/* fortran/dgetf2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b8 = -1.; /* > \brief \b DGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGETF2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* INTEGER IPIV( * ) */ /* DOUBLE PRECISION A( LDA, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGETF2 computes an LU factorization of a general m-by-n matrix A */ /* > using partial pivoting with row interchanges. */ /* > */ /* > The factorization has the form */ /* > A = P * L * U */ /* > where P is a permutation matrix, L is lower triangular with unit */ /* > diagonal elements (lower trapezoidal if m > n), and U is upper */ /* > triangular (upper trapezoidal if m < n). */ /* > */ /* > This is the right-looking Level 2 BLAS version of the algorithm. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the m by n matrix to be factored. */ /* > On exit, the factors L and U from the factorization */ /* > A = P*L*U; the unit diagonal elements of L are not stored. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (min(M,N)) */ /* > The pivot indices; for 1 <= i <= min(M,N), row i of the */ /* > matrix was interchanged with row IPIV(i). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -k, the k-th argument had an illegal value */ /* > > 0: if INFO = k, U(k,k) is exactly zero. The factorization */ /* > has been completed, but the factor U is exactly */ /* > singular, and division by zero will occur if it is used */ /* > to solve a system of equations. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGEcomputational */ /* ===================================================================== */ /* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer * lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ integer i__, j, jp; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sfmin; extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamch_(char *, ftnlen); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DGETF2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Compute machine safe minimum */ sfmin = dlamch_((char *)"S", (ftnlen)1); i__1 = min(*m,*n); for (j = 1; j <= i__1; ++j) { /* Find pivot and test for singularity. */ i__2 = *m - j + 1; jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1); ipiv[j] = jp; if (a[jp + j * a_dim1] != 0.) { /* Apply the interchange to columns 1:N. */ if (jp != j) { dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda); } /* Compute elements J+1:M of J-th column. */ if (j < *m) { if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) { i__2 = *m - j; d__1 = 1. / a[j + j * a_dim1]; dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); } else { i__2 = *m - j; for (i__ = 1; i__ <= i__2; ++i__) { a[j + i__ + j * a_dim1] /= a[j + j * a_dim1]; /* L20: */ } } } } else if (*info == 0) { *info = j; } if (j < min(*m,*n)) { /* Update trailing submatrix. */ i__2 = *m - j; i__3 = *n - j; dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + ( j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda); } /* L10: */ } return 0; /* End of DGETF2 */ } /* dgetf2_ */ #ifdef __cplusplus } #endif