/* fortran/dgelq2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorit hm. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGELQ2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGELQ2( M, N, A, LDA, TAU, WORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGELQ2 computes an LQ factorization of a real m-by-n matrix A: */ /* > */ /* > A = ( L 0 ) * Q */ /* > */ /* > where: */ /* > */ /* > Q is a n-by-n orthogonal matrix; */ /* > L is a lower-triangular m-by-m matrix; */ /* > 0 is a m-by-(n-m) zero matrix, if m < n. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the m by n matrix A. */ /* > On exit, the elements on and below the diagonal of the array */ /* > contain the m by min(m,n) lower trapezoidal matrix L (L is */ /* > lower triangular if m <= n); the elements above the diagonal, */ /* > with the array TAU, represent the orthogonal matrix Q as a */ /* > product of elementary reflectors (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (min(M,N)) */ /* > The scalar factors of the elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (M) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix Q is represented as a product of elementary reflectors */ /* > */ /* > Q = H(k) . . . H(2) H(1), where k = min(m,n). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**T */ /* > */ /* > where tau is a real scalar, and v is a real vector with */ /* > v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */ /* > and tau in TAU(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, k; doublereal aii; extern /* Subroutine */ int dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, ftnlen), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGELQ2", &i__1, (ftnlen)6); return 0; } k = min(*m,*n); i__1 = k; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */ i__2 = *n - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) * a_dim1] , lda, &tau[i__]); if (i__ < *m) { /* Apply H(i) to A(i+1:m,i:n) from the right */ aii = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; i__2 = *m - i__; i__3 = *n - i__ + 1; dlarf_((char *)"Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[ i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1], (ftnlen) 5); a[i__ + i__ * a_dim1] = aii; } /* L10: */ } return 0; /* End of DGELQ2 */ } /* dgelq2_ */ #ifdef __cplusplus } #endif