/* fortran/dgebd2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGEBD2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ), */ /* $ TAUQ( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGEBD2 reduces a real general m by n matrix A to upper or lower */ /* > bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */ /* > */ /* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows in the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns in the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the m by n general matrix to be reduced. */ /* > On exit, */ /* > if m >= n, the diagonal and the first superdiagonal are */ /* > overwritten with the upper bidiagonal matrix B; the */ /* > elements below the diagonal, with the array TAUQ, represent */ /* > the orthogonal matrix Q as a product of elementary */ /* > reflectors, and the elements above the first superdiagonal, */ /* > with the array TAUP, represent the orthogonal matrix P as */ /* > a product of elementary reflectors; */ /* > if m < n, the diagonal and the first subdiagonal are */ /* > overwritten with the lower bidiagonal matrix B; the */ /* > elements below the first subdiagonal, with the array TAUQ, */ /* > represent the orthogonal matrix Q as a product of */ /* > elementary reflectors, and the elements above the diagonal, */ /* > with the array TAUP, represent the orthogonal matrix P as */ /* > a product of elementary reflectors. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (min(M,N)) */ /* > The diagonal elements of the bidiagonal matrix B: */ /* > D(i) = A(i,i). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (min(M,N)-1) */ /* > The off-diagonal elements of the bidiagonal matrix B: */ /* > if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */ /* > if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */ /* > \endverbatim */ /* > */ /* > \param[out] TAUQ */ /* > \verbatim */ /* > TAUQ is DOUBLE PRECISION array, dimension (min(M,N)) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the orthogonal matrix Q. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[out] TAUP */ /* > \verbatim */ /* > TAUP is DOUBLE PRECISION array, dimension (min(M,N)) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the orthogonal matrix P. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (max(M,N)) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrices Q and P are represented as products of elementary */ /* > reflectors: */ /* > */ /* > If m >= n, */ /* > */ /* > Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */ /* > */ /* > Each H(i) and G(i) has the form: */ /* > */ /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */ /* > */ /* > where tauq and taup are real scalars, and v and u are real vectors; */ /* > v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */ /* > u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */ /* > tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* > */ /* > If m < n, */ /* > */ /* > Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */ /* > */ /* > Each H(i) and G(i) has the form: */ /* > */ /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */ /* > */ /* > where tauq and taup are real scalars, and v and u are real vectors; */ /* > v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */ /* > u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */ /* > tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* > */ /* > The contents of A on exit are illustrated by the following examples: */ /* > */ /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ /* > */ /* > ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */ /* > ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */ /* > ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */ /* > ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */ /* > ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */ /* > ( v1 v2 v3 v4 v5 ) */ /* > */ /* > where d and e denote diagonal and off-diagonal elements of B, vi */ /* > denotes an element of the vector defining H(i), and ui an element of */ /* > the vector defining G(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dgebd2_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal * taup, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__; extern /* Subroutine */ int dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, ftnlen), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tauq; --taup; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info < 0) { i__1 = -(*info); xerbla_((char *)"DGEBD2", &i__1, (ftnlen)6); return 0; } if (*m >= *n) { /* Reduce to upper bidiagonal form */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tauq[i__]); d__[i__] = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; /* Apply H(i) to A(i:m,i+1:n) from the left */ if (i__ < *n) { i__2 = *m - i__ + 1; i__3 = *n - i__; dlarf_((char *)"Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, & tauq[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1] , (ftnlen)4); } a[i__ + i__ * a_dim1] = d__[i__]; if (i__ < *n) { /* Generate elementary reflector G(i) to annihilate */ /* A(i,i+2:n) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min( i__3,*n) * a_dim1], lda, &taup[i__]); e[i__] = a[i__ + (i__ + 1) * a_dim1]; a[i__ + (i__ + 1) * a_dim1] = 1.; /* Apply G(i) to A(i+1:m,i+1:n) from the right */ i__2 = *m - i__; i__3 = *n - i__; dlarf_((char *)"Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1], (ftnlen)5); a[i__ + (i__ + 1) * a_dim1] = e[i__]; } else { taup[i__] = 0.; } /* L10: */ } } else { /* Reduce to lower bidiagonal form */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */ i__2 = *n - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) * a_dim1], lda, &taup[i__]); d__[i__] = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; /* Apply G(i) to A(i+1:m,i:n) from the right */ if (i__ < *m) { i__2 = *m - i__; i__3 = *n - i__ + 1; dlarf_((char *)"Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, & taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1], (ftnlen)5); } a[i__ + i__ * a_dim1] = d__[i__]; if (i__ < *m) { /* Generate elementary reflector H(i) to annihilate */ /* A(i+2:m,i) */ i__2 = *m - i__; /* Computing MIN */ i__3 = i__ + 2; dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tauq[i__]); e[i__] = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.; /* Apply H(i) to A(i+1:m,i+1:n) from the left */ i__2 = *m - i__; i__3 = *n - i__; dlarf_((char *)"Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], & c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1], (ftnlen)4); a[i__ + 1 + i__ * a_dim1] = e[i__]; } else { tauq[i__] = 0.; } /* L20: */ } } return 0; /* End of DGEBD2 */ } /* dgebd2_ */ #ifdef __cplusplus } #endif