/* fortran/dorgbr.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c_n1 = -1; /* > \brief \b DORGBR */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DORGBR + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER VECT */ /* INTEGER INFO, K, LDA, LWORK, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DORGBR generates one of the real orthogonal matrices Q or P**T */ /* > determined by DGEBRD when reducing a real matrix A to bidiagonal */ /* > form: A = Q * B * P**T. Q and P**T are defined as products of */ /* > elementary reflectors H(i) or G(i) respectively. */ /* > */ /* > If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */ /* > is of order M: */ /* > if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n */ /* > columns of Q, where m >= n >= k; */ /* > if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an */ /* > M-by-M matrix. */ /* > */ /* > If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */ /* > is of order N: */ /* > if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m */ /* > rows of P**T, where n >= m >= k; */ /* > if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as */ /* > an N-by-N matrix. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] VECT */ /* > \verbatim */ /* > VECT is CHARACTER*1 */ /* > Specifies whether the matrix Q or the matrix P**T is */ /* > required, as defined in the transformation applied by DGEBRD: */ /* > = 'Q': generate Q; */ /* > = 'P': generate P**T. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix Q or P**T to be returned. */ /* > M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix Q or P**T to be returned. */ /* > N >= 0. */ /* > If VECT = 'Q', M >= N >= min(M,K); */ /* > if VECT = 'P', N >= M >= min(N,K). */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > If VECT = 'Q', the number of columns in the original M-by-K */ /* > matrix reduced by DGEBRD. */ /* > If VECT = 'P', the number of rows in the original K-by-N */ /* > matrix reduced by DGEBRD. */ /* > K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the vectors which define the elementary reflectors, */ /* > as returned by DGEBRD. */ /* > On exit, the M-by-N matrix Q or P**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension */ /* > (min(M,K)) if VECT = 'Q' */ /* > (min(N,K)) if VECT = 'P' */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i) or G(i), which determines Q or P**T, as */ /* > returned by DGEBRD in its array argument TAUQ or TAUP. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= max(1,min(M,N)). */ /* > For optimum performance LWORK >= min(M,N)*NB, where NB */ /* > is the optimal blocksize. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleGBcomputational */ /* ===================================================================== */ /* Subroutine */ int dorgbr_(char *vect, integer *m, integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, integer *info, ftnlen vect_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, mn; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer iinfo; logical wantq; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dorglq_( integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dorgqr_( integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; wantq = lsame_(vect, (char *)"Q", (ftnlen)1, (ftnlen)1); mn = min(*m,*n); lquery = *lwork == -1; if (! wantq && ! lsame_(vect, (char *)"P", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( *m > *n || *m < min(*n,*k))) { *info = -3; } else if (*k < 0) { *info = -4; } else if (*lda < max(1,*m)) { *info = -6; } else if (*lwork < max(1,mn) && ! lquery) { *info = -9; } if (*info == 0) { work[1] = 1.; if (wantq) { if (*m >= *k) { dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], &c_n1, &iinfo); } else { if (*m > 1) { i__1 = *m - 1; i__2 = *m - 1; i__3 = *m - 1; dorgqr_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], & work[1], &c_n1, &iinfo); } } } else { if (*k < *n) { dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], &c_n1, &iinfo); } else { if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; dorglq_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], & work[1], &c_n1, &iinfo); } } } lwkopt = (integer) work[1]; lwkopt = max(lwkopt,mn); } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DORGBR", &i__1, (ftnlen)6); return 0; } else if (lquery) { work[1] = (doublereal) lwkopt; return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { work[1] = 1.; return 0; } if (wantq) { /* Form Q, determined by a call to DGEBRD to reduce an m-by-k */ /* matrix */ if (*m >= *k) { /* If m >= k, assume m >= n >= k */ dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If m < k, assume m = n */ /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first row and column of Q */ /* to those of the unit matrix */ for (j = *m; j >= 2; --j) { a[j * a_dim1 + 1] = 0.; i__1 = *m; for (i__ = j + 1; i__ <= i__1; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L10: */ } /* L20: */ } a[a_dim1 + 1] = 1.; i__1 = *m; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.; /* L30: */ } if (*m > 1) { /* Form Q(2:m,2:m) */ i__1 = *m - 1; i__2 = *m - 1; i__3 = *m - 1; dorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } else { /* Form P**T, determined by a call to DGEBRD to reduce a k-by-n */ /* matrix */ if (*k < *n) { /* If k < n, assume k <= m <= n */ dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If k >= n, assume m = n */ /* Shift the vectors which define the elementary reflectors one */ /* row downward, and set the first row and column of P**T to */ /* those of the unit matrix */ a[a_dim1 + 1] = 1.; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.; /* L40: */ } i__1 = *n; for (j = 2; j <= i__1; ++j) { for (i__ = j - 1; i__ >= 2; --i__) { a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1]; /* L50: */ } a[j * a_dim1 + 1] = 0.; /* L60: */ } if (*n > 1) { /* Form P**T(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; dorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } work[1] = (doublereal) lwkopt; return 0; /* End of DORGBR */ } /* dorgbr_ */ #ifdef __cplusplus } #endif