/* fortran/dgelqf.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* > \brief \b DGELQF */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGELQF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, LWORK, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGELQF computes an LQ factorization of a real M-by-N matrix A: */ /* > */ /* > A = ( L 0 ) * Q */ /* > */ /* > where: */ /* > */ /* > Q is a N-by-N orthogonal matrix; */ /* > L is a lower-triangular M-by-M matrix; */ /* > 0 is a M-by-(N-M) zero matrix, if M < N. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the M-by-N matrix A. */ /* > On exit, the elements on and below the diagonal of the array */ /* > contain the m-by-min(m,n) lower trapezoidal matrix L (L is */ /* > lower triangular if m <= n); the elements above the diagonal, */ /* > with the array TAU, represent the orthogonal matrix Q as a */ /* > product of elementary reflectors (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (min(M,N)) */ /* > The scalar factors of the elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= max(1,M). */ /* > For optimum performance LWORK >= M*NB, where NB is the */ /* > optimal blocksize. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix Q is represented as a product of elementary reflectors */ /* > */ /* > Q = H(k) . . . H(2) H(1), where k = min(m,n). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**T */ /* > */ /* > where tau is a real scalar, and v is a real vector with */ /* > v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */ /* > and tau in TAU(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dgelqf_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, k, ib, nb, nx, iws, nbmin, iinfo; extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), dlarft_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer ldwork, lwkopt; logical lquery; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, (char *)"DGELQF", (char *)" ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen) 1); lwkopt = *m * nb; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else if (*lwork < max(1,*m) && ! lquery) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGELQF", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ k = min(*m,*n); if (k == 0) { work[1] = 1.; return 0; } nbmin = 2; nx = 0; iws = *m; if (nb > 1 && nb < k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, (char *)"DGELQF", (char *)" ", m, n, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *m; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, (char *)"DGELQF", (char *)" ", m, n, &c_n1, & c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ i__1 = k - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = k - i__ + 1; ib = min(i__3,nb); /* Compute the LQ factorization of the current block */ /* A(i:i+ib-1,i:n) */ i__3 = *n - i__ + 1; dgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ 1], &iinfo); if (i__ + ib <= *m) { /* Form the triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ i__3 = *n - i__ + 1; dlarft_((char *)"Forward", (char *)"Rowwise", &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1], &ldwork, (ftnlen)7, (ftnlen)7); /* Apply H to A(i+ib:m,i:n) from the right */ i__3 = *m - i__ - ib + 1; i__4 = *n - i__ + 1; dlarfb_((char *)"Right", (char *)"No transpose", (char *)"Forward", (char *)"Rowwise", &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], & ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + 1], &ldwork, (ftnlen)5, (ftnlen)12, (ftnlen)7, ( ftnlen)7); } /* L10: */ } } else { i__ = 1; } /* Use unblocked code to factor the last or only block. */ if (i__ <= k) { i__2 = *m - i__ + 1; i__1 = *n - i__ + 1; dgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1] , &iinfo); } work[1] = (doublereal) iws; return 0; /* End of DGELQF */ } /* dgelqf_ */ #ifdef __cplusplus } #endif