/* fortran/dpotf2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b10 = -1.; static doublereal c_b12 = 1.; /* > \brief \b DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (u nblocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DPOTF2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER INFO, LDA, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DPOTF2 computes the Cholesky factorization of a real symmetric */ /* > positive definite matrix A. */ /* > */ /* > The factorization has the form */ /* > A = U**T * U , if UPLO = 'U', or */ /* > A = L * L**T, if UPLO = 'L', */ /* > where U is an upper triangular matrix and L is lower triangular. */ /* > */ /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > symmetric matrix A is stored. */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* > n by n upper triangular part of A contains the upper */ /* > triangular part of the matrix A, and the strictly lower */ /* > triangular part of A is not referenced. If UPLO = 'L', the */ /* > leading n by n lower triangular part of A contains the lower */ /* > triangular part of the matrix A, and the strictly upper */ /* > triangular part of A is not referenced. */ /* > */ /* > On exit, if INFO = 0, the factor U or L from the Cholesky */ /* > factorization A = U**T *U or A = L*L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -k, the k-th argument had an illegal value */ /* > > 0: if INFO = k, the leading minor of order k is not */ /* > positive definite, and the factorization could not be */ /* > completed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doublePOcomputational */ /* ===================================================================== */ /* Subroutine */ int dpotf2_(char *uplo, integer *n, doublereal *a, integer * lda, integer *info, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer j; doublereal ajj; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen); logical upper; extern logical disnan_(doublereal *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DPOTF2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (upper) { /* Compute the Cholesky factorization A = U**T *U. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Compute U(J,J) and test for non-positive-definiteness. */ i__2 = j - 1; ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1], &c__1); if (ajj <= 0. || disnan_(&ajj)) { a[j + j * a_dim1] = ajj; goto L30; } ajj = sqrt(ajj); a[j + j * a_dim1] = ajj; /* Compute elements J+1:N of row J. */ if (j < *n) { i__2 = j - 1; i__3 = *n - j; dgemv_((char *)"Transpose", &i__2, &i__3, &c_b10, &a[(j + 1) * a_dim1 + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b12, &a[j + ( j + 1) * a_dim1], lda, (ftnlen)9); i__2 = *n - j; d__1 = 1. / ajj; dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda); } /* L10: */ } } else { /* Compute the Cholesky factorization A = L*L**T. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Compute L(J,J) and test for non-positive-definiteness. */ i__2 = j - 1; ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j + a_dim1], lda, &a[j + a_dim1], lda); if (ajj <= 0. || disnan_(&ajj)) { a[j + j * a_dim1] = ajj; goto L30; } ajj = sqrt(ajj); a[j + j * a_dim1] = ajj; /* Compute elements J+1:N of column J. */ if (j < *n) { i__2 = *n - j; i__3 = j - 1; dgemv_((char *)"No transpose", &i__2, &i__3, &c_b10, &a[j + 1 + a_dim1], lda, &a[j + a_dim1], lda, &c_b12, &a[j + 1 + j * a_dim1], &c__1, (ftnlen)12); i__2 = *n - j; d__1 = 1. / ajj; dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); } /* L20: */ } } goto L40; L30: *info = j; L40: return 0; /* End of DPOTF2 */ } /* dpotf2_ */ #ifdef __cplusplus } #endif