/* fortran/dlabrd.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b4 = -1.; static doublereal c_b5 = 1.; static integer c__1 = 1; static doublereal c_b16 = 0.; /* > \brief \b DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLABRD + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */ /* LDY ) */ /* .. Scalar Arguments .. */ /* INTEGER LDA, LDX, LDY, M, N, NB */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ), */ /* $ TAUQ( * ), X( LDX, * ), Y( LDY, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLABRD reduces the first NB rows and columns of a real general */ /* > m by n matrix A to upper or lower bidiagonal form by an orthogonal */ /* > transformation Q**T * A * P, and returns the matrices X and Y which */ /* > are needed to apply the transformation to the unreduced part of A. */ /* > */ /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */ /* > bidiagonal form. */ /* > */ /* > This is an auxiliary routine called by DGEBRD */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows in the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns in the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > The number of leading rows and columns of A to be reduced. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the m by n general matrix to be reduced. */ /* > On exit, the first NB rows and columns of the matrix are */ /* > overwritten; the rest of the array is unchanged. */ /* > If m >= n, elements on and below the diagonal in the first NB */ /* > columns, with the array TAUQ, represent the orthogonal */ /* > matrix Q as a product of elementary reflectors; and */ /* > elements above the diagonal in the first NB rows, with the */ /* > array TAUP, represent the orthogonal matrix P as a product */ /* > of elementary reflectors. */ /* > If m < n, elements below the diagonal in the first NB */ /* > columns, with the array TAUQ, represent the orthogonal */ /* > matrix Q as a product of elementary reflectors, and */ /* > elements on and above the diagonal in the first NB rows, */ /* > with the array TAUP, represent the orthogonal matrix P as */ /* > a product of elementary reflectors. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (NB) */ /* > The diagonal elements of the first NB rows and columns of */ /* > the reduced matrix. D(i) = A(i,i). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (NB) */ /* > The off-diagonal elements of the first NB rows and columns of */ /* > the reduced matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] TAUQ */ /* > \verbatim */ /* > TAUQ is DOUBLE PRECISION array, dimension (NB) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the orthogonal matrix Q. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[out] TAUP */ /* > \verbatim */ /* > TAUP is DOUBLE PRECISION array, dimension (NB) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the orthogonal matrix P. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension (LDX,NB) */ /* > The m-by-nb matrix X required to update the unreduced part */ /* > of A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDX */ /* > \verbatim */ /* > LDX is INTEGER */ /* > The leading dimension of the array X. LDX >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] Y */ /* > \verbatim */ /* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */ /* > The n-by-nb matrix Y required to update the unreduced part */ /* > of A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDY */ /* > \verbatim */ /* > LDY is INTEGER */ /* > The leading dimension of the array Y. LDY >= max(1,N). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrices Q and P are represented as products of elementary */ /* > reflectors: */ /* > */ /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */ /* > */ /* > Each H(i) and G(i) has the form: */ /* > */ /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */ /* > */ /* > where tauq and taup are real scalars, and v and u are real vectors. */ /* > */ /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */ /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */ /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* > */ /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */ /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */ /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* > */ /* > The elements of the vectors v and u together form the m-by-nb matrix */ /* > V and the nb-by-n matrix U**T which are needed, with X and Y, to apply */ /* > the transformation to the unreduced part of the matrix, using a block */ /* > update of the form: A := A - V*Y**T - X*U**T. */ /* > */ /* > The contents of A on exit are illustrated by the following examples */ /* > with nb = 2: */ /* > */ /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ /* > */ /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */ /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */ /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */ /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */ /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */ /* > ( v1 v2 a a a ) */ /* > */ /* > where a denotes an element of the original matrix which is unchanged, */ /* > vi denotes an element of the vector defining H(i), and ui an element */ /* > of the vector defining G(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlabrd_(integer *m, integer *n, integer *nb, doublereal * a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer *ldy) { /* System generated locals */ integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, i__3; /* Local variables */ integer i__; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *); /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tauq; --taup; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; y_dim1 = *ldy; y_offset = 1 + y_dim1; y -= y_offset; /* Function Body */ if (*m <= 0 || *n <= 0) { return 0; } if (*m >= *n) { /* Reduce to upper bidiagonal form */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:m,i) */ i__2 = *m - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], & c__1, (ftnlen)12); i__2 = *m - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ * a_dim1], &c__1, (ftnlen)12); /* Generate reflection Q(i) to annihilate A(i+1:m,i) */ i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tauq[i__]); d__[i__] = a[i__ + i__ * a_dim1]; if (i__ < *n) { a[i__ + i__ * a_dim1] = 1.; /* Compute Y(i+1:n,i) */ i__2 = *m - i__ + 1; i__3 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, & y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9); i__2 = *m - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * y_dim1 + 1], &c__1, (ftnlen)9); i__2 = *n - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[ i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)12); i__2 = *m - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * y_dim1 + 1], &c__1, (ftnlen)9); i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9); i__2 = *n - i__; dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); /* Update A(i,i+1:n) */ i__2 = *n - i__; dgemv_((char *)"No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 + y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + ( i__ + 1) * a_dim1], lda, (ftnlen)12); i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[ i__ + (i__ + 1) * a_dim1], lda, (ftnlen)9); /* Generate reflection P(i) to annihilate A(i,i+2:n) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min( i__3,*n) * a_dim1], lda, &taup[i__]); e[i__] = a[i__ + (i__ + 1) * a_dim1]; a[i__ + (i__ + 1) * a_dim1] = 1.; /* Compute X(i+1:m,i) */ i__2 = *m - i__; i__3 = *n - i__; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1, ( ftnlen)12); i__2 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[ i__ * x_dim1 + 1], &c__1, (ftnlen)9); i__2 = *m - i__; dgemv_((char *)"No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 + a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12); i__2 = i__ - 1; i__3 = *n - i__; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b16, &x[i__ * x_dim1 + 1], &c__1, (ftnlen)12); i__2 = *m - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12); i__2 = *m - i__; dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); } /* L10: */ } } else { /* Reduce to lower bidiagonal form */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i,i:n) */ i__2 = *n - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1], lda, (ftnlen)12); i__2 = i__ - 1; i__3 = *n - i__ + 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1], lda, (ftnlen)9); /* Generate reflection P(i) to annihilate A(i,i+1:n) */ i__2 = *n - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) * a_dim1], lda, &taup[i__]); d__[i__] = a[i__ + i__ * a_dim1]; if (i__ < *m) { a[i__ + i__ * a_dim1] = 1.; /* Compute X(i+1:m,i) */ i__2 = *m - i__; i__3 = *n - i__ + 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ * a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, & x[i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12); i__2 = *n - i__ + 1; i__3 = i__ - 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * x_dim1 + 1], &c__1, (ftnlen)9); i__2 = *m - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12); i__2 = i__ - 1; i__3 = *n - i__ + 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 + 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * x_dim1 + 1], &c__1, (ftnlen)12); i__2 = *m - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12); i__2 = *m - i__; dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); /* Update A(i+1:m,i) */ i__2 = *m - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + 1 + i__ * a_dim1], &c__1, (ftnlen)12); i__2 = *m - i__; dgemv_((char *)"No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 + x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[ i__ + 1 + i__ * a_dim1], &c__1, (ftnlen)12); /* Generate reflection Q(i) to annihilate A(i+2:m,i) */ i__2 = *m - i__; /* Computing MIN */ i__3 = i__ + 2; dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tauq[i__]); e[i__] = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.; /* Compute Y(i+1:n,i) */ i__2 = *m - i__; i__3 = *n - i__; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9); i__2 = *m - i__; i__3 = i__ - 1; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[ i__ * y_dim1 + 1], &c__1, (ftnlen)9); i__2 = *n - i__; i__3 = i__ - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[ i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)12); i__2 = *m - i__; dgemv_((char *)"Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[ i__ * y_dim1 + 1], &c__1, (ftnlen)9); i__2 = *n - i__; dgemv_((char *)"Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9); i__2 = *n - i__; dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); } /* L20: */ } } return 0; /* End of DLABRD */ } /* dlabrd_ */ #ifdef __cplusplus } #endif