/* fortran/dorml2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DORML2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, */ /* WORK, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER SIDE, TRANS */ /* INTEGER INFO, K, LDA, LDC, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DORML2 overwrites the general real m by n matrix C with */ /* > */ /* > Q * C if SIDE = 'L' and TRANS = 'N', or */ /* > */ /* > Q**T* C if SIDE = 'L' and TRANS = 'T', or */ /* > */ /* > C * Q if SIDE = 'R' and TRANS = 'N', or */ /* > */ /* > C * Q**T if SIDE = 'R' and TRANS = 'T', */ /* > */ /* > where Q is a real orthogonal matrix defined as the product of k */ /* > elementary reflectors */ /* > */ /* > Q = H(k) . . . H(2) H(1) */ /* > */ /* > as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n */ /* > if SIDE = 'R'. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > = 'L': apply Q or Q**T from the Left */ /* > = 'R': apply Q or Q**T from the Right */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > = 'N': apply Q (No transpose) */ /* > = 'T': apply Q**T (Transpose) */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix C. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix C. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The number of elementary reflectors whose product defines */ /* > the matrix Q. */ /* > If SIDE = 'L', M >= K >= 0; */ /* > if SIDE = 'R', N >= K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension */ /* > (LDA,M) if SIDE = 'L', */ /* > (LDA,N) if SIDE = 'R' */ /* > The i-th row must contain the vector which defines the */ /* > elementary reflector H(i), for i = 1,2,...,k, as returned by */ /* > DGELQF in the first k rows of its array argument A. */ /* > A is modified by the routine but restored on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,K). */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (K) */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i), as returned by DGELQF. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension (LDC,N) */ /* > On entry, the m by n matrix C. */ /* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > The leading dimension of the array C. LDC >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension */ /* > (N) if SIDE = 'L', */ /* > (M) if SIDE = 'R' */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal * c__, integer *ldc, doublereal *work, integer *info, ftnlen side_len, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; /* Local variables */ integer i__, i1, i2, i3, ic, jc, mi, ni, nq; doublereal aii; logical left; extern /* Subroutine */ int dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, ftnlen); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); logical notran; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1); notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1); /* NQ is the order of Q */ if (left) { nq = *m; } else { nq = *n; } if (! left && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (! notran && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*lda < max(1,*k)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DORML2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || *k == 0) { return 0; } if (left && notran || ! left && ! notran) { i1 = 1; i2 = *k; i3 = 1; } else { i1 = *k; i2 = 1; i3 = -1; } if (left) { ni = *n; jc = 1; } else { mi = *m; ic = 1; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { if (left) { /* H(i) is applied to C(i:m,1:n) */ mi = *m - i__ + 1; ic = i__; } else { /* H(i) is applied to C(1:m,i:n) */ ni = *n - i__ + 1; jc = i__; } /* Apply H(i) */ aii = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[ ic + jc * c_dim1], ldc, &work[1], (ftnlen)1); a[i__ + i__ * a_dim1] = aii; /* L10: */ } return 0; /* End of DORML2 */ } /* dorml2_ */ #ifdef __cplusplus } #endif