// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_global_atom.h" #include "arg_info.h" #include "atom.h" #include "error.h" #include "fix.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeGlobalAtom::ComputeGlobalAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), indices(nullptr), varatom(nullptr), vecglobal(nullptr) { if (narg < 5) utils::missing_cmd_args(FLERR,"compute global/atom", error); peratom_flag = 1; // process index arg int iarg = 3; ArgInfo argi(arg[iarg]); reference.which = argi.get_type(); reference.argindex = argi.get_index1(); reference.id = argi.get_name(); if ((reference.which == ArgInfo::UNKNOWN) || (reference.which == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR,"Illegal compute global/atom index property: {}", arg[iarg]); iarg++; // expand args if any have wildcard character "*" int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values until one isn't recognized values.clear(); for (iarg = 0; iarg < nargnew; iarg++) { ArgInfo argi2(arg[iarg]); value_t val; val.which = argi2.get_type(); val.argindex = argi2.get_index1(); val.id = argi2.get_name(); val.val.c = nullptr; if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi2.get_dim() > 1)) error->all(FLERR,"Illegal compute global/atom global property: {}", arg[iarg]); values.push_back(val); } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete [] earg[i]; memory->sfree(earg); } // setup and error check for both, index arg and values if (reference.which == ArgInfo::COMPUTE) { reference.val.c = modify->get_compute_by_id(reference.id); if (!reference.val.c) error->all(FLERR,"Compute ID {} for compute global/atom index", reference.id); if (!reference.val.c->peratom_flag) error->all(FLERR,"Compute global/atom compute {} does not calculate a per-atom " "vector or array", reference.id); if ((reference.argindex == 0) && (reference.val.c->size_peratom_cols != 0)) error->all(FLERR,"Compute global/atom compute {} does not calculate a per-atom " "vector", reference.id); if (reference.argindex && (reference.val.c->size_peratom_cols == 0)) error->all(FLERR,"Compute global/atom compute does not calculate a per-atom " "array", reference.id); if (reference.argindex && (reference.argindex > reference.val.c->size_peratom_cols)) error->all(FLERR, "Compute global/atom compute array {} is accessed out-of-range", reference.id); } else if (reference.which == ArgInfo::FIX) { reference.val.f =modify->get_fix_by_id(reference.id); if (!reference.val.f) error->all(FLERR,"Fix ID {} for compute global/atom does not exist", reference.id); if (!reference.val.f->peratom_flag) error->all(FLERR,"Compute global/atom fix {} does not calculate a per-atom vector " "or array", reference.id); if (reference.argindex == 0 && (reference.val.f->size_peratom_cols != 0)) error->all(FLERR,"Compute global/atom fix {} does not calculate a per-atom vector", reference.id); if (reference.argindex && (reference.val.f->size_peratom_cols == 0)) error->all(FLERR,"Compute global/atom fix {} does not calculate a per-atom array", reference.id); if (reference.argindex && (reference.argindex > reference.val.f->size_peratom_cols)) error->all(FLERR, "Compute global/atom fix {} array is accessed out-of-range", reference.id); } else if (reference.which == ArgInfo::VARIABLE) { reference.val.v = input->variable->find(reference.id.c_str()); if (reference.val.v < 0) error->all(FLERR,"Variable name {} for compute global/atom index does not exist", reference.id); if (input->variable->atomstyle(reference.val.v) == 0) error->all(FLERR,"Compute global/atom index variable {} is not atom-style variable", reference.id); } for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR,"Compute ID {} for compute global/atom does not exist", val.id); if (val.argindex == 0) { if (!val.val.c->vector_flag) error->all(FLERR,"Compute ID {} for global/atom compute does not calculate " "a global vector", val.id); } else { if (!val.val.c->array_flag) error->all(FLERR,"Compute ID {} for global/atom compute does not calculate " "a