# This test compares Hardy and Cauchy-Born metrics of energy density and stress # for an Ar system subjected to shear deformation. # # NOTE possible problems with large shear and handling a non-ortho box echo both units metal atom_style atomic variable lattice_constant equal 4.08 variable c equal 6 # minimum size variable Ly equal $c*${lattice_constant} variable d equal 0.005 variable V0 equal ($c*${lattice_constant})^3 # create system lattice fcc ${lattice_constant} origin 0.25 0.25 0.25 # NOTE rect box + lagrangian is necessary to fool ATC's mesh region rectbox block 0 $c 0 $c 0 3 region box prism 0 $c 0 $c 0 3 0 0 0 boundary p p p create_box 1 box create_atoms 1 region box mass 1 196.97 group all region box pair_style lj/smooth/linear 5.456108274435118 pair_coeff * * 0.7242785984051078 2.598146797350056 neighbor 1.0 bin #neigh_modify delay 1000000 log cb_shear.log thermo 100 variable gamma equal 0.0 variable step equal 0 thermo_style custom step v_step pxx pyy pzz pxy pxz pyz v_gamma pe xy xz yz timestep 1.0 fix AtC all atc field Au_CauchyBorn.mat fix_modify AtC mesh create $c $c 1 rectbox p p p fix_modify AtC fields add mass_density internal_energy stress fix_modify AtC fields add displacement fix_modify AtC fields add cauchy_born_energy cauchy_born_stress fix_modify AtC gradients add displacement fix_modify AtC set reference_potential_energy 0. #fix_modify AtC fields add elastic_deformation_gradient fix_modify AtC output cb_shearFE 1 text binary tensor_components min_modify line quadratic variable dgamma equal $d/${Ly} print "depsilon_12: ${dgamma}" timestep 0.0 variable i loop 4 label loop_i print ">>> step $i" minimize 1.e-20 1.e-20 1000 1000 run 1 variable step equal ${step}+1 change_box all xy delta $d remap variable gamma equal $i*${dgamma} next i jump in.cb_shear loop_i