/* static/dpotrf2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b9 = 1.; static doublereal c_b11 = -1.; /* > \brief \b DPOTRF2 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER INFO, LDA, N */ /* .. */ /* .. Array Arguments .. */ /* REAL A( LDA, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DPOTRF2 computes the Cholesky factorization of a real symmetric */ /* > positive definite matrix A using the recursive algorithm. */ /* > */ /* > The factorization has the form */ /* > A = U**T * U, if UPLO = 'U', or */ /* > A = L * L**T, if UPLO = 'L', */ /* > where U is an upper triangular matrix and L is lower triangular. */ /* > */ /* > This is the recursive version of the algorithm. It divides */ /* > the matrix into four submatrices: */ /* > */ /* > [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2 */ /* > A = [ -----|----- ] with n1 = n/2 */ /* > [ A21 | A22 ] n2 = n-n1 */ /* > */ /* > The subroutine calls itself to factor A11. Update and scale A21 */ /* > or A12, update A22 then calls itself to factor A22. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangle of A is stored; */ /* > = 'L': Lower triangle of A is stored. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* > N-by-N upper triangular part of A contains the upper */ /* > triangular part of the matrix A, and the strictly lower */ /* > triangular part of A is not referenced. If UPLO = 'L', the */ /* > leading N-by-N lower triangular part of A contains the lower */ /* > triangular part of the matrix A, and the strictly upper */ /* > triangular part of A is not referenced. */ /* > */ /* > On exit, if INFO = 0, the factor U or L from the Cholesky */ /* > factorization A = U**T*U or A = L*L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, the leading minor of order i is not */ /* > positive definite, and the factorization could not be */ /* > completed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doublePOcomputational */ /* ===================================================================== */ /* Subroutine */ int dpotrf2_(char *uplo, integer *n, doublereal *a, integer * lda, integer *info, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer n1, n2; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer iinfo; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); logical upper; extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen); extern logical disnan_(doublereal *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DPOTRF2", &i__1, (ftnlen)7); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* N=1 case */ if (*n == 1) { /* Test for non-positive-definiteness */ if (a[a_dim1 + 1] <= 0. || disnan_(&a[a_dim1 + 1])) { *info = 1; return 0; } /* Factor */ a[a_dim1 + 1] = sqrt(a[a_dim1 + 1]); /* Use recursive code */ } else { n1 = *n / 2; n2 = *n - n1; /* Factor A11 */ dpotrf2_(uplo, &n1, &a[a_dim1 + 1], lda, &iinfo, (ftnlen)1); if (iinfo != 0) { *info = iinfo; return 0; } /* Compute the Cholesky factorization A = U**T*U */ if (upper) { /* Update and scale A12 */ dtrsm_((char *)"L", (char *)"U", (char *)"T", (char *)"N", &n1, &n2, &c_b9, &a[a_dim1 + 1], lda, & a[(n1 + 1) * a_dim1 + 1], lda, (ftnlen)1, (ftnlen)1, ( ftnlen)1, (ftnlen)1); /* Update and factor A22 */ dsyrk_(uplo, (char *)"T", &n2, &n1, &c_b11, &a[(n1 + 1) * a_dim1 + 1], lda, &c_b9, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, (ftnlen) 1, (ftnlen)1); dpotrf2_(uplo, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, &iinfo, ( ftnlen)1); if (iinfo != 0) { *info = iinfo + n1; return 0; } /* Compute the Cholesky factorization A = L*L**T */ } else { /* Update and scale A21 */ dtrsm_((char *)"R", (char *)"L", (char *)"T", (char *)"N", &n2, &n1, &c_b9, &a[a_dim1 + 1], lda, & a[n1 + 1 + a_dim1], lda, (ftnlen)1, (ftnlen)1, (ftnlen)1, (ftnlen)1); /* Update and factor A22 */ dsyrk_(uplo, (char *)"N", &n2, &n1, &c_b11, &a[n1 + 1 + a_dim1], lda, & c_b9, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, (ftnlen)1, ( ftnlen)1); dpotrf2_(uplo, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, &iinfo, ( ftnlen)1); if (iinfo != 0) { *info = iinfo + n1; return 0; } } } return 0; /* End of DPOTRF2 */ } /* dpotrf2_ */ #ifdef __cplusplus } #endif