR,arg[iarg+2+i],false,lmp); if (jelem < 0 || jelem >= nelements) error->all(FLERR,"Illegal compute snav/atom command"); map[i+1] = jelem; } iarg += 2+ntypes; } else if (strcmp(arg[iarg],"bnormflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute snav/atom command"); bnormflag = atoi(arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"wselfallflag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal compute snav/atom command"); wselfallflag = atoi(arg[iarg+1]); iarg += 2; } else error->all(FLERR,"Illegal compute snav/atom command"); } snaptr = new SNA(lmp, rfac0, twojmax, rmin0, switchflag, bzeroflag, chemflag, bnormflag, wselfallflag, nelements, switchinnerflag); ncoeff = snaptr->ncoeff; nperdim = ncoeff; if (quadraticflag) nperdim += (ncoeff*(ncoeff+1))/2; size_peratom_cols = 6*nperdim*atom->ntypes; comm_reverse = size_peratom_cols; peratom_flag = 1; nmax = 0; snav = nullptr; } /* ---------------------------------------------------------------------- */ ComputeSNAVAtom::~ComputeSNAVAtom() { memory->destroy(snav); memory->destroy(radelem); memory->destroy(wjelem); memory->destroy(cutsq); delete snaptr; } /* ---------------------------------------------------------------------- */ void ComputeSNAVAtom::init() { if (force->pair == nullptr) error->all(FLERR,"Compute snav/atom requires a pair style be defined"); // TODO: Not sure what to do with this error check since cutoff radius is not // a single number //if (sqrt(cutsq) > force->pair->cutforce) // error->all(FLERR,"Compute snav/atom cutoff is longer than pairwise cutoff"); // need an occasional full neighbor list int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->pair = 0; neighbor->requests[irequest]->compute = 1; neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->occasional = 1; int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"snav/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning(FLERR,"More than one compute snav/atom"); snaptr->init(); } /* ---------------------------------------------------------------------- */ void ComputeSNAVAtom::init_list(int /*id*/, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeSNAVAtom::compute_peratom() { int ntotal = atom->nlocal + atom->nghost; invoked_peratom = update->ntimestep; // grow snav array if necessary if (atom->nmax > nmax) { memory->destroy(snav); nmax = atom->nmax; memory->create(snav,nmax,size_peratom_cols, "snav/atom:snav"); array_atom = snav; } // clear local array for (int i = 0; i < ntotal; i++) for (int icoeff = 0; icoeff < size_peratom_cols; icoeff++) { snav[i][icoeff] = 0.0; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); const int inum = list->inum; const int* const ilist = list->ilist; const int* const numneigh = list->numneigh; int** const firstneigh = list->firstneigh; int * const type = atom->type; // compute sna derivatives for each atom in group // use full neighbor list to count atoms less than cutoff double** const x = atom->x; const int* const mask = atom->mask; for (int ii = 0; ii < inum; ii++) { const int i = ilist[ii]; if (mask[i] & groupbit) { const double xtmp = x[i][0]; const double ytmp = x[i][1]; const double ztmp = x[i][2]; const int itype = type[i]; int ielem = 0; if (chemflag) ielem = map[itype]; const double radi = radelem[itype]; const int* const jlist = firstneigh[i]; const int jnum = numneigh[i]; const int typeoffset = 6*nperdim*(atom->type[i]-1); // insure rij, inside, and typej are of size jnum snaptr->grow_rij(jnum); // rij[][3] = displacements between atom I and those neighbors // inside = indices of neighbors of I within cutoff // typej = types of neighbors of I within cutoff // note Rij sign convention => dU/dRij = dU/dRj = -dU/dRi int ninside = 0; for (int jj = 0; jj < jnum; jj++) { int j = jlist[jj]; j &= NEIGHMASK; const double delx = x[j][0] - xtmp; const double dely = x[j][1] - ytmp; const double delz = x[j][2] - ztmp; const double rsq = delx*delx + dely*dely + delz*delz; int jtype = type[j]; int jelem = 0; if (chemflag) jelem = map[jtype]; if (rsq < cutsq[itype][jtype]&&rsq>1e-20) { snaptr->rij[ninside][0] = delx; snaptr->rij[ninside][1] = dely; snaptr->rij[ninside][2] = delz; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jtype]; snaptr->rcutij[ninside] = (radi+radelem[jtype])*rcutfac; snaptr->element[ninside] = jelem; // element