/* fortran/dlatrs.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b46 = .5; /* > \brief \b DLATRS solves a triangular system of equations with the scale factor set to prevent overflow. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLATRS + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, */ /* CNORM, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIAG, NORMIN, TRANS, UPLO */ /* INTEGER INFO, LDA, N */ /* DOUBLE PRECISION SCALE */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLATRS solves one of the triangular systems */ /* > */ /* > A *x = s*b or A**T *x = s*b */ /* > */ /* > with scaling to prevent overflow. Here A is an upper or lower */ /* > triangular matrix, A**T denotes the transpose of A, x and b are */ /* > n-element vectors, and s is a scaling factor, usually less than */ /* > or equal to 1, chosen so that the components of x will be less than */ /* > the overflow threshold. If the unscaled problem will not cause */ /* > overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A */ /* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */ /* > non-trivial solution to A*x = 0 is returned. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the matrix A is upper or lower triangular. */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > Specifies the operation applied to A. */ /* > = 'N': Solve A * x = s*b (No transpose) */ /* > = 'T': Solve A**T* x = s*b (Transpose) */ /* > = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose) */ /* > \endverbatim */ /* > */ /* > \param[in] DIAG */ /* > \verbatim */ /* > DIAG is CHARACTER*1 */ /* > Specifies whether or not the matrix A is unit triangular. */ /* > = 'N': Non-unit triangular */ /* > = 'U': Unit triangular */ /* > \endverbatim */ /* > */ /* > \param[in] NORMIN */ /* > \verbatim */ /* > NORMIN is CHARACTER*1 */ /* > Specifies whether CNORM has been set or not. */ /* > = 'Y': CNORM contains the column norms on entry */ /* > = 'N': CNORM is not set on entry. On exit, the norms will */ /* > be computed and stored in CNORM. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > The triangular matrix A. If UPLO = 'U', the leading n by n */ /* > upper triangular part of the array A contains the upper */ /* > triangular matrix, and the strictly lower triangular part of */ /* > A is not referenced. If UPLO = 'L', the leading n by n lower */ /* > triangular part of the array A contains the lower triangular */ /* > matrix, and the strictly upper triangular part of A is not */ /* > referenced. If DIAG = 'U', the diagonal elements of A are */ /* > also not referenced and are assumed to be 1. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max (1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension (N) */ /* > On entry, the right hand side b of the triangular system. */ /* > On exit, X is overwritten by the solution vector x. */ /* > \endverbatim */ /* > */ /* > \param[out] SCALE */ /* > \verbatim */ /* > SCALE is DOUBLE PRECISION */ /* > The scaling factor s for the triangular system */ /* > A * x = s*b or A**T* x = s*b. */ /* > If SCALE = 0, the matrix A is singular or badly scaled, and */ /* > the vector x is an exact or approximate solution to A*x = 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] CNORM */ /* > \verbatim */ /* > CNORM is DOUBLE PRECISION array, dimension (N) */ /* > */ /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */ /* > contains the norm of the off-diagonal part of the j-th column */ /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */ /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */ /* > must be greater than or equal to the 1-norm. */ /* > */ /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */ /* > returns the 1-norm of the offdiagonal part of the j-th column */ /* > of A. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -k, the k-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > A rough bound on x is computed; if that is less than overflow, DTRSV */ /* > is called, otherwise, specific code is used which checks for possible */ /* > overflow or divide-by-zero at every operation. */ /* > */ /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */ /* > if A is lower triangular is */ /* > */ /* > x[1:n] := b[1:n] */ /* > for j = 1, ..., n */ /* > x(j) := x(j) / A(j,j) */ /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */ /* > end */ /* > */ /* > Define bounds on the components of x after j iterations of the loop: */ /* > M(j) = bound on x[1:j] */ /* > G(j) = bound on x[j+1:n] */ /* > Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */ /* > */ /* > Then for iteration j+1 we have */ /* > M(j+1) <= G(j) / | A(j+1,j+1) | */ /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */ /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */ /* > */ /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */ /* > column j+1 of A, not counting the diagonal. Hence */ /* > */ /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */ /* > 1<=i<=j */ /* > and */ /* > */ /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */ /* > 1<=i< j */ /* > */ /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the */ /* > reciprocal of the largest M(j), j=1,..,n, is larger than */ /* > max(underflow, 1/overflow). */ /* > */ /* > The bound on x(j) is also used to determine when a step in the */ /* > columnwise method can be performed without fear of overflow. If */ /* > the computed bound is greater than a large constant, x is scaled to */ /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */ /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */ /* > */ /* > Similarly, a row-wise scheme is used to solve A**T*x = b. The basic */ /* > algorithm for A upper triangular is */ /* > */ /* > for j = 1, ..., n */ /* > x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j) */ /* > end */ /* > */ /* > We simultaneously compute two bounds */ /* > G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j */ /* > M(j) = bound on x(i), 1<=i<=j */ /* > */ /* > The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */ /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */ /* > Then the bound on x(j) is */ /* > */ /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */ /* > */ /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */ /* > 1<=i<=j */ /* > */ /* > and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater */ /* > than max(underflow, 1/overflow). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlatrs_(char *uplo, char *trans, char *diag, char * normin, integer *n, doublereal *a, integer *lda, doublereal *x, doublereal *scale, doublereal *cnorm, integer *info, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len, ftnlen normin_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j; doublereal xj, rec, tjj; integer jinc; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); doublereal xbnd; integer imax; doublereal tmax, tjjs, xmax, grow, sumj; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *, ftnlen, ftnlen); doublereal tscal, uscal; extern doublereal dasum_(integer *, doublereal *, integer *); integer jlast; extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dtrsv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen); extern doublereal dlamch_(char *, ftnlen), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *, ftnlen); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); doublereal bignum; logical notran; integer jfirst; doublereal smlnum; logical nounit; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --cnorm; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1); nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1); /* Test the input parameters. */ if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (! notran && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"C", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (! nounit && ! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1)) { *info = -3; } else if (! lsame_(normin, (char *)"Y", (ftnlen)1, (ftnlen)1) && ! lsame_(normin, (char *)"N", (ftnlen)1, (ftnlen)1)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DLATRS", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ *scale = 1.; if (*n == 0) { return 0; } /* Determine machine dependent parameters to control overflow. */ smlnum = dlamch_((char *)"Safe minimum", (ftnlen)12) / dlamch_((char *)"Precision", ( ftnlen)9); bignum = 1. / smlnum; if (lsame_(normin, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Compute the 1-norm of each column, not including the diagonal. */ if (upper) { /* A is upper triangular. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; cnorm[j] = dasum_(&i__2, &a[j * a_dim1 + 1], &c__1); /* L10: */ } } else { /* A is lower triangular. */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = *n - j; cnorm[j] = dasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1); /* L20: */ } cnorm[*n] = 0.; } } /* Scale the column norms by TSCAL if the maximum element in CNORM is */ /* greater than BIGNUM. */ imax = idamax_(n, &cnorm[1], &c__1); tmax = cnorm[imax]; if (tmax <= bignum) { tscal = 1.; } else { /* Avoid NaN generation if entries in CNORM exceed the */ /* overflow threshold */ if (tmax <= dlamch_((char *)"Overflow", (ftnlen)8)) { /* Case 1: All entries in CNORM are valid floating-point numbers */ tscal = 1. / (smlnum * tmax); dscal_(n, &tscal, &cnorm[1], &c__1); } else { /* Case 2: At least one column norm of A cannot be represented */ /* as floating-point number. Find the offdiagonal entry A( I, J ) */ /* with the largest absolute value. If this entry is not +/- Infinity, */ /* use this value as