/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Brown (SNL) ------------------------------------------------------------------------- */ #include "lmptype.h" #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_resquared_gpu.h" #include "math_extra.h" #include "atom.h" #include "atom_vec.h" #include "atom_vec_ellipsoid.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "integrate.h" #include "memory.h" #include "error.h" #include "neigh_request.h" #include "universe.h" #include "domain.h" #include "update.h" #include "string.h" #include "gpu_extra.h" // External functions from cuda library for atom decomposition int re_gpu_init(const int ntypes, double **shape, double **well, double **cutsq, double **sigma, double **epsilon, int **form, double **host_lj1, double **host_lj2, double **host_lj3, double **host_lj4, double **offset, double *special_lj, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen); void re_gpu_clear(); int ** re_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, int *tag, int **nspecial, int **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success, double **host_quat); int * re_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success, double **host_quat); double re_gpu_bytes(); using namespace LAMMPS_NS; enum{SPHERE_SPHERE,SPHERE_ELLIPSE,ELLIPSE_SPHERE,ELLIPSE_ELLIPSE}; /* ---------------------------------------------------------------------- */ PairRESquaredGPU::PairRESquaredGPU(LAMMPS *lmp) : PairRESquared(lmp), gpu_mode(GPU_FORCE) { avec = (AtomVecEllipsoid *) atom->style_match("ellipsoid"); if (!avec) error->all(FLERR,"Pair resquared/gpu requires atom style ellipsoid"); quat_nmax = 0; quat = NULL; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairRESquaredGPU::~PairRESquaredGPU() { re_gpu_clear(); cpu_time = 0.0; memory->destroy(quat); } /* ---------------------------------------------------------------------- */ void PairRESquaredGPU::compute(int eflag, int vflag) { if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (nall > quat_nmax) { quat_nmax = static_cast(1.1 * nall); memory->grow(quat, quat_nmax, 4, "pair:quat"); } AtomVecEllipsoid::Bonus *bonus = avec->bonus; int *ellipsoid = atom->ellipsoid; for (int i=0; i -1) { quat[i][0] = bonus[qi].quat[0]; quat[i][1] = bonus[qi].quat[1]; quat[i][2] = bonus[qi].quat[2]; quat[i][3] = bonus[qi].quat[3]; } } if (gpu_mode != GPU_FORCE) { inum = atom->nlocal; firstneigh = re_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, domain->sublo, domain->subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success, quat); } else { inum = list->inum; numneigh = list->numneigh; firstneigh = list->firstneigh; ilist = re_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, list->ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, quat); } if (!success) error->one(FLERR,"Out of memory on GPGPU"); if (host_start < inum) { cpu_time = MPI_Wtime(); cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh); cpu_time = MPI_Wtime() - cpu_time; } } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairRESquaredGPU::init_style() { if (force->newton_pair) error->all(FLERR,"Cannot use newton pair with resquared/gpu pair style"); if (!atom->ellipsoid_flag) error->all(FLERR,"Pair resquared/gpu requires atom style ellipsoid"); // per-type shape precalculations // require that atom shapes are identical within each type // if shape = 0 for point particle, set shape = 1 as required by Gay-Berne for (int i = 1; i <= atom->ntypes; i++) { if (!atom->shape_consistency(i,shape1[i][0],shape1[i][1],shape1[i][2])) error->all(FLERR,"Pair resquared/gpu requires atoms with same type have same shape"); if (setwell[i]) { shape2[i][0] = shape1[i][0]*shape1[i][0]; shape2[i][1] = shape1[i][1]*shape1[i][1]; shape2[i][2] = shape1[i][2]*shape1[i][2]; lshape[i] = shape1[i][0]*shape1[i][1]*shape1[i][2]; } } // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i,j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; int maxspecial=0; if (atom->molecular) maxspecial=atom->maxspecial; int success = re_gpu_init(atom->ntypes+1, shape1, well, cutsq, sigma, epsilon, form, lj1, lj2, lj3, lj4, offset, force->special_lj, atom->nlocal, atom->nlocal+atom->nghost, 300, maxspecial, cell_size, gpu_mode, screen); GPU_EXTRA::check_flag(success,error,world); if (gpu_mode == GPU_FORCE) { int irequest = neighbor->request(this); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } quat_nmax = static_cast(1.1 * (atom->nlocal + atom->nghost)); memory->grow(quat, quat_nmax, 4, "pair:quat"); } /* ---------------------------------------------------------------------- */ double PairRESquaredGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + memory->usage(quat,quat_nmax)+re_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairRESquaredGPU::cpu_compute(int start, int inum, int eflag, int vflag, int *ilist, int *numneigh, int **firstneigh) { int i,j,ii,jj,jnum,itype,jtype; double evdwl,one_eng,rsq,r2inv,r6inv,forcelj,factor_lj; double fforce[3],ttor[3],rtor[3],r12[3]; int *jlist; RE2Vars wi,wj; double **x = atom->x; double **f = atom->f; double **tor = atom->torque; int *type = atom->type; double *special_lj = force->special_lj; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; itype = type[i]; // not a LJ sphere if (lshape[itype] != 0.0) precompute_i(i,wi); jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; // r12 = center to center vector r12[0] = x[j][0]-x[i][0]; r12[1] = x[j][1]-x[i][1]; r12[2] = x[j][2]-x[i][2]; rsq = MathExtra::dot3(r12,r12); jtype = type[j]; // compute if less than cutoff if (rsq < cutsq[itype][jtype]) { switch (form[itype][jtype]) { case SPHERE_SPHERE: r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); forcelj *= -r2inv; if (eflag) one_eng = r6inv*(r6inv*lj3[itype][jtype]-lj4[itype][jtype]) - offset[itype][jtype]; fforce[0] = r12[0]*forcelj; fforce[1] = r12[1]*forcelj; fforce[2] = r12[2]*forcelj; break; case SPHERE_ELLIPSE: precompute_i(j,wj); one_eng = resquared_lj(j,i,wj,r12,rsq,fforce,rtor,false); break; case ELLIPSE_SPHERE: one_eng = resquared_lj(i,j,wi,r12,rsq,fforce,ttor,true); tor[i][0] += ttor[0]*factor_lj; tor[i][1] += ttor[1]*factor_lj; tor[i][2] += ttor[2]*factor_lj; break; default: precompute_i(j,wj); one_eng = resquared_analytic(i,j,wi,wj,r12,rsq,fforce,ttor,rtor); tor[i][0] += ttor[0]*factor_lj; tor[i][1] += ttor[1]*factor_lj; tor[i][2] += ttor[2]*factor_lj; break; } fforce[0] *= factor_lj; fforce[1] *= factor_lj; fforce[2] *= factor_lj; f[i][0] += fforce[0]; f[i][1] += fforce[1]; f[i][2] += fforce[2]; if (eflag) evdwl = factor_lj*one_eng; if (evflag) ev_tally_xyz_full(i,evdwl,0.0,fforce[0],fforce[1], fforce[2],-r12[0],-r12[1],-r12[2]); } } } }