/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Paolo Raiteri (Curtin University) ------------------------------------------------------------------------- */ #include "pair_lennard_mdf.h" #include #include #include #include "atom.h" #include "comm.h" #include "force.h" #include "neigh_list.h" #include "memory.h" #include "error.h" #include "utils.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairLennardMDF::PairLennardMDF(LAMMPS *lmp) : Pair(lmp) {} /* ---------------------------------------------------------------------- */ PairLennardMDF::~PairLennardMDF() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(cut_inner); memory->destroy(cut_inner_sq); memory->destroy(aparm); memory->destroy(bparm); memory->destroy(lj1); memory->destroy(lj2); memory->destroy(lj3); memory->destroy(lj4); } } /* ---------------------------------------------------------------------- */ void PairLennardMDF::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double rsq,r2inv,r6inv,forcelj,factor_lj; int *ilist,*jlist,*numneigh,**firstneigh; evdwl = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; double rr, d, dd, tt, dt, dp, philj; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); if (rsq > cut_inner_sq[itype][jtype]) { philj = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]); rr = sqrt(rsq); dp = (cut[itype][jtype] - cut_inner[itype][jtype]); d = (rr-cut_inner[itype][jtype]) / dp; dd = 1.-d; // taperig function - mdf style tt = (1. + 3.*d + 6.*d*d)*dd*dd*dd; // minus the derivative of the tapering function dt = 30.* d*d * dd*dd * rr / dp; forcelj = forcelj*tt + philj*dt; } else { tt = 1; } fpair = factor_lj*forcelj*r2inv; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { evdwl = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]); if (rsq > cut_inner_sq[itype][jtype]) evdwl *= tt; evdwl *= factor_lj; if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairLennardMDF::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); memory->create(cut,n+1,n+1,"pair:cut"); memory->create(cut_inner,n+1,n+1,"pair:cut_inner"); memory->create(cut_inner_sq,n+1,n+1,"pair:cut_inner_sq"); memory->create(aparm,n+1,n+1,"pair:aparm"); memory->create(bparm,n+1,n+1,"pair:bparm"); memory->create(lj1,n+1,n+1,"pair:lj1"); memory->create(lj2,n+1,n+1,"pair:lj2"); memory->create(lj3,n+1,n+1,"pair:lj3"); memory->create(lj4,n+1,n+1,"pair:lj4"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairLennardMDF::settings(int narg, char **arg) { if (narg != 2) error->all(FLERR,"Illegal pair_style command"); cut_inner_global = force->numeric(FLERR,arg[0]); cut_global = force->numeric(FLERR,arg[1]); if (cut_inner_global <= 0.0 || cut_inner_global > cut_global) error->all(FLERR,"Illegal pair_style command"); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) if (setflag[i][j]) { cut_inner[i][j] = cut_inner_global; cut[i][j] = cut_global; } } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairLennardMDF::coeff(int narg, char **arg) { if (narg != 4 && narg != 6) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi); force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi); double aparm_one = force->numeric(FLERR,arg[2]); double bparm_one = force->numeric(FLERR,arg[3]); double cut_inner_one = cut_inner_global; double cut_one = cut_global; if (narg == 6) { cut_inner_one = force->numeric(FLERR,arg[4]); cut_one = force->numeric(FLERR,arg[5]); } if (cut_inner_one <= 0.0 || cut_inner_one > cut_one) error->all(FLERR,"Illegal pair_coeff command"); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { aparm[i][j] = aparm_one; bparm[i][j] = bparm_one; cut_inner[i][j] = cut_inner_one; cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairLennardMDF::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); cut_inner_sq[i][j] = cut_inner[i][j]*cut_inner[i][j]; lj1[i][j] = 12.0 * aparm[i][j]; lj2[i][j] = 6.0 * bparm[i][j]; lj3[i][j] = aparm[i][j]; lj4[i][j] = bparm[i][j]; cut[j][i] = cut[i][j]; cut_inner[j][i] = cut_inner[i][j]; cut_inner_sq[j][i] = cut_inner_sq[i][j]; lj1[j][i] = lj1[i][j]; lj2[j][i] = lj2[i][j]; lj3[j][i] = lj3[i][j]; lj4[j][i] = lj4[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairLennardMDF::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&aparm[i][j],sizeof(double),1,fp); fwrite(&bparm[i][j],sizeof(double),1,fp); fwrite(&cut_inner[i][j],sizeof(double),1,fp); fwrite(&cut[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairLennardMDF::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,NULL,error); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR,&aparm[i][j],sizeof(double),1,fp,NULL,error); utils::sfread(FLERR,&bparm[i][j],sizeof(double),1,fp,NULL,error); utils::sfread(FLERR,&cut_inner[i][j],sizeof(double),1,fp,NULL,error); utils::sfread(FLERR,&cut[i][j],sizeof(double),1,fp,NULL,error); } MPI_Bcast(&aparm[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&bparm[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_inner[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairLennardMDF::write_restart_settings(FILE *fp) { fwrite(&mix_flag,sizeof(int),1,fp); fwrite(&cut_global,sizeof(double),1,fp); fwrite(&cut_inner_global,sizeof(double),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairLennardMDF::read_restart_settings(FILE *fp) { int me = comm->me; if (me == 0) { utils::sfread(FLERR,&mix_flag,sizeof(int),1,fp,NULL,error); utils::sfread(FLERR,&cut_global,sizeof(double),1,fp,NULL,error); utils::sfread(FLERR,&cut_inner_global,sizeof(double),1,fp,NULL,error); } MPI_Bcast(&mix_flag,1,MPI_INT,0,world); MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_inner_global,1,MPI_DOUBLE,0,world); } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void PairLennardMDF::write_data(FILE *fp) { for (int i = 1; i <= atom->ntypes; i++) fprintf(fp,"%d %g %g\n",i,aparm[i][i],bparm[i][i]); } /* ---------------------------------------------------------------------- proc 0 writes all pairs to data file ------------------------------------------------------------------------- */ void PairLennardMDF::write_data_all(FILE *fp) { for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) fprintf(fp,"%d %d %g %g %g %g\n", i,j,aparm[i][j],bparm[i][j], cut_inner[i][j],cut[i][j]); } /* ---------------------------------------------------------------------- */ double PairLennardMDF::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq, double /*factor_coul*/, double factor_lj, double &fforce) { double r2inv,r6inv,forcelj,philj; double rr, dp, d, tt, dt, dd; r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; philj = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]); forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); if (rsq > cut_inner_sq[itype][jtype]) { rr = sqrt(rsq); dp = (cut[itype][jtype] - cut_inner[itype][jtype]); d = (rr - cut_inner[itype][jtype]) / dp; dd = 1-d; tt = (1. + 3.*d + 6.*d*d)* dd*dd*dd; dt = 30.* d*d * dd*dd * rr / dp; forcelj = forcelj*tt + philj*dt; philj *= tt; } fforce = factor_lj*forcelj*r2inv; return factor_lj*philj; } /* ---------------------------------------------------------------------- */ void *PairLennardMDF::extract(const char *str, int &dim) { dim = 2; if (strcmp(str,"a") == 0) return (void *) aparm; if (strcmp(str,"b") == 0) return (void *) bparm; return NULL; }