TSCAL. */ tmax = 0.; if (upper) { /* A is upper triangular. */ i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MAX */ i__2 = j - 1; d__1 = dlange_((char *)"M", &i__2, &c__1, &a[j * a_dim1 + 1], & c__1, &sumj, (ftnlen)1); tmax = max(d__1,tmax); } } else { /* A is lower triangular. */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = *n - j; d__1 = dlange_((char *)"M", &i__2, &c__1, &a[j + 1 + j * a_dim1], &c__1, &sumj, (ftnlen)1); tmax = max(d__1,tmax); } } if (tmax <= dlamch_((char *)"Overflow", (ftnlen)8)) { tscal = 1. / (smlnum * tmax); i__1 = *n; for (j = 1; j <= i__1; ++j) { if (cnorm[j] <= dlamch_((char *)"Overflow", (ftnlen)8)) { cnorm[j] *= tscal; } else { /* Recompute the 1-norm without introducing Infinity */ /* in the summation */ cnorm[j] = 0.; if (upper) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { cnorm[j] += tscal * (d__1 = a[i__ + j * a_dim1], abs(d__1)); } } else { i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { cnorm[j] += tscal * (d__1 = a[i__ + j * a_dim1], abs(d__1)); } } } } } else { /* At least one entry of A is not a valid floating-point entry. */ /* Rely on TRSV to propagate Inf and NaN. */ dtrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1, (ftnlen)1, (ftnlen)1, (ftnlen)1); return 0; } } } /* Compute a bound on the computed solution vector to see if the */ /* Level 2 BLAS routine DTRSV can be used. */ j = idamax_(n, &x[1], &c__1); xmax = (d__1 = x[j], abs(d__1)); xbnd = xmax; if (notran) { /* Compute the growth in A * x = b. */ if (upper) { jfirst = *n; jlast = 1; jinc = -1; } else { jfirst = 1; jlast = *n; jinc = 1; } if (tscal != 1.) { grow = 0.; goto L50; } if (nounit) { /* A is non-unit triangular. */ /* Compute GROW = 1/G(j) and XBND = 1/M(j). */ /* Initially, G(0) = max{x(i), i=1,...,n}. */ grow = 1. / max(xbnd,smlnum); xbnd = grow; i__1 = jlast; i__2 = jinc; for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Exit the loop if the growth factor is too small. */ if (grow <= smlnum) { goto L50; } /* M(j) = G(j-1) / abs(A(j,j)) */ tjj = (d__1 = a[j + j * a_dim1], abs(d__1)); /* Computing MIN */ d__1 = xbnd, d__2 = min(1.,tjj) * grow; xbnd = min(d__1,d__2); if (tjj + cnorm[j] >= smlnum) { /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */ grow *= tjj / (tjj + cnorm[j]); } else { /* G(j) could overflow, set GROW to 0. */ grow = 0.; } /* L30: */ } grow = xbnd; } else { /* A is unit triangular. */ /* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */ /* Computing MIN */ d__1 = 1., d__2 = 1. / max(xbnd,smlnum); grow = min(d__1,d__2); i__2 = jlast; i__1 = jinc; for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Exit the loop if the growth factor is too small. */ if (grow <= smlnum) { goto L50; } /* G(j) = G(j-1)*( 1 + CNORM(j) ) */ grow *= 1. / (cnorm[j] + 1.); /* L40: */ } } L50: ; } else { /* Compute the growth in A**T * x = b. */ if (upper) { jfirst = 1; jlast = *n; jinc = 1; } else { jfirst = *n; jlast = 1; jinc = -1; } if (tscal != 1.) { grow = 0.; goto L80; } if (nounit) { /* A is non-unit triangular. */ /* Compute GROW = 1/G(j) and XBND = 1/M(j). */ /* Initially, M(0) = max{x(i), i=1,...,n}. */ grow = 1. / max(xbnd,smlnum); xbnd = grow; i__1 = jlast; i__2 = jinc; for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Exit the loop if the growth factor is too small. */ if (grow <= smlnum) { goto L80; } /* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */ xj = cnorm[j] + 1.; /* Computing MIN */ d__1 = grow, d__2 = xbnd / xj; grow = min(d__1,d__2); /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */ tjj = (d__1 = a[j + j * a_dim1], abs(d__1)); if (xj > tjj) { xbnd *= tjj / xj; } /* L60: */ } grow = min(grow,xbnd); } else { /* A is unit triangular. */ /* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */ /* Computing MIN */ d__1 = 1., d__2 = 1. / max(xbnd,smlnum); grow = min(d__1,d__2); i__2 = jlast; i__1 = jinc; for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Exit the loop if the growth factor is too small. */ if (grow <= smlnum) { goto L80; } /* G(j) = ( 1 + CNORM(j) )*G(j-1) */ xj = cnorm[j] + 1.; grow /= xj; /* L70: */ } } L80: ; } if (grow * tscal > smlnum) { /* Use the Level 2 BLAS solve if the reciprocal of the bound on */ /* elements of X is not too small. */ dtrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1, (ftnlen) 1, (ftnlen)1, (ftnlen)1); } else { /* Use a Level 1 BLAS solve, scaling intermediate results. */ if (xmax > bignum) { /* Scale X so that its components are less than or equal to */ /* BIGNUM in absolute value. */ *scale = bignum / xmax; dscal_(n, scale, &x[1], &c__1); xmax = bignum; } if (notran) { /* Solve A * x = b */ i__1 = jlast; i__2 = jinc; for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */ xj = (d__1 = x[j], abs(d__1)); if (nounit) { tjjs = a[j + j * a_dim1] * tscal; } else { tjjs = tscal; if (tscal == 1.) { goto L100; } } tjj = abs(tjjs); if (tjj > smlnum) { /* abs(A(j,j)) > SMLNUM: */ if (tjj < 1.) { if (xj > tjj * bignum) { /* Scale x by 1/b(j). */ rec = 1. / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j] /= tjjs; xj = (d__1 = x[j], abs(d__1)); } else if (tjj > 0.) { /* 0 < abs(A(j,j)) <= SMLNUM: */ if (xj > tjj * bignum) { /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */ /* to avoid overflow when dividing by A(j,j). */ rec = tjj * bignum / xj; if (cnorm[j] > 1.) { /* Scale by 1/CNORM(j) to avoid overflow when */ /* multiplying x(j) times column j. */ rec /= cnorm[j]; } dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } x[j] /= tjjs; xj = (d__1 = x[j], abs(d__1)); } else { /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */ /* scale = 0, and compute a solution to A*x = 0. */ i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { x[i__] = 0.; /* L90: */ } x[j] = 1.; xj = 1.; *scale = 0.; xmax = 0.; } L100: /* Scale x if necessary to avoid overflow when adding a */ /* multiple of column j of A. */ if (xj > 1.) { rec = 1. / xj; if (cnorm[j] > (bignum - xmax) * rec) { /* Scale x by 1/(2*abs(x(j))). */ rec *= .5; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } else if (xj * cnorm[j] > bignum - xmax) { /* Scale x by 1/2. */ dscal_(n, &c_b46, &x[1], &c__1); *scale *= .5; } if (upper) { if (j > 1) { /* Compute the update */ /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */ i__3 = j - 1; d__1 = -x[j] * tscal; daxpy_(&i__3, &d__1, &a[j * a_dim1 + 1], &c__1, &x[1], &c__1); i__3 = j - 1; i__ = idamax_(&i__3, &x[1], &c__1); xmax = (d__1 = x[i__], abs(d__1)); } } else { if (j < *n) { /* Compute the update */ /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */ i__3 = *n - j; d__1 = -x[j] * tscal; daxpy_(&i__3, &d__1, &a[j + 1 + j * a_dim1], &c__1, & x[j + 1], &c__1); i__3 = *n - j; i__ = j + idamax_(&i__3, &x[j + 1], &c__1); xmax = (d__1 = x[i__], abs(d__1)); } } /* L110: */ } } else { /* Solve A**T * x = b */ i__2 = jlast; i__1 = jinc; for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Compute x(j) = b(j) - sum A(k,j)*x(k). */ /* k<>j */ xj = (d__1 = x[j], abs(d__1)); uscal = tscal; rec = 1. / max(xmax,1.); if (cnorm[j] > (bignum - xj) * rec) { /* If x(j) could overflow, scale x by 1/(2*XMAX). */ rec *= .5; if (nounit) { tjjs = a[j + j * a_dim1] * tscal; } else { tjjs = tscal; } tjj = abs(tjjs); if (tjj > 1.) { /* Divide by A(j,j) when scaling x if A(j,j) > 1. */ /* Computing MIN */ d__1 = 1., d__2 = rec * tjj; rec = min(d__1,d__2); uscal /= tjjs; } if (rec < 1.) { dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } sumj = 0.; if (uscal == 1.) { /* If the scaling needed for A in the dot product is 1, */ /* call DDOT to perform the dot product. */ if (upper) { i__3 = j - 1; sumj = ddot_(&i__3, &a[j * a_dim1 + 1], &c__1, &x[1], &c__1); } else if (j < *n) { i__3 = *n - j; sumj = ddot_(&i__3, &a[j + 1 + j * a_dim1], &c__1, &x[ j + 1], &c__1); } } else { /* Otherwise, use in-line code for the dot product. */ if (upper) { i__3 = j - 1; for (i__ = 1; i__ <= i__3; ++i__) { sumj += a[i__ + j * a_dim1] * uscal * x[i__]; /* L120: */ } } else if (j < *n) { i__3 = *n; for (i__ = j + 1; i__ <= i__3; ++i__) { sumj += a[i__ + j * a_dim1] * uscal * x[i__]; /* L130: */ } } } if (uscal == tscal) { /* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) */ /* was not used to scale the dotproduct. */ x[j] -= sumj; xj = (d__1 = x[j], abs(d__1)); if (nounit) { tjjs = a[j + j * a_dim1] * tscal; } else { tjjs = tscal; if (tscal == 1.) { goto L150; } } /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */ tjj = abs(tjjs); if (tjj > smlnum) { /* abs(A(j,j)) > SMLNUM: */ if (tjj < 1.) { if (xj > tjj * bignum) { /* Scale X by 1/abs(x(j)). */ rec = 1. / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j] /= tjjs; } else if (tjj > 0.) { /* 0 < abs(A(j,j)) <= SMLNUM: */ if (xj > tjj * bignum) { /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */ rec = tjj * bignum / xj; dscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } x[j] /= tjjs; } else { /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */ /* scale = 0, and compute a solution to A**T*x = 0. */ i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { x[i__] = 0.; /* L140: */ } x[j] = 1.; *scale = 0.; xmax = 0.; } L150: ; } else { /* Compute x(j) := x(j) / A(j,j) - sumj if the dot */ /* product has already been divided by 1/A(j,j). */ x[j] = x[j] / tjjs - sumj; } /* Computing MAX */ d__2 = xmax, d__3 = (d__1 = x[j], abs(d__1)); xmax = max(d__2,d__3); /* L160: */ } } *scale /= tscal; } /* Scale the column norms by 1/TSCAL for return. */ if (tscal != 1.) { d__1 = 1. / tscal; dscal_(n, &d__1, &cnorm[1], &c__1); } return 0; /* End of DLATRS */ } /* dlatrs_ */ #ifdef __cplusplus } #endif