/* fortran/dlaed7.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; static doublereal c_b10 = 1.; static doublereal c_b11 = 0.; static integer c_n1 = -1; /* > \brief \b DLAED7 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLAED7 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, */ /* LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR, */ /* PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK, */ /* INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N, */ /* $ QSIZ, TLVLS */ /* DOUBLE PRECISION RHO */ /* .. */ /* .. Array Arguments .. */ /* INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), */ /* $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) */ /* DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ), */ /* $ QSTORE( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLAED7 computes the updated eigensystem of a diagonal */ /* > matrix after modification by a rank-one symmetric matrix. This */ /* > routine is used only for the eigenproblem which requires all */ /* > eigenvalues and optionally eigenvectors of a dense symmetric matrix */ /* > that has been reduced to tridiagonal form. DLAED1 handles */ /* > the case in which all eigenvalues and eigenvectors of a symmetric */ /* > tridiagonal matrix are desired. */ /* > */ /* > T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) */ /* > */ /* > where Z = Q**Tu, u is a vector of length N with ones in the */ /* > CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ /* > */ /* > The eigenvectors of the original matrix are stored in Q, and the */ /* > eigenvalues are in D. The algorithm consists of three stages: */ /* > */ /* > The first stage consists of deflating the size of the problem */ /* > when there are multiple eigenvalues or if there is a zero in */ /* > the Z vector. For each such occurrence the dimension of the */ /* > secular equation problem is reduced by one. This stage is */ /* > performed by the routine DLAED8. */ /* > */ /* > The second stage consists of calculating the updated */ /* > eigenvalues. This is done by finding the roots of the secular */ /* > equation via the routine DLAED4 (as called by DLAED9). */ /* > This routine also calculates the eigenvectors of the current */ /* > problem. */ /* > */ /* > The final stage consists of computing the updated eigenvectors */ /* > directly using the updated eigenvalues. The eigenvectors for */ /* > the current problem are multiplied with the eigenvectors from */ /* > the overall problem. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ICOMPQ */ /* > \verbatim */ /* > ICOMPQ is INTEGER */ /* > = 0: Compute eigenvalues only. */ /* > = 1: Compute eigenvectors of original dense symmetric matrix */ /* > also. On entry, Q contains the orthogonal matrix used */ /* > to reduce the original matrix to tridiagonal form. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] QSIZ */ /* > \verbatim */ /* > QSIZ is INTEGER */ /* > The dimension of the orthogonal matrix used to reduce */ /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ /* > \endverbatim */ /* > */ /* > \param[in] TLVLS */ /* > \verbatim */ /* > TLVLS is INTEGER */ /* > The total number of merging levels in the overall divide and */ /* > conquer tree. */ /* > \endverbatim */ /* > */ /* > \param[in] CURLVL */ /* > \verbatim */ /* > CURLVL is INTEGER */ /* > The current level in the overall merge routine, */ /* > 0 <= CURLVL <= TLVLS. */ /* > \endverbatim */ /* > */ /* > \param[in] CURPBM */ /* > \verbatim */ /* > CURPBM is INTEGER */ /* > The current problem in the current level in the overall */ /* > merge routine (counting from upper left to lower right). */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > On entry, the eigenvalues of the rank-1-perturbed matrix. */ /* > On exit, the eigenvalues of the repaired matrix. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Q */ /* > \verbatim */ /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */ /* > On entry, the eigenvectors of the rank-1-perturbed matrix. */ /* > On exit, the eigenvectors of the repaired tridiagonal matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. LDQ >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] INDXQ */ /* > \verbatim */ /* > INDXQ is INTEGER array, dimension (N) */ /* > The permutation which will reintegrate the subproblem just */ /* > solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */ /* > will be in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[in] RHO */ /* > \verbatim */ /* > RHO is DOUBLE PRECISION */ /* > The subdiagonal element used to create the rank-1 */ /* > modification. */ /* > \endverbatim */ /* > */ /* > \param[in] CUTPNT */ /* > \verbatim */ /* > CUTPNT is INTEGER */ /* > Contains the location of the last eigenvalue in the leading */ /* > sub-matrix. min(1,N) <= CUTPNT <= N. */ /* > \endverbatim */ /* > */ /* > \param[in,out] QSTORE */ /* > \verbatim */ /* > QSTORE is DOUBLE PRECISION array, dimension (N**2+1) */ /* > Stores eigenvectors of submatrices encountered during */ /* > divide and conquer, packed together. QPTR