/* fortran/dlaed3.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b22 = 1.; static doublereal c_b23 = 0.; /* > \brief \b DLAED3 used by DSTEDC. Finds the roots of the secular equation and updates the eigenvectors. Us ed when the original matrix is tridiagonal. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLAED3 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX, */ /* CTOT, W, S, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, K, LDQ, N, N1 */ /* DOUBLE PRECISION RHO */ /* .. */ /* .. Array Arguments .. */ /* INTEGER CTOT( * ), INDX( * ) */ /* DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */ /* $ S( * ), W( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLAED3 finds the roots of the secular equation, as defined by the */ /* > values in D, W, and RHO, between 1 and K. It makes the */ /* > appropriate calls to DLAED4 and then updates the eigenvectors by */ /* > multiplying the matrix of eigenvectors of the pair of eigensystems */ /* > being combined by the matrix of eigenvectors of the K-by-K system */ /* > which is solved here. */ /* > */ /* > This code makes very mild assumptions about floating point */ /* > arithmetic. It will work on machines with a guard digit in */ /* > add/subtract, or on those binary machines without guard digits */ /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */ /* > It could conceivably fail on hexadecimal or decimal machines */ /* > without guard digits, but we know of none. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The number of terms in the rational function to be solved by */ /* > DLAED4. K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of rows and columns in the Q matrix. */ /* > N >= K (deflation may result in N>K). */ /* > \endverbatim */ /* > */ /* > \param[in] N1 */ /* > \verbatim */ /* > N1 is INTEGER */ /* > The location of the last eigenvalue in the leading submatrix. */ /* > min(1,N) <= N1 <= N/2. */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > D(I) contains the updated eigenvalues for */ /* > 1 <= I <= K. */ /* > \endverbatim */ /* > */ /* > \param[out] Q */ /* > \verbatim */ /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */ /* > Initially the first K columns are used as workspace. */ /* > On output the columns 1 to K contain */ /* > the updated eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. LDQ >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] RHO */ /* > \verbatim */ /* > RHO is DOUBLE PRECISION */ /* > The value of the parameter in the rank one update equation. */ /* > RHO >= 0 required. */ /* > \endverbatim */ /* > */ /* > \param[in,out] DLAMDA */ /* > \verbatim */ /* > DLAMDA is DOUBLE PRECISION array, dimension (K) */ /* > The first K elements of this array contain the old roots */ /* > of the deflated updating problem. These are the poles */ /* > of the secular equation. May be changed on output by */ /* > having lowest order bit set to zero on Cray X-MP, Cray Y-MP, */ /* > Cray-2, or Cray C-90, as described above. */ /* > \endverbatim */ /* > */ /* > \param[in] Q2 */ /* > \verbatim */ /* > Q2 is DOUBLE PRECISION array, dimension (LDQ2*N) */ /* > The first K columns of this matrix contain the non-deflated */ /* > eigenvectors for the split problem. */ /* > \endverbatim */ /* > */ /* > \param[in] INDX */ /* > \verbatim */ /* > INDX is INTEGER array, dimension (N) */ /* > The permutation used to arrange the columns of the deflated */ /* > Q matrix into three groups (see DLAED2). */ /* > The rows of the eigenvectors found by DLAED4 must be likewise */ /* > permuted before the matrix multiply can take place. */ /* > \endverbatim */ /* > */ /* > \param[in] CTOT */ /* > \verbatim */ /* > CTOT is INTEGER array, dimension (4) */ /* > A count of the total number of the various types of columns */ /* > in Q, as described in INDX. The fourth column type is any */ /* > column which has been deflated. */ /* > \endverbatim */ /* > */ /* > \param[in,out] W */ /* > \verbatim */ /* > W is DOUBLE PRECISION array, dimension (K) */ /* > The first K elements of this array contain the components */ /* > of the deflation-adjusted updating vector. Destroyed on */ /* > output. */ /* > \endverbatim */ /* > */ /* > \param[out] S */ /* > \verbatim */ /* > S is DOUBLE PRECISION array, dimension (N1 + 1)*K */ /* > Will contain the eigenvectors of the repaired matrix which */ /* > will be multiplied by the previously accumulated eigenvectors */ /* > to update the system. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: if INFO = 1, an eigenvalue did not converge */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup auxOTHERcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Jeff Rutter, Computer Science Division, University of California */ /* > at Berkeley, USA \n */ /* > Modified by Francoise Tisseur, University of Tennessee */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlaed3_(integer *k, integer *n, integer *n1, doublereal * d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda, doublereal *q2, integer *indx, integer *ctot, doublereal *w, doublereal *s, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; doublereal d__1; /* Builtin functions */ double sqrt(doublereal), d_sign(doublereal *, doublereal *); /* Local variables */ integer i__, j, n2, n12, ii, n23, iq2; doublereal temp; extern doublereal dnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dlaed4_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dlamc3_(doublereal *, doublereal *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, ftnlen), xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --dlamda; --q2; --indx; --ctot; --w; --s; /* Function Body */ *info = 0; if (*k < 0) { *info = -1; } else if (*n < *k) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DLAED3", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*k == 0) { return 0; } /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */ /* be computed with high relative accuracy (barring over/underflow). */ /* This is a problem on machines without a guard digit in */ /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ /* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */ /* which on any of these machines zeros out the bottommost */ /* bit of DLAMDA(I) if it is 1; this makes the subsequent */ /* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */ /* occurs. On binary machines with a guard digit (almost all */ /* machines) it does not change DLAMDA(I) at all. On hexadecimal */ /* and decimal machines with a guard digit, it slightly */ /* changes the bottommost bits of DLAMDA(I). It does not account */ /* for hexadecimal or decimal machines without guard digits */ /* (we know of none). We use a subroutine call to compute */ /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ /* this code. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__]; /* L10: */ } i__1 = *k; for (j = 1; j <= i__1; ++j) { dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], info); /* If the zero finder fails, the computation is terminated. */ if (*info != 0) { goto L120; } /* L20: */ } if (*k == 1) { goto L110; } if (*k == 2) { i__1 = *k; for (j = 1; j <= i__1; ++j) { w[1] = q[j * q_dim1 + 1]; w[2] = q[j * q_dim1 + 2]; ii = indx[1]; q[j * q_dim1 + 1] = w[ii]; ii = indx[2]; q[j * q_dim1 + 2] = w[ii]; /* L30: */ } goto L110; } /* Compute updated W. */ dcopy_(k, &w[1], &c__1, &s[1], &c__1); /* Initialize W(I) = Q(I,I) */ i__1 = *ldq + 1; dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); /* L40: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); /* L50: */ } /* L60: */ } i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { d__1 = sqrt(-w[i__]); w[i__] = d_sign(&d__1, &s[i__]); /* L70: */ } /* Compute eigenvectors of the modified rank-1 modification. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { s[i__] = w[i__] / q[i__ + j * q_dim1]; /* L80: */ } temp = dnrm2_(k, &s[1], &c__1); i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { ii = indx[i__]; q[i__ + j * q_dim1] = s[ii] / temp; /* L90: */ } /* L100: */ } /* Compute the updated eigenvectors. */ L110: n2 = *n - *n1; n12 = ctot[1] + ctot[2]; n23 = ctot[2] + ctot[3]; dlacpy_((char *)"A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23, (ftnlen) 1); iq2 = *n1 * n12 + 1; if (n23 != 0) { dgemm_((char *)"N", (char *)"N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, & c_b23, &q[*n1 + 1 + q_dim1], ldq, (ftnlen)1, (ftnlen)1); } else { dlaset_((char *)"A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq, ( ftnlen)1); } dlacpy_((char *)"A", &n12, k, &q[q_offset], ldq, &s[1], &n12, (ftnlen)1); if (n12 != 0) { dgemm_((char *)"N", (char *)"N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23, &q[q_offset], ldq, (ftnlen)1, (ftnlen)1); } else { dlaset_((char *)"A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq, (ftnlen)1); } L120: return 0; /* End of DLAED3 */ } /* dlaed3_ */ #ifdef __cplusplus } #endif