index for multi-element snap ninside++; } } snaptr->compute_ui(ninside, ielem); snaptr->compute_zi(); if (quadraticflag) { snaptr->compute_bi(ielem); } for (int jj = 0; jj < ninside; jj++) { const int j = snaptr->inside[jj]; snaptr->compute_duidrj(snaptr->rij[jj], snaptr->wj[jj], snaptr->rcutij[jj], jj, snaptr->element[jj], snaptr->rinnerij[jj], snaptr->drinnerij[jj]); snaptr->compute_dbidrj(); // Accumulate -dBi/dRi*Ri, -dBi/dRj*Rj double *snavi = snav[i]+typeoffset; double *snavj = snav[j]+typeoffset; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { snavi[icoeff] += snaptr->dblist[icoeff][0]*xtmp; snavi[icoeff+nperdim] += snaptr->dblist[icoeff][1]*ytmp; snavi[icoeff+2*nperdim] += snaptr->dblist[icoeff][2]*ztmp; snavi[icoeff+3*nperdim] += snaptr->dblist[icoeff][1]*ztmp; snavi[icoeff+4*nperdim] += snaptr->dblist[icoeff][0]*ztmp; snavi[icoeff+5*nperdim] += snaptr->dblist[icoeff][0]*ytmp; snavj[icoeff] -= snaptr->dblist[icoeff][0]*x[j][0]; snavj[icoeff+nperdim] -= snaptr->dblist[icoeff][1]*x[j][1]; snavj[icoeff+2*nperdim] -= snaptr->dblist[icoeff][2]*x[j][2]; snavj[icoeff+3*nperdim] -= snaptr->dblist[icoeff][1]*x[j][2]; snavj[icoeff+4*nperdim] -= snaptr->dblist[icoeff][0]*x[j][2]; snavj[icoeff+5*nperdim] -= snaptr->dblist[icoeff][0]*x[j][1]; } if (quadraticflag) { const int quadraticoffset = ncoeff; snavi += quadraticoffset; snavj += quadraticoffset; int ncount = 0; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { double bi = snaptr->blist[icoeff]; double bix = snaptr->dblist[icoeff][0]; double biy = snaptr->dblist[icoeff][1]; double biz = snaptr->dblist[icoeff][2]; // diagonal element of quadratic matrix double dbxtmp = bi*bix; double dbytmp = bi*biy; double dbztmp = bi*biz; snavi[ncount] += dbxtmp*xtmp; snavi[ncount+nperdim] += dbytmp*ytmp; snavi[ncount+2*nperdim] += dbztmp*ztmp; snavi[ncount+3*nperdim] += dbytmp*ztmp; snavi[ncount+4*nperdim] += dbxtmp*ztmp; snavi[ncount+5*nperdim] += dbxtmp*ytmp; snavj[ncount] -= dbxtmp*x[j][0]; snavj[ncount+nperdim] -= dbytmp*x[j][1]; snavj[ncount+2*nperdim] -= dbztmp*x[j][2]; snavj[ncount+3*nperdim] -= dbytmp*x[j][2]; snavj[ncount+4*nperdim] -= dbxtmp*x[j][2]; snavj[ncount+5*nperdim] -= dbxtmp*x[j][1]; ncount++; // upper-triangular elements of quadratic matrix for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++) { double dbxtmp = bi*snaptr->dblist[jcoeff][0] + bix*snaptr->blist[jcoeff]; double dbytmp = bi*snaptr->dblist[jcoeff][1] + biy*snaptr->blist[jcoeff]; double dbztmp = bi*snaptr->dblist[jcoeff][2] + biz*snaptr->blist[jcoeff]; snavi[ncount] += dbxtmp*xtmp; snavi[ncount+nperdim] += dbytmp*ytmp; snavi[ncount+2*nperdim] += dbztmp*ztmp; snavi[ncount+3*nperdim] += dbytmp*ztmp; snavi[ncount+4*nperdim] += dbxtmp*ztmp; snavi[ncount+5*nperdim] += dbxtmp*ytmp; snavj[ncount] -= dbxtmp*x[j][0]; snavj[ncount+nperdim] -= dbytmp*x[j][1]; snavj[ncount+2*nperdim] -= dbztmp*x[j][2]; snavj[ncount+3*nperdim] -= dbytmp*x[j][2]; snavj[ncount+4*nperdim] -= dbxtmp*x[j][2]; snavj[ncount+5*nperdim] -= dbxtmp*x[j][1]; ncount++; } } } } } } // communicate snav contributions between neighbor procs comm->reverse_comm(this); } /* ---------------------------------------------------------------------- */ int ComputeSNAVAtom::pack_reverse_comm(int n, int first, double *buf) { int i,m,last,icoeff; m = 0; last = first + n; for (i = first; i < last; i++) for (icoeff = 0; icoeff < size_peratom_cols; icoeff++) buf[m++] = snav[i][icoeff]; return m; } /* ---------------------------------------------------------------------- */ void ComputeSNAVAtom::unpack_reverse_comm(int n, int *list, double *buf) { int i,j,m,icoeff; m = 0; for (i = 0; i < n; i++) { j = list[i]; for (icoeff = 0; icoeff < size_peratom_cols; icoeff++) snav[j][icoeff] += buf[m++]; } } /* ---------------------------------------------------------------------- memory usage ------------------------------------------------------------------------- */ double ComputeSNAVAtom::memory_usage() { double bytes = (double)nmax*size_peratom_cols * sizeof(double); // snav bytes += snaptr->memory_usage(); // SNA object return bytes; }