/* fortran/dormbr.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* > \brief \b DORMBR */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DORMBR + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, */ /* LDC, WORK, LWORK, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER SIDE, TRANS, VECT */ /* INTEGER INFO, K, LDA, LDC, LWORK, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C */ /* > with */ /* > SIDE = 'L' SIDE = 'R' */ /* > TRANS = 'N': Q * C C * Q */ /* > TRANS = 'T': Q**T * C C * Q**T */ /* > */ /* > If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C */ /* > with */ /* > SIDE = 'L' SIDE = 'R' */ /* > TRANS = 'N': P * C C * P */ /* > TRANS = 'T': P**T * C C * P**T */ /* > */ /* > Here Q and P**T are the orthogonal matrices determined by DGEBRD when */ /* > reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */ /* > P**T are defined as products of elementary reflectors H(i) and G(i) */ /* > respectively. */ /* > */ /* > Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */ /* > order of the orthogonal matrix Q or P**T that is applied. */ /* > */ /* > If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */ /* > if nq >= k, Q = H(1) H(2) . . . H(k); */ /* > if nq < k, Q = H(1) H(2) . . . H(nq-1). */ /* > */ /* > If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */ /* > if k < nq, P = G(1) G(2) . . . G(k); */ /* > if k >= nq, P = G(1) G(2) . . . G(nq-1). */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] VECT */ /* > \verbatim */ /* > VECT is CHARACTER*1 */ /* > = 'Q': apply Q or Q**T; */ /* > = 'P': apply P or P**T. */ /* > \endverbatim */ /* > */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > = 'L': apply Q, Q**T, P or P**T from the Left; */ /* > = 'R': apply Q, Q**T, P or P**T from the Right. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > = 'N': No transpose, apply Q or P; */ /* > = 'T': Transpose, apply Q**T or P**T. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix C. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix C. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > If VECT = 'Q', the number of columns in the original */ /* > matrix reduced by DGEBRD. */ /* > If VECT = 'P', the number of rows in the original */ /* > matrix reduced by DGEBRD. */ /* > K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension */ /* > (LDA,min(nq,K)) if VECT = 'Q' */ /* > (LDA,nq) if VECT = 'P' */ /* > The vectors which define the elementary reflectors H(i) and */ /* > G(i), whose products determine the matrices Q and P, as */ /* > returned by DGEBRD. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. */ /* > If VECT = 'Q', LDA >= max(1,nq); */ /* > if VECT = 'P', LDA >= max(1,min(nq,K)). */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (min(nq,K)) */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i) or G(i) which determines Q or P, as returned */ /* > by DGEBRD in the array argument TAUQ or TAUP. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension (LDC,N) */ /* > On entry, the M-by-N matrix C. */ /* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */ /* > or P*C or P**T*C or C*P or C*P**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > The leading dimension of the array C. LDC >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. */ /* > If SIDE = 'L', LWORK >= max(1,N); */ /* > if SIDE = 'R', LWORK >= max(1,M). */ /* > For optimum performance LWORK >= N*NB if SIDE = 'L', and */ /* > LWORK >= M*NB if SIDE = 'R', where NB is the optimal */ /* > blocksize. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int dormbr_(char *vect, char *side, char *trans, integer *m, integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work, integer *lwork, integer *info, ftnlen vect_len, ftnlen side_len, ftnlen trans_len) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i1, i2, nb, mi, ni, nq, nw; logical left; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer iinfo; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, ftnlen, ftnlen); logical notran; extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, ftnlen, ftnlen); logical applyq; char transt[1]; integer lwkopt; logical lquery; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; applyq = lsame_(vect, (char *)"Q", (ftnlen)1, (ftnlen)1); left = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1); notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1); lquery = *lwork == -1; /* NQ is the order of Q or P and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = max(1,*n); } else { nq = *n; nw = max(1,*m); } if (! applyq && ! lsame_(vect, (char *)"P", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (! left && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (! notran && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1)) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*k < 0) { *info = -6; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = min(nq,*k); if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) { *info = -8; } else if (*ldc < max(1,*m)) { *info = -11; } else if (*lwork < nw && ! lquery) { *info = -13; } } if (*info == 0) { if (applyq) { if (left) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *m - 1; i__2 = *m - 1; nb = ilaenv_(&c__1, (char *)"DORMQR", ch__1, &i__1, n, &i__2, &c_n1, ( ftnlen)6, (ftnlen)2); } else { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *n - 1; i__2 = *n - 1; nb = ilaenv_(&c__1, (char *)"DORMQR", ch__1, m, &i__1, &i__2, &c_n1, ( ftnlen)6, (ftnlen)2); } } else { if (left) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *m - 1; i__2 = *m - 1; nb = ilaenv_(&c__1, (char *)"DORMLQ", ch__1, &i__1, n, &i__2, &c_n1, ( ftnlen)6, (ftnlen)2); } else { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *n - 1; i__2 = *n - 1; nb = ilaenv_(&c__1, (char *)"DORMLQ", ch__1, m, &i__1, &i__2, &c_n1, ( ftnlen)6, (ftnlen)2); } } lwkopt = nw * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DORMBR", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ work[1] = 1.; if (*m == 0 || *n == 0) { return 0; } if (applyq) { /* Apply Q */ if (nq >= *k) { /* Q was determined by a call to DGEBRD with nq >= k */ dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], lwork, &iinfo, (ftnlen)1, ( ftnlen)1); } else if (nq > 1) { /* Q was determined by a call to DGEBRD with nq < k */ if (left) { mi = *m - 1; ni = *n; i1 = 2; i2 = 1; } else { mi = *m; ni = *n - 1; i1 = 1; i2 = 2; } i__1 = nq - 1; dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1] , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo, ( ftnlen)1, (ftnlen)1); } } else { /* Apply P */ if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } if (nq > *k) { /* P was determined by a call to DGEBRD with nq > k */ dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], lwork, &iinfo, (ftnlen)1, ( ftnlen)1); } else if (nq > 1) { /* P was determined by a call to DGEBRD with nq <= k */ if (left) { mi = *m - 1; ni = *n; i1 = 2; i2 = 1; } else { mi = *m; ni = *n - 1; i1 = 1; i2 = 2; } i__1 = nq - 1; dormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda, &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, & iinfo, (ftnlen)1, (ftnlen)1); } } work[1] = (doublereal) lwkopt; return 0; /* End of DORMBR */ } /* dormbr_ */ #ifdef __cplusplus } #endif