global array", val.id); if (val.argindex > val.val.c->size_array_cols) error->all(FLERR,"Compute global/atom compute {} array is accessed out-of-range", val.id); } } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR,"Fix ID {} for compute global/atom does not exist", val.id); if (val.argindex == 0) { if (!val.val.f->vector_flag) error->all(FLERR,"Fix ID {} for compute global/atom compute does not calculate " "a global vector", val.id); } else { if (!val.val.f->array_flag) error->all(FLERR,"Fix ID {} for compute global/atom compute does not calculate " "a global array", val.id); if (val.argindex > val.val.f->size_array_cols) error->all(FLERR,"Compute global/atom fix {} array is accessed out-of-range", val.id); } } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR,"Variable name {} for compute global/atom does not exist", val.id); if (input->variable->vectorstyle(val.val.v) == 0) error->all(FLERR,"Compute global/atom variable {} is not vector-style variable", val.id); } } // this compute produces either a peratom vector or array if (values.size() == 1) size_peratom_cols = 0; else size_peratom_cols = values.size(); nmax = maxvector = 0; vector_atom = nullptr; array_atom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeGlobalAtom::~ComputeGlobalAtom() { memory->destroy(indices); memory->destroy(varatom); memory->destroy(vecglobal); memory->destroy(vector_atom); memory->destroy(array_atom); } /* ---------------------------------------------------------------------- */ void ComputeGlobalAtom::init() { // store references of all computes, fixes, or variables if (reference.which == ArgInfo::COMPUTE) { reference.val.c = modify->get_compute_by_id(reference.id); if (!reference.val.c) error->all(FLERR,"Compute ID {} for compute global/atom index does not exist", reference.id); } else if (reference.which == ArgInfo::FIX) { reference.val.f = modify->get_fix_by_id(reference.id); if (reference.val.f) error->all(FLERR,"Fix ID {} for compute global/atom index does not exist", reference.id); } else if (reference.which == ArgInfo::VARIABLE) { reference.val.v = input->variable->find(reference.id.c_str()); if (reference.val.v < 0) error->all(FLERR,"Variable name {} for compute global/atom index does not exist", reference.id); } for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR,"Compute ID {} for compute global/atom does not exist", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR,"Fix ID {} for compute global/atom does not exist", val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR,"Variable name {} for compute global/atom does not exist", val.id); } } } /* ---------------------------------------------------------------------- */ void ComputeGlobalAtom::compute_peratom() { invoked_peratom = update->ntimestep; // grow indices and output vector or array if necessary if (atom->nmax > nmax) { nmax = atom->nmax; memory->destroy(indices); memory->create(indices,nmax,"global/atom:indices"); if (reference.which == ArgInfo::VARIABLE) { memory->destroy(varatom); memory->create(varatom,nmax,"global/atom:varatom"); } if (values.size() == 1) { memory->destroy(vector_atom); memory->create(vector_atom,nmax,"global/atom:vector_atom"); } else { memory->destroy(array_atom); memory->create(array_atom,nmax,values.size(),"global/atom:array_atom"); } } // setup current peratom indices // integer indices are rounded down from double values // indices are decremented from 1 to N -> 0 to N-1 int *mask = atom->mask; const int nlocal = atom->nlocal; if (reference.which == ArgInfo::COMPUTE) { if (!(reference.val.c->invoked_flag & Compute::INVOKED_PERATOM)) { reference.val.c->compute_peratom(); reference.val.c->invoked_flag |= Compute::INVOKED_PERATOM; } if (reference.argindex == 0) { double *compute_vector = reference.val.c->vector_atom; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) indices[i] = static_cast (compute_vector[i]) - 1; } else { double **compute_array = reference.val.c->array_atom; int im1 = reference.argindex - 1; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) indices[i] = static_cast (compute_array[i][im1]) - 1; } } else if (reference.which == ArgInfo::FIX) { if (update->ntimestep % reference.val.f->peratom_freq) error->all(FLERR,"Fix {} used in compute global/atom not computed at compatible time", reference.id); if (reference.argindex == 0) { double *fix_vector = reference.val.f->vector_atom; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) indices[i] = static_cast (fix_vector[i]) - 1; } else { double **fix_array = reference.val.f->array_atom; int im1 = reference.argindex - 1; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) indices[i] = static_cast (fix_array[i][im1]) - 1; } } else if (reference.which == ArgInfo::VARIABLE) { input->variable->compute_atom(reference.val.v, igroup, varatom, 1, 0); for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) indices[i] = static_cast (varatom[i]) - 1; } // loop over values to fill output vector or array int m = 0; for (auto &val : values) { // output = vector if (val.argindex == 0) { int vmax; double *source; if (val.which == ArgInfo::COMPUTE) { if (!(val.val.c->invoked_flag & Compute::INVOKED_VECTOR)) { val.val.c->compute_vector(); val.val.c->invoked_flag |= Compute::INVOKED_VECTOR; } source = val.val.c->vector; vmax = val.val.c->size_vector; } else if (val.which == ArgInfo::FIX) { if (update->ntimestep % val.val.f->peratom_freq) error->all(FLERR,"Fix {} used in compute global/atom not computed at compatible time", val.id); vmax = reference.val.f->size_vector; if (vmax > maxvector) { maxvector = vmax; memory->destroy(vecglobal); memory->create(vecglobal,maxvector,"global/atom:vecglobal"); } for (int i = 0; i < vmax; i++) vecglobal[i] = val.val.f->compute_vector(i); source = vecglobal; } else if (val.which == ArgInfo::VARIABLE) { vmax = input->variable->compute_vector(val.val.v, &source); } if (values.size() == 1) { for (int i = 0; i < nlocal; i++) { vector_atom[i] = 0.0; if (mask[i] & groupbit) { int j = indices[i]; if (j >= 0 && j < vmax) vector_atom[i] = source[j]; } } } else { for (int i = 0; i < nlocal; i++) { array_atom[i][m] = 0.0; if (mask[i] & groupbit) { int j = indices[i]; if (j >= 0 && j < vmax) array_atom[i][m] = source[j]; } } } // output = array } else { int vmax; double *source; int col = val.argindex - 1; if (val.which == ArgInfo::COMPUTE) { if (!(val.val.c->invoked_flag & Compute::INVOKED_ARRAY)) { val.val.c->compute_array(); val.val.c->invoked_flag |= Compute::INVOKED_ARRAY; } double **compute_array = val.val.c->array; vmax = val.val.c->size_array_rows; if (vmax > maxvector) { maxvector = vmax; memory->destroy(vecglobal); memory->create(vecglobal,maxvector,"global/atom:vecglobal"); } for (int i = 0; i < vmax; i++) vecglobal[i] = compute_array[i][col]; source = vecglobal; } else if (val.which == ArgInfo::FIX) { if (update->ntimestep % val.val.f->peratom_freq) error->all(FLERR,"Fix {} used in compute global/atom not computed at compatible time", val.id); vmax = val.val.f->size_array_rows; if (vmax > maxvector) { maxvector = vmax; memory->destroy(vecglobal); memory->create(vecglobal,maxvector,"global/atom:vecglobal"); } for (int i = 0; i < vmax; i++) vecglobal[i] = val.val.f->compute_array(i,col); source = vecglobal; } else if (val.which == ArgInfo::VARIABLE) { vmax = input->variable->compute_vector(val.val.v, &source); } if (values.size() == 1) { for (int i = 0; i < nlocal; i++) { vector_atom[i] = 0.0; if (mask[i] & groupbit) { int j = indices[i]; if (j >= 0 && j < vmax) vector_atom[i] = source[j]; } } } else { for (int i = 0; i < nlocal; i++) { array_atom[i][m] = 0.0; if (mask[i] & groupbit) { int j = indices[i]; if (j >= 0 && j < vmax) array_atom[i][m] = source[j]; } } } } ++m; } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeGlobalAtom::memory_usage() { double bytes = (double)nmax*values.size() * sizeof(double); bytes += (double)nmax * sizeof(int); // indices if (varatom) bytes += (double)nmax * sizeof(double); // varatom bytes += (double)maxvector * sizeof(double); // vecglobal return bytes; }