/* fortran/dgeqr2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorit hm. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGEQR2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGEQR2( M, N, A, LDA, TAU, WORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGEQR2 computes a QR factorization of a real m-by-n matrix A: */ /* > */ /* > A = Q * ( R ), */ /* > ( 0 ) */ /* > */ /* > where: */ /* > */ /* > Q is a m-by-m orthogonal matrix; */ /* > R is an upper-triangular n-by-n matrix; */ /* > 0 is a (m-n)-by-n zero matrix, if m > n. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the m by n matrix A. */ /* > On exit, the elements on and above the diagonal of the array */ /* > contain the min(m,n) by n upper trapezoidal matrix R (R is */ /* > upper triangular if m >= n); the elements below the diagonal, */ /* > with the array TAU, represent the orthogonal matrix Q as a */ /* > product of elementary reflectors (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (min(M,N)) */ /* > The scalar factors of the elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix Q is represented as a product of elementary reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**T */ /* > */ /* > where tau is a real scalar, and v is a real vector with */ /* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */ /* > and tau in TAU(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dgeqr2_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, k; doublereal aii; extern /* Subroutine */ int dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, ftnlen), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGEQR2", &i__1, (ftnlen)6); return 0; } k = min(*m,*n); i__1 = k; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1] , &c__1, &tau[i__]); if (i__ < *n) { /* Apply H(i) to A(i:m,i+1:n) from the left */ aii = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; i__2 = *m - i__ + 1; i__3 = *n - i__; dlarf_((char *)"Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1], ( ftnlen)4); a[i__ + i__ * a_dim1] = aii; } /* L10: */ } return 0; /* End of DGEQR2 */ } /* dgeqr2_ */ #ifdef __cplusplus } #endif