points to */ /* > beginning of the submatrices. */ /* > \endverbatim */ /* > */ /* > \param[in,out] QPTR */ /* > \verbatim */ /* > QPTR is INTEGER array, dimension (N+2) */ /* > List of indices pointing to beginning of submatrices stored */ /* > in QSTORE. The submatrices are numbered starting at the */ /* > bottom left of the divide and conquer tree, from left to */ /* > right and bottom to top. */ /* > \endverbatim */ /* > */ /* > \param[in] PRMPTR */ /* > \verbatim */ /* > PRMPTR is INTEGER array, dimension (N lg N) */ /* > Contains a list of pointers which indicate where in PERM a */ /* > level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ /* > indicates the size of the permutation and also the size of */ /* > the full, non-deflated problem. */ /* > \endverbatim */ /* > */ /* > \param[in] PERM */ /* > \verbatim */ /* > PERM is INTEGER array, dimension (N lg N) */ /* > Contains the permutations (from deflation and sorting) to be */ /* > applied to each eigenblock. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVPTR */ /* > \verbatim */ /* > GIVPTR is INTEGER array, dimension (N lg N) */ /* > Contains a list of pointers which indicate where in GIVCOL a */ /* > level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ /* > indicates the number of Givens rotations. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVCOL */ /* > \verbatim */ /* > GIVCOL is INTEGER array, dimension (2, N lg N) */ /* > Each pair of numbers indicates a pair of columns to take place */ /* > in a Givens rotation. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVNUM */ /* > \verbatim */ /* > GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N) */ /* > Each number indicates the S value to be used in the */ /* > corresponding Givens rotation. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N) */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (4*N) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: if INFO = 1, an eigenvalue did not converge */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup auxOTHERcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Jeff Rutter, Computer Science Division, University of California */ /* > at Berkeley, USA */ /* ===================================================================== */ /* Subroutine */ int dlaed7_(integer *icompq, integer *n, integer *qsiz, integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer * perm, integer *givptr, integer *givcol, doublereal *givnum, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen); integer indxc, indxp; extern /* Subroutine */ int dlaed8_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *), dlaed9_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *), dlaeda_(integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *) ; integer idlmda; extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *, ftnlen); integer coltyp; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --indxq; --qstore; --qptr; --prmptr; --perm; --givptr; givcol -= 3; givnum -= 3; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*icompq == 1 && *qsiz < *n) { *info = -3; } else if (*ldq < max(1,*n)) { *info = -9; } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DLAED7", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are for bookkeeping purposes only. They are */ /* integer pointers which indicate the portion of the workspace */ /* used by a particular array in DLAED8 and DLAED9. */ if (*icompq == 1) { ldq2 = *qsiz; } else { ldq2 = *n; } iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq2 = iw + *n; is = iq2 + *n * ldq2; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the */ /* first row of Q_2. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *tlvls - i__; ptr += pow_ii(&c__2, &i__2); /* L10: */ } curr = ptr + *curpbm; dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz + *n], info); /* When solving the final problem, we no longer need the stored data, */ /* so we will overwrite the data from this level onto the previously */ /* used storage space. */ if (*curlvl == *tlvls) { qptr[curr] = 1; prmptr[curr] = 1; givptr[curr] = 1; } /* Sort and Deflate eigenvalues. */ dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], & perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[ indx], info); prmptr[curr + 1] = prmptr[curr] + *n; givptr[curr + 1] += givptr[curr]; /* Solve Secular Equation. */ if (k != 0) { dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], &work[iw], &qstore[qptr[curr]], &k, info); if (*info != 0) { goto L30; } if (*icompq == 1) { dgemm_((char *)"N", (char *)"N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[ qptr[curr]], &k, &c_b11, &q[q_offset], ldq, (ftnlen)1, ( ftnlen)1); } /* Computing 2nd power */ i__1 = k; qptr[curr + 1] = qptr[curr] + i__1 * i__1; /* Prepare the INDXQ sorting permutation. */ n1 = k; n2 = *n - k; dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { qptr[curr + 1] = qptr[curr]; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L20: */ } } L30: return 0; /* End of DLAED7 */ } /* dlaed7_ */ #ifdef __cplusplus